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Abstract. The effective reverse engineering of biochemical networks is
one of the great challenges of systems biology. The contribution of this
paper is two-fold: 1) We introduce a new method for reverse engineering
genetic regulatory networks from gene expression data; 2) We demon-
strate how nonlinear gene networks can be inferred from steady-state
data alone. The reverse engineering method is based on an evolution-
ary algorithm that employs a novel representation called Analog Genetic
Encoding (AGE), which is inspired from the natural encoding of genetic
regulatory networks. AGE can be used with biologically plausible, non-
linear gene models where analytical approaches or local gradient based
optimisation methods often fail. Recently there has been increasing in-
terest in reverse engineering linear gene networks from steady-state data.
Here we demonstrate how more accurate nonlinear dynamical models can
also be inferred from steady-state data alone.
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1 Introduction

Genetic regulatory networks perform fundamental information processing and
control mechanisms in the cell. Regulatory genes code for proteins that en-
hance or inhibit the expression of other regulatory and/or non-regulatory genes,
thereby forming a complex web of interactions (Fig. 1a). Inference and simulation
of gene networks may contribute substantially to our biological knowledge in the
post-genomic era. Practical applications may have a strong impact on biotech
and pharmaceutical industries, potentially setting the stage for rational redesign
of living systems and predictive, model-based drug design [1]. Technologies to
assay gene expression levels in terms of mRNA concentrations are advancing at
a fast pace. Using oligonucleotide chips or quantitative PCR for instance, it is
possible to probe a set of genes of interest that are part of an uncharacterized
gene network (henceforth known as target network) under different conditions.
The goal of reverse engineering is inferring the target gene regulatory network
from this experimental data.



The choice of a suitable reverse engineering method depends on the type of
model used to describe the target network. Here we focus on models that repre-
sent a genetic regulatory network as a dynamical system described by a system
of ordinary differential equations. The linear model [1-5], which is based on a
first-order approximation of gene expression dynamics, is by far the most widely
used gene network model. Its main advantage is that reverse engineering can
be tackled analytically using standard techniques of system identification [1-6].
However, gene regulation is known to be strongly nonlinear. Hence, the lineariza-
tion is generally only valid in a small regime, i.e., close to a specific steady-state
[1,3,5]. This implies that valuable data from perturbation experiments with a
strong effect on the network (e.g., gene knockouts) cannot be used because they
fall outside the valid regime of the first-order approximation [1, 5]. Furthermore,
the inferred linear model is unlikely to correctly predict network response under
strong perturbations [1, 5], as can be expected in disease for instance.

As both quantity and quality of experimental data improve, we can aim at
a more biologically plausible, faithful reconstruction of the target network. This
requires the conception of adequate inference methods that can handle complex,
nonlinear gene models, where analytical approaches and local gradient based op-
timisation often fail. In this paper we propose a bio-mimetic approach based on
artificial evolution [7] using Analog Genetic Encoding (AGE) [8,9], an artificial
genetic representation that has already proven its merits in benchmark prob-
lems in the fields of analog electronic circuits [8, 9] and artificial neural networks
[10]. Unlike other reverse engineering algorithms based on global optimisation
techniques such as simulated annealing [11,12] or conventional evolutionary al-
gorithms [4,13-15], AGE allows simultaneous inference of model structure and
numerical parameter values. Furthermore, AGE mimics the evolutionary pro-
cess of incremental complexification that natural gene regulatory networks are
subjected to.

In the past, most reverse engineering studies used time-series gene expression
data. However, time-series data are more difficult to obtain experimentally than
steady-state data and their information content is lower (samples in a time-series
are not independent). Indeed, there has been a recent trend towards approaches
based on steady-state perturbation data [1, 3,16, 17]. These studies use analytical
approaches based on first-order approximations. Here we demonstrate for the
first time — to the best of our knowledge — how nonlinear models (network
structure and parameters) can be inferred from steady-state data alone.

