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Abstract. The Steiner Tree Problem (STP) in graphs is a well-known
NP-hard problem. It has regained attention due to the introduction of
new telecommunication technologies, since it is the mathematical struc-
ture behind multi-cast communications. The goal of this paper is to
design an ant algorithm (called ANT-STP) for the STP in graphs which
is better than TM, which is a greedy constructive method for the STP
proposed in [34]. We derive ANT-STP from TM as follows: each ant is
a constructive heuristic close to TM, but the population of ants can col-
laborate by exchanging information by the use of the trail systems. In
addition, the decision rule used by each individual ant is different from
the decision rule used in TM. We compare TM and ANT-STP on a set
of benchmark problems of the OR-Library.

1 Introduction

Let G = (V, E, w) be a graph, V its vertex set, E its edge set, and w be a cost
function which associates a positive cost w[x, y] with each edge [x, y] ∈ E. We
define a tree in a graph G as a subgraph s of G without any cycle which connects
a subset of vertices of V . Given a subset R of V , the Steiner Tree Problem (STP)
in graph G consists in finding a tree s in G which connects all the vertices in R
(the mandatory vertices) at a minimum cost. Thus, the objective function f to
minimize is simply f(s) =

∑

[x,y]∈s

w(x, y). The vertices in V − R are called the

Steiner vertices. The decision version of this problem has been shown in [22] to
be NP-complete in the general case. As a result, the existing exact methods can
not solve large instances and heuristic approaches are required to such instances
likely to be encountered in real-life applications of the problem.

In telecommunication networks, data may have to be sent from one or more
source(s), which are vertices in R and are called terminals, to multiple destina-
tions, as in the case of conference calls or other applications sharing activities.
The problem to send data to multiple destinations is known as the multicasting

� Corresponding author.

M. Giacobini et al. (Eds.): EvoWorkshops 2007, LNCS 4448, pp. 42–51, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



An Ant Algorithm for the Steiner Tree Problem in Graphs 43

routing problem [5], which has often additional delay constraints [27]. Online ver-
sion of this problem, in which vertices can appear or disappear, can be found in
[20], [29]. The weight function w is generally given by a multiple of a transmission
capacity unit. Multicast routing problems occur in a variety of fields such as mas-
sive multi-player online role playing game [6], video or voice conferences [14], and
collaborative virtual environments [13]. Several surveys describe data multicast
techniques [25] or their associated combinatorial optimization methods [26].

STP in graphs also occurs in other fields, such as VLSI interconnect layout
[4], [18]. VLSI designs generally consists in the interconnection of a set of pins,
which must be made electrically connected by a set of wire segments. Although
rectilinear metrics have to be considered in VLSI, there is a straightforward
equivalence between STP with rectilinear metric and STP in graphs, since Hanan
showed in [17] that only Steiner vertices formed by the intersections of vertical
and horizontal lines through the vertices have to be considered.

Well known constructive heuristics for the STP in graphs are e.g. the ones
proposed in [24], and in [34]. The latter starts with an empty solution s and
successively connects a terminal vertex x /∈ s to s by the use of the shortest
paths of value SP (x, s) from x to s, where SP (x, s) = min

y∈s
d(x, y), and where

d(x, y) is the length (or cost) of the path connecting x and y in G. At each
step, the terminal vertex x such that SP (x, s) = min

y∈R−s
SP (y, s) is added to the

current partial solution s. Distributed heuristics have also been studied by sev-
eral authors [23], [3], [32]. Among the most efficient algorithms, we can mention
for example [28] and implementations of meta-heuristics such as genetic algo-
rithms [21], [12], GRASP [31], tabu search [16], [30] or simulated annealing [11].
Heuristics for the STP are reviewed e.g. in [19], [36].

The solution space of the tabu search methods proposed in [16] consists in
all the minimum spanning trees covering the mandatory vertices. Each element
of such a solution space can thus be identified by its subset of Steiner vertices.
In order to generate a neighbor solution s′ from a solution s, the idea is to
add in or remove from s a single Steiner vertex. The reverse of such a move is
then tabu for some iterations. In the genetic algorithm presented in [12], the
encoding is based on the use of the Distance Network Heuristic (DNH), the
deterministic heuristic for the STP proposed in [24]. The genotype gen specifies
a set of selected Steiner vertices, and a Steiner tree can be build from gen by
applying DNH on the terminals and selected Steiner vertices.