2 Evolutionary Reverse Engineering with AGE

The first step in the reverse engineering process generally consists in the choice of
a gene network model type (e.g. the sigmoid model introduced in Sect. 3). AGE
is not constrained to a specific model type, but can be used with a large class of
nonlinear models termed analog networks [9]. An analog network is composed of
a collection of devices connected by links of different strengths. Here, devices are



genes and links correspond to regulatory interactions'. Without limiting our-
selves to a specific model type, we assume that genes are characterized by a
vector of internal parameters p (e.g. decay rate, maximum transcription rate,
etc.) and regulatory links have a single parameter called weight w. Within this
framework, reverse engineering requires the specification of the network structure
(size, topology) and the specification of the numerical values of all gene parame-
ter vectors p and connection weights w. Using AGE, we encode these elements in
a bio-inspired artificial genome. The reverse engineering process then amounts
to the artificial evolution of gene networks that best match the experimental
gene expression data (see Sect. 3.2). Apart from the bio-inspired genotype and
mutation operators, the evolutionary algorithm is similar to a standard genetic
algorithm [7]. It acts on a population of gene networks, which are encoded as
described below. At each generation, fitter individuals are selected with higher
probability for reproduction. Offspring are produced from the selected genomes
by applying crossover and mutation operators as described in Sect. 2.2.

2.1 Genetic Encoding

We stress that AGE is not supposed to be a detailed model of the workings
of gene networks, but a bio-inspired genotype that abstracts key features dis-
tinguishing the biological encoding from traditional artificial encodings used in
genetic algorithms. Nature has chosen a digital encoding of genomes based on
sequences of characters. Similarly, the AGE genome is constituted by one or
more chromosomes, which are sequences of characters drawn from a genetic al-
phabet. The genetic alphabet used here has 26 nucleotides, which we designate
with letters ‘A’-‘Z’. In nature, the beginning and the end of genes are marked by
signals encoded in the DNA (promoters and terminators). Analogously, we use
special nucleotide patterns (‘GN’ and ‘TE’) termed ‘tokens’ to delimit genes in
the artificial genome as illustrated in Fig. 1. Consequently, genes may be located
anywhere in the genome. Sequences that are not part of a gene are non-coding.

In a cell, the potential regulatory interaction between two genes A and B is
not encoded explicitly in the genome, but follows implicitly from a biochemical
process which depends among other things on: i) The coding region of gene
A, which encodes the characteristics of protein A; ii) The regulatory region of
gene B, which contains the potential binding sites for the regulatory protein
(Fig. 1a; Note that there are other mechanisms of gene regulation not discussed
here). Thus, the strength of the interaction is implicitly encoded by the respective
coding and regulatory sequence. One of the consequences of the implicit encoding
is that a single mutation in a coding or regulatory sequence may affect zero,
one or several regulatory interactions simultaneously. In contrast, in an explicit
(direct) encoding a single mutation affects only one characteristic of the network.

Analogously, artificial genes in AGE have a regulatory and a coding region
as shown in Fig. 1b. The regulatory influence w;; of gene j on gene ¢ is implicitly

! In this paper we consider the simplest case where all devices are of the same type,
but AGE can also handle heterogeneous networks [9]. We plan to use several device
types in the future for more complex models of gene-protein networks, for instance.
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Fig. 1. a) Simplified representation of transcriptional regulation. A gene is transcribed
by RNA Polyermase (RNAP). Proteins are synthesized from mRNA (translation). Gene
regulatory proteins bind to specific sites, enhancing or repressing the transcription rate
of the following gene. Genetic regulatory networks are complex webs of such regulatory
interactions. b) AGE chromosome encoding two genes. Analogous to the natural en-
coding, the beginning and the end of genes are marked by special nucleotide patterns
in the artificial genome (tokens ‘GN’ and ‘TE’). Genes have a coding region S¢oq and
a regulatory region sreg, which may interact via an interaction map Iw(Scod , Sreg) that
abstracts the complex biochemical process illustrated in a)

encoded in the coding region s¢oq,; and the regulatory region s,cg; via an inter-
action map I, that abstracts the complex biochemical process of transcriptional
regulation: w;; = Iy (Scod,; 7sregj). The interaction map is based on local align-
ment of the two sequences [8,9]. The closer the match between two subsequences
of Scod and Sreg, the stronger the interaction. Details are given in the Appendix.

In summary, decoding of the AGE genome involves the identification of valid
genes (which must be correctly delimited by the corresponding tokens) and the
subsequent application of the sequence interaction map to all pairs of coding
and regulatory sequences. The interaction strength between two sequences may
be zero, in which case there is no regulatory link between the two genes. Hence,
the size of the decoded network is given by the number of genes in the genome
and the topology and weights w follow from the computed interaction strengths.

For the gene parameters p, it is desirable to use the same encoding as for the
interactions [8]. Consider first the case where genes have a single parameter p.
The value of p is decoded analogously to the weights by a sequence interaction
map: p = Ip(sp1,Sp2), where s, 1 and sp 2 are two additional sequences ap-
pended to the coding region of genes as shown in Fig. 2. Further gene parameters
can be encoded by appending an additional pair of sequences for every additional
parameter. Implementation details of I,, are also given in the Appendix.
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Fig. 2. In order to encode a gene parameter p, genes must have two additional sequences
Sp,1 and sp 2. Thus, a valid gene with one gene parameter has four sequences separated
by tokens ‘TE’. The token ‘GN’ to the left of the valid gene is not followed by the
necessary four tokens ‘TE’, thus it is not coding

2.2 Genetic Operators

One of the key features of AGE is the possibility to apply a wide range of
biologically inspired genetic operators that are believed to play important roles
in the evolution and complexification of natural genetic regulatory networks [8].
From the point of view of the genetic operators, the tokens that delimit the
genes have no special meaning — there is no distinction between tokens, coding
and non-coding genome fragments. The operators described below are applied
probabilistically to randomly chosen parts of the genome (see Sect. 3.2).

Nucleotide deletion, insertion, and substitution: A character is removed, in-
serted, or substituted in the genome. Random characters from the genetic
alphabet are used for insertions and substitutions.

— Chromosome fragment deletion, transposition, and duplication: Two points
are chosen in a chromosome and the intervening genome fragment is deleted,
transferred or copied to another point of the genome.

— Chromosome deletion/duplication: A chromosome is deleted/duplicated.

— Crossover: Chromosomes of parents are recombined using homologous cross-

over, which is based on the search of a homologous crossover point [8].

The application of the genetic operators can invalidate genes (e.g., through
invalidation of a token) and transform the corresponding fragments into non-
coding genome, which may play the role of an evolutionarily useful repository
of genetic fragments. On the other hand, new genes can be created, for example
through the appearance of new tokens or the duplication of a genome fragment.

3 Experiments

When applying a novel reverse engineering technique directly to biological data,
performance evaluation is difficult because the target network is unknown. Thus,
we first test AGE using synthetic expression data generated in simulation from an
in silico target gene network. Subsequently the inferred networks are compared
with the target network in order to validate the results. This is a standard
approach to assess the performance of reverse engineering methods [5].



3.1 The Test Case

Gene Network Model. We demonstrate the application of AGE using a stan-
dard sigmoid model [11-13, 18] defined by the system of state equations:

dx;/dt = m; - O’( Z wijxj> — 0;x;, (1)

JER;

where x; is the expression level of gene i, m; is the maximum transcription rate,
and 9; is the degradation rate. R; is the set of regulators of gene ¢ and w;;
represents the regulatory influence of gene j on gene ¢ (positive for enhancers,
negative for repressors). The activation function is a sigmoid o(z) = 1/(1+e™*).

In the experiments reported in this paper we use steady-state expression
levels as input data for the inverse problem, though AGE could as well be applied
to time-series data. At steady-state, the state equations become a set of algebraic
equations:

JER;

Synthetic Target Network and Expression Data. We employ the topol-
ogy of a nine-gene subnetwork of the E.coli SOS pathway as described in [1]
as test case (see Fig. 4). We refer to this topology as SOS network. There is no
quantitative model of the SOS network available in the literature. Hence, numer-
ical parameter values for the weights w and the parameter p of the steady-state
equation introduced above are sampled randomly (see Appendix). The sign of
the weights is set according to the SOS network topology (positive for enhancers
and negative for repressors). The resulting in silico target gene networks are
random targets with a realistic topology, which is a more biologically plausible
approach than random generation of both topology and parameters [5, 13].

Synthetic gene expression data is obtained by applying a perturbation to
the in silico target network and computing the steady-state expression levels
of all genes?. This process is repeated for different perturbations to gather the
necessary experimental data for reverse engineering. In our experiments we use
two different types of perturbations that are commonly used for gene network
inference: Gene knockouts, i.e. silencing of a particular gene, and gene over-
expression, which consists in artificially boosting the transcription rate of a gene.
A gene knockout can be simulated by setting the rate parameter m; to zero.
Consequently, the expression level z; of this gene at steady-state will be zero.
Over-expression is simulated by doubling the m; value of the affected gene.

For the experiments reported below we generate expression data from the in
silico SOS network for the wild type (unperturbed network) and for 9 knockout
and 9 over-expression experiments (knockout and over-expression of each gene).

2 We compute the steady-states numerically using Powell’s method of the GNU Sci-
entific Library (GSL, http://www.gnu.org/software/gsl).



3.2 The Evolutionary Algorithm

The weights w and the single gene parameter p of the steady-state sigmoid
model are encoded in the artificial genome as explained in Sect. 2. Details of the
sequence interaction maps are given in the Appendix.