In this paper, we present a distributed approach using an ant colony system to
tackle the STP in graphs. We first describe a preprocessing step which hopefully
will decrease the size of the solution space. We then present the main ideas of the
ant algorithms and our ant heuristic for the STP. Finally, we show and discuss
the obtained results on a set of benchmark instances.

2 Preprocessing Step

Often, the STP in graphs can be reduced using either exclusion or inclusion
tests. The former identifies edges or non terminal vertices which do not belong
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to at least one minimal Steiner tree, whereas the latter identifies edges or non
terminal vertices which belong to all minimal Steiner trees. We choose some of
the tests described in [19] for effectiveness reasons.

Four exclusion tests have been selected: non terminal of degree one, non ter-
minal of degree two, long edge and paths with many terminals. The degree of a
vertex x is the number of adjacent vertices to x. The Non Terminal of Degree
One test (NTD1) removes vertices of degree one which are not in R, since mini-
mal Steiner tree should not contain any non terminal vertices of degree one. The
Non Terminal of Degree Two (NTD2) test is based on the following property: let
v be a non terminal vertex of degree two, [x, v] and [v, y] be its two associated
edges. Then

– if there is no edge [x, y], then v and its two incident edges can be replaced
by the edge [x, y] with a weight w[x, y] = w[x, v] + w[v, y];

– if there is an edge [x, y] such that w[x, y] ≤ w[x, v]+w[v, y], then there exists
a minimal Steiner tree which does not contain v; therefore v and its incident
edges can be removed;

– if there is an edge [x, y] such that w[x, y] > w[x, v]+w[v, y], then no minimal
Steiner tree contains [x, y]; therefore [x, y] can be removed.

The Long Edge (LE) test removes each edge whose weight is strictly greater
than the length of a shortest path between its extremities. The Path with many
Terminals (PTm) test is a generalization of the LE test which involves the bot-
tleneck Steiner distance. If all the vertices in a path, but its extremities, are non
terminals, then this path is said to be elementary. Let P be a path between x
and y. P is composed of one or more elementary paths. The longest elementary
path in P is said to be the Steiner distance between x and y. The bottleneck
Steiner distance b(x, y) between x and y is the shortest Steiner distance among
all the paths between x and y. The PTm test removes each edge whose weight
is strictly greater than the bottleneck Steiner distance between its extremities.

Two inclusion tests have been selected: the Terminal of Degree One and the
Nearest Vertex. The Terminal of Degree One (TD1) contracts each terminal
vertex of degree one, since they belong to any (minimal) Steiner tree. The Nearest
Vertex (NV) contracts the shortest edge [z, x] incident to a terminal vertex z if
the length of a second shortest edge [z, y] is greater than or equal to w[z, x] +
SP [x, z′], where z′ is a terminal vertex.

The order in which those tests are performed is important since it has a strong
impact on the computational time. Let SPM be a matrix, called the shortest
path matrix, such that SPM(x, y) equals the value of the shortest path between
x and y. We propose the following preprocessing algorithm, which is close to the
one proposed in [12].

While one of the following test is able to reduce G, do:
(a) perform TD1, NTD1, and NTD2;
(b) compute the shortest paths matrix SPM ;
(c) perform PTm and LE;
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Table 1. Reductions on B instances

Initial Graph Reduced Graph
Instance I |V | |R| |E| |V | |R| |E|

B1 50 9 63 1 1 0
B2 50 13 63 7 4 11
B3 50 25 63 1 1 0
B4 50 9 100 25 6 42
B5 50 13 100 11 4 19
B6 50 25 100 20 9 36
B7 75 13 94 1 1 0
B8 75 19 94 1 1 0
B9 75 38 94 1 1 0
B10 75 13 150 44 9 92
B11 75 19 150 36 5 76
B12 75 38 150 18 9 33
B13 100 17 125 27 9 43
B14 100 25 125 21 8 37
B15 100 50 125 12 8 19
B16 100 17 200 60 9 135
B17 100 25 200 31 8 60
B18 100 50 200 15 7 23