Since we do not yet model noise, the least squares optimisation criterion is
suitable for the definition of the fitness. The goal of the evolutionary algorithm
is to minimize the fitness function: f(X) = Zf\il Zjvzl (wij — #i;)%, where X is
the synthetic gene expression data generated from the target network (element
x;; corresponds to the expression level of gene j in experiment ) and X are the
corresponding expression levels in the inferred network. M denotes the number
of different perturbation experiments and N is the number of genes. Thus, fig-
uratively speaking, the reverse engineering process amounts to finding the gene
network that best fits the target expression data.

We use the following parameters for the evolutionary algorithm. The pop-
ulation size is 200. We use elitism, i.e., the best individual is protected from
replacement. At each generation, 40 parents are chosen using tournament se-
lection [7]. From the 40 parents, 200 new individuals are created and genetic
operators are applied with:

Probability of homologous crossover (per individual) 0.1
Prob. of nucleotide deletion, insertion and substitution (per nucleotide) 0.001
— Prob. of chromosome fragment deletion, transposition and duplica-

tion (per chromosome) 0.01
— Prob. of chromosome deletion and duplication (per chromosome) 0.001

The choice of the parameters listed above is not critical. They were chosen
heuristically based on a series of test runs and the experiences reported in [8,9].
We observe no significant difference in the quality of results obtained with differ-
ent standard selection and replacement strategies. Note that the mutation rates
were chosen such that the more disruptive whole chromosome and chromosome
fragment mutations occur less frequently than single nucleotide mutations.

3.3 Results

The results of a batch of ten reverse engineering runs using synthetic data from
a randomly initialized SOS gene network as explained above are shown in Fig.
3. For each run, we record the fitness f (X) of the best individual at every
generation of the evolutionary algorithm. Of course, in addition to a good fit
of the expression data, the structure of the inferred networks should match the
target gene network. In a real biological application the structure of the target
network is unknown, but in the synthetic test case employed here the accuracy
of the inferred networks can be quantified. To this end we use the mean square
error E(é) of all parameters of the reverse engineered network 6 (including all
weights w;; and gene parameters p;) compared to the true parameter values 6 of
the in silico target gene network: E(0) = l/K-Zlfil (0, — 6;)% , where 6; denotes
the [-th element of parameter vector § and K is the total number of parameters.
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Fig. 3. Reverse engineering of the SOS network — ten runs. The fitness f(X) (left) and
the estimation error E(f) (right) are plotted for the best individual of each run. As the
fitness is optimized (i.e., minimized), the inferred networks match the structure and
parameters of the target network with increasing accuracy (the estimation error goes

down). The run with the best final fitness is highlighted. For details, see main text

We refer to E(0) as estimation error of the inferred network. In addition we also
count the number of false positives and false negatives>.

The ten runs shown in Fig. 3 were executed for 100’000 generations of the
evolutionary algorithm. Average computation time was roughly two days for
one run on a standard desktop PC. All ten runs achieve a fitness below 0.1.
Since fitness is a sum of square errors, the individual expression levels are fitted
extremely accurately with a relative error in the order of 1% . As the reverse
engineering algorithm optimizes the fitness, the estimation error of the inferred
networks goes down. Four out of ten runs inferred the SOS network with high
precision? (final estimation error between 0.02 and 0.03). In other words, these
runs closely matched the structure, weights and gene parameters of the target
network. The other runs converged at estimation errors of about 0.1.

In a set of reverse engineering runs, one would like to choose the inferred
network with the lowest estimation error E(0). However, since E(6) is unknown
in a real application, this is not possible. Hence, we choose the inferred network
with the best fitness as the most plausible reconstruction of the target network®.

Here, the best run (see Fig. 3) achieves a fitness of 0.02 and the corresponding

3 We count as false positive when a target weight w;; = 0 and the absolute value of the
inferred weight |;;| > 0.1; A false negative occurs when w;; # 0 and |w;;] < 0.1.

4 Further analysis indicates that the accuracy achieved by the best runs corresponds to
a lower bound given by the discretization of the search space due to the quantization
of the parameters and weights.

® In a real application, one should not just consider the inferred network with the
best fitness — which merely corresponds to the network with the highest a posteriori
probability — but analyze all well-scoring (i.e., probable) inferred networks [13].
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Fig. 4. a) Topology of the FE.coli SOS network [1]. Arrows are enhancing, Tee ends
denote inhibitory interactions. b) The topology inferred by the run with the best final
fitness is identical except for one false positive (bold) and one false negative (encircled)

network has a very low estimation error of 0.03 with only one false positive and
one false negative out of a total of 81 possible connections (see Fig. 4b).