Table 2. Reductions on C and D instances

Initial graph Gendreau et al. Our reduced graph
I (|R|; |E|) (|V |; |R|; |E|) (|V |; |R|; |E|)
C1 (5 ; 625) (145 ; 5 ; 263) (138 ; 5 ; 246)
C2 (10 ; 625) (130 ; 8 ; 239) (126 ; 8 ; 231)
C3 (83 ; 625) (125 ;39 ;237) (95 ;34 ; 178)
C4 (125 ; 625) (116 ;42 ;233) (74 ;29 ; 134)
C5 (250 ; 625) (47 ;24 ;117) (20 ;13 ; 36)
C6 (5 ; 1000) (369 ;5 ;847) (369 ;3 ;841)
C7 (10 ; 1000) (382 ;9 ;869) (380 ;9 ;857)
C8 (83 ; 1000) (335 ;53 ;817) (334 ;52 ;815)
C9 (125 ; 1000) (351 ;80 ;834) (322 ;75 ;711)
C11 (125 ; 2500) (499 ;5 ;2184) (498 ;5 ;2036)
C12* (10 ; 2500) (498 ;9 ;2236) (498 ;9 ;2236)
C14 (5 ; 2500) (414 ;68 ;1886) (360 ;64 ;1000)
C16† (5 ; 12,000) (500 ;5 ;4740) (500 ;5 ;4740)
C17* (10 ; 12,000) (500 ;10 ;4704) (498 ;8 ;4685)
C18 (83 ; 12,000) (483 ;67 ;4637) (461 ;47 ;2575)
C19 (125 ; 12,000) (433 ;58 ;3431) (415 ;41 ;2016)
D1 (5 ; 1250) (274 ;5 ;510) (273 ;5 ;506)
D2 (10 ; 1250) (285 ;10 ;523) (283 ;10 ;519)
D3 (167 ; 1250) (228 ;10 ;445) (166 ;58 ;307)
D4 (250 ; 1250) (180 ;81 ;376) (105 ;47 ;196)
D12 (10 ; 1250) (999 ;9 ;4669) (994 ;9 ;3890)
D7 (10 ; 2000) (754 ;10 ;1735) (747 ;10 ;1709)
D8† (167 ; 2000) (732 ;124 ;1711) (773 ;149 ;1753)
D9† (250 ; 2000) (660 ;157 ;1613) (774 ;227 ;1749)
D16* (5 ; 25,000) (1000 ;5 ;10595) (1000 ;5 ;10595 )

We present the results of the above reduction procedure in Tables 1 and 2. We
consider a set of the benchmark instances available from the OR-library [1], which
can be found in [35]. Among the instances of type B, five have been solved to op-
timality using only the above reduction procedure, and the size of all instances
but one has been reduced by half at least. All of them were preprocessed in less
than two minutes on a computer Silicon Graphics Indigo2 (195 MHz, IP28 proces-
sor). Instances of type C (characterized by |V | = 500) and D (characterized by
|V | = 1000) have also been tested and compared favorably with those obtained in
[16]. The drawback of our reduction procedure could rely on computational time,
so that PTm may be inadequate for some instances. Therefore, on instances la-
beled by ”*” in Table 2, the PTm test has been replaced by the LE test in order to
avoid the computation of the bottleneck Steiner distance. In three cases labeled
by ”†”, the procedure has been stopped after 1 hour of CPU time. In Table 2, we
compare our reduction procedure with the one proposed in [16]. We can observe
that we obtain better results except for instances D8 and D9.
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3 Ant Algorithms

Evolutionary heuristics encompass various algorithms such as genetic algorithms,
scatter search, ant systems and adaptive memory algorithms [2]. They can be
defined as iterative procedures that use a central memory where information is
collected during the search process. Ant colonies were first introduced in [9] and
in [10]. In these methods, the central (long term) memory is modeled by a trail
system. In the usual ant system, a population of ants is used, where each ant is a
constructive heuristic able to build a solution step by step. At each step, an ant
adds an element to the current partial solution. Each decision or move m is based
on two ingredients: the greedy force GF (m), which is the short term profit for the
considered ant, and the trails Tr(m), which represent the information obtained
from other ants. Let M be the set of all the possible moves. The probability
pk(m) that ant k chooses move m is given by

pk(m) =
GF (m)α · Tr(m)β

∑

m′∈Mk(adm)
GF (m′)α · Tr(m′)β

(1)

where α and β are parameters and Mk(adm) is the set of admissible moves that
ant k can perform at that time. In some ant algorithms [7], at each step and for
a fixed value of parameter p ∈ [0; 1], a random number r is generated in [0; 1]. If
r < p, the chosen move is selected according to Equation (1), otherwise it is the
one maximizing pk(m). When each ant of the population has built a solution, in
which case we say that a generation has been performed, the trails are updated,
for example as follows: Tr(m) = ρ · Tr(m) + (1 − ρ) · ΔTr(m), ∀m ∈ M, where
0 < ρ < 1 is a parameter representing the evaporation of the trails, which is
generally close or equal to 0.9, and ΔTr(m) is a term which reinforces the trails
left on move m by the ant population. That quantity is usually proportional
to the number of times the ants performed move m, and to the quality of the
obtained solutions when move m has been performed.

In some systems [7], the trails are updated more often (e.g. each time a single
ant has built its solution) or are updated by only considering a subset of the
ant population (e.g. the ants which provided the best solutions at the end of the
current generation). In hybrid ant systems, the solutions provided by some ants
may be improved using a local search technique. In the max-min ant systems [33],
the authors proposed to normalize GF (m) and Tr(m) in order to better control
these ingredients and thus the search process. An overview of ant algorithms can
be found in [8].

4 Proposed Ant Algorithm

In order to propose an ant algorithm for the STP, we mainly have to define: a
move, the greedy force of a move, the way to update the trails and the way to
select a move.
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Let N be the number of ants in the considered population. The role of a single
ant k is to build a solution sk step by step, starting with an empty solution sk. At
each step, as proposed in [34], we perform a move by connecting a terminal vertex
x /∈ sk to sk using the shortest path between x and sk. Thus, it is straightforward
to define the greedy force of a terminal vertex x /∈ sk as GF (x) = 1

SP (x,sk) .
To define Tr(x), we associate a trail value t(v) to each non terminal vertex

v. Tr(x) is then defined as the average value of t computed by considering each
non terminal vertex v which belongs to the shortest path between x and sk.
We chose the average value of t instead of a summation in order to avoid to
give too much importance to the terminal vertices which can be connected to sk

by a shortest path containing lots of non terminal vertices. At the end of each
generation, the trails are globally updated as follows:

t(v) = (1 − ρg) · t(v) + ρg · Δt(v), ∀v /∈ R,

where ρg ∈ [0; 1] is a parameter. The reinforcement term Δt(v) is updated as
follows: Δt(v) =

∑
k Δtk(v), where the summation only holds for the Nbest best

ants of the current generation (i.e. the Nbest ants with the smallest values of the
objective function f), where Nbest is a parameter. It is straightforward to set

Δtk(v) =
{ 1

f(sk) if v ∈ sk;
0 otherwise.

Consequently, if t(v) is large, it means on the one hand that most of the Nbest best
ants of the current generation have chosen v in their associated solutions, and
on the other hand that these solutions have smaller values of f when compared
to the other solutions built during the current generation.

In addition, assuming ant 1 to ant k − 1 have respectively built their own
solutions s1, . . . , sk−1, when ant k has then built its solution sk, the trails are
locally updated as follows:

t(v) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

t(v) + μ · [1 − t(v)] if f(sk) ≤ min
i∈{1,...,k−1}

f(si);

t(v) otherwise but f(sk) < 1
k−1

k−1∑

i=1
f(si);

ρl · t(v) otherwise;

where ρl, μ ∈ [0; 1] are parameters. We can observe that if sk is the best solution
of the current partial generation, the trails of non terminal vertices in sk are rein-
forced. If it is not the case but sk is better than the average quality of the solutions
of the current partial generation, the trails of non terminal vertices in sk keep the
same value. Otherwise, such trails are reduced by an evaporation factor ρl.

At each step of the construction of a solution by a single ant, a random number
r is generated in [0; 1]. If r < p (where p ∈ [0; 1] is a parameter), the chosen
move is selected according to Equation (1) using ”x” instead of ”m” (where x ∈
R − sk), otherwise (i.e. if r ≥ p) it is the one maximizing pk(x). Note that in
order to put some diversification in the general process, the first terminal vertex
is always randomly selected when an ant starts to build its solution. In addition,
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at the very beginning of the process, all the t(v) values are initialized to 0.5. Thus,
only the greedy force will guide the choices of the first ant in the first generation.
Equivalently, such an ant simply applies the method proposed in [34].

We have now all the ingredients which are necessary to design our general
heuristic for the STP in graphs.

1. Initialize t(v) = 0.5 for all v /∈ R;
2. Initialize the parameters: N, Nbest, ρg, ρl, μ, p, α, β;
3. Set f∗ = ∞;
4. While 500 generations without improvement of f∗ have not been performed,

do:
(a) for k = 1 to N , do:

i. initialize sk with a randomly chosen terminal z;
ii. successively connect a terminal vertex x to sk by the use of the

shortest path from x to sk; repeat this step until all terminal vertices
are in sk;

iii. update the trails (locally);
iv. if f(sk) < f∗, set f∗ = f(sk) and s∗ = sk;

(b) update the trails (globally);
5. Return solution s∗ of value f∗;