In other experiments with target SOS networks with different random initial-
izations of the parameter values we have obtained the same quality of results.
AGE infers networks with very good fitness in every run. Roughly 40% of the
runs also achieve very low estimation errors (i.e., they correctly infer the target,
having only very few false positives and false negatives). Simpler networks, e.g.,
cascades of size six, are inferred correctly in every run. In addition, we have
also tested gradient descent and observed that it is not successful at inferring
the sigmoid model — even when restarted many times — because it prematurely
converges to local optima with very bad fitness and high estimation error.

4 Conclusion

We have introduced a new approach for reverse engineering genetic regulatory
networks. The method is based on artificial evolution with a bio-inspired genetic
encoding (AGE), which allows simultaneous inference of numerical parameter
values and model structure (network size, topology and — in heterogeneous net-
works — the type of the nodes). AGE is not constrained to a specific gene network
model type, but can be used with a large class of nonlinear models.

Using a standard sigmoid model as test case, we have successfully reverse
engineered the FE.coli SOS network from synthetic steady-state gene expression
data. The SOS network arguably has a more complex and densely connected
topology than typical target networks used for inference methods based on global
optimisation techniques [11-15]. Thus, our results demonstrate the competitive-
ness of AGE for inference of complex nonlinear gene regulatory networks.

There has been a recent trend towards reverse engineering methods using
steady-state perturbation data [1, 3, 16, 17]. However, those approaches are based
on first-order approximations. Here we propose for the first time — to the best of



our knowledge — the use of steady-state perturbation data for reverse engineering
of nonlinear models. Considering the advantages of steady-state with respect to
time-series data and based on the encouraging results of our test case, we believe
this to be an extremely promising approach.

Experiments reported here were conducted with synthetic, noise-free expres-
sion data. We are currently working both on an application to real expression
data and on a more realistic in silico test case based on a mechanistic model
of a well-characterized gene-protein network. In addition, we also intend to take
advantage of the flexibility of AGE in order to explore novel, more biologically
plausible gene network models than the sigmoid model employed here.
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Appendix

We give here only a short description of the sequence interaction maps I, and I
introduced in Sect. 2.1 due to space limitation. For details, refer to Refs. [8,9].

The sequence interaction map Iy (Scod , Sreg) that decodes the weights w;; from the
respective coding and regulatory regions of genes i and j is defined as a composed
map Ny (L(Scod , Sreg), which is formed by a generic interaction map L(Scod , Sreg) and
a network-specific map Ny (7). The generic interaction map L(Scod , Sreg) is defined as
the local alignment score of the two sequences [8], using the same alignment parameters
as Ref. [9]. Figuratively speaking, the closer the match between two subsequences of
Scoa and sreg, the stronger the interaction. Simpler techniques of sequence comparison
such as exact matching or Hamming distance would compromise evolvability [8]. The
network-specific map Nw : [imin, imax] — [0, Wmax] transforms integer local alignment
scores i into floating-point weights. Alignment scores smaller than the threshold imin
are mapped to zero (no interaction), scores greater than imax are truncated to wmax,
and scores in between are mapped linearly onto the positive interval [0, Wmax]. In the
experiments reported in this paper, we used imin = 11, tmax = 31 and wWmax = 2.

The alignment score given by the interaction map is always positive. In order to
represent negative weights, genes actually have two sequences Scod+ and Scod— corre-
sponding to enhancing and repressing regulatory activity (for clarity, only one sequence
Scod Wwas mentioned in Sect. 2.1). The weight is defined by the stronger interaction:
w = +Iw(Scod+73reg) if Iw(scod+73reg) > Iw(scod—,sreg) and w = _Iw(scod—ysreg)
otherwise.

Analogously to I, the sequence interaction map I,(sp,1, Sp,2) used for decoding
gene parameter p from the respective sequences sp1 and sp 2 is implemented as a
composed map Np(L(sp,1,5p,2)), using the same generic interaction map L defined
above. Np : [imin ;%max] " [Pmin , Pmax] maps the integer local alignment scores onto
the interval of parameter p analogously to Ny, described above.

Finally, we briefly discuss the random sampling of numerical parameter values for
the in silico target network (Sect. 3.1). Weights w;; were initialized uniformly in the
range [0.15,1.5] and parameters p; in the range [1/2,2]. These ranges were selected
empirically with the goal to obtain rich nonlinear dynamics in the target networks, i.e.,
so that on average the total regulatory input for the sigmoid activation functions was
neither completely saturated nor constrained to a very small, almost linear regime.