5 Numerical Results

It is important to mention that all the ingredients introduced in the previous sec-
tion (namely GF (x), T r(x), t(v), Δt(v)) are always normalized in interval [0; 1].
Such normalization leads to a better control on the search. In addition, prelimi-
nary experiments showed that the following parameter setting is appropriate:N =
30, Nbest = 3 (thus only the best 10% of the ants are involved to update the trails),
ρg = ρl = 0.9 as it is the case in most of the ant algorithms, μ = 0.1, p = 0.5, α = 1
and β = 0.02. Therefore, it is better to give more weight to the greedy force rather
than to the trails. The stopping condition of our algorithm is a maximum number
of generations without improvement of the best solution found so far during the
search. Such a number is fixed to 500 and all the experiments were performed on
a Silicon Graphics Indigo2 (195 MHz, IP28 processor).

We always start our general heuristic by performing the reductions proposed
above. For the B instances presented in Table 1, we always got the optimal
solution in less than one second. Thus, we will not focus anymore on these
instances. Such observation does not hold for the instances presented in Table 2.
For these instances, the results are given in Table 3, in which we provide the
optimal value of f for each instance (this is denoted by OPT). In this Table,
we compare three methods: TM, which is a multi-start constructive method
proposed in [34]; TabuGLS, which is an efficient tabu search method proposed
in [16]; and ANT-STP, which is our ant algorithm.

We observed that instances C1, C2, C3, C5, C6, C7, C11, C12, C16, C17, D1,
D7, D11, D12, and D16 were optimally solved in a few seconds by TM, TabuGLS
and ANT-STP. Thus, we do not provide any information on such instances in
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Table 3. For each method and each remaining instance I, we only indicate a
result if the considered method is not able to find the optimal solution.

On the one hand, it is interesting to compare our method with TM because
if we ignore the trails in ANT-STP, we obtain a method which is close to TM.
In Table 3, we actually provide the best obtained results if we perform TM
|V | times. Each time, we restart the method by initializing the current partial
solution with a different vertex in V . In other words, if we allow the same amount
of CPU time to TM and ANT-STP, we show that all the ingredient we add to
TM in order to derive ANT-STP are useful. Consequently, the collaboration
between the ants is well defined.

On the other hand, as the methods TabuGLS and ANT-STP start to work on
their associated reduced instances, we will be able to measure the effectiveness of
our method when compared to one of the best state-of-the-art method. In the two
last columns, we respectively give the CPU times (in seconds and ignoring the time
spent for the reductions) T-TabuGLS and T-ANT-STP associated with TabuGLS
and ANT-STP. Note that we only indicate such times if they are larger than 60
seconds, and that the TabuGLS method was performed on a computer Ultra Sparc
1 (170), which is comparable to the computer we used for our experiments.

Table 3. Obtained results

I OPT TM TabuGLS ANT-STP T-TabuGLS T-ANT-STP

C4 1079 1080
C8 509 510 23 74
C9 707 714 708 708 50 3189
C14 323 326 324 37 150
C18 113 122 116 53 943
C19 146 153 169 39 463
D2 220 221 7
D3 1565 1570 1567 1565 16 266
D4 1935 1936
D8 1072 1088 1076 1084 244 2312
D9 1448 1471 1451 1465 331 1929

We can first observe that ANT-STP always obtained better results than TM
(except on instance C19). If we compare ANT-STP with TabuGLS, we can
remark that ANT-STP performed better on instances C14 and D3, but TabuGLS
was better on instances C18, C19, C8, and D9. On every other instance, both
methods got similar results. However, TabuGLS generally consumes less CPU
time than ANT-STP.

6 Conclusion

In this paper, we have presented an ant algorithm, called ANT-STP, to solve
the Steiner tree problem in graphs. The role of each ant is to build a solution
step by step as in the constructive method TM proposed in [34]. If we ignore the
trails, ANT-STP and TM could be considered as similar methods, because at
each step of the construction, a terminal vertex x is added to the current partial
solution s by the use of the shortest path between x and s. Because ANT-STP
was very favorably compared to TM, it is obvious that all the ingredients we
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add in TM in order to design ANT-STP are useful. These ingredients mainly
are the short term and long term memory, i.e. the trail systems (remember that
trails are updated locally and globally), and the way to select the next terminal
to add in the current partial solution.

To assess the efficiency of the procedure, ANT-STP was applied to a set of
benchmark instances for which the optimal solution is known, and the results
were compared to TabuGLS, which is a tabu search heuristic proposed in [16].
We observed that ANT-STP and TabuGLS obtained comparable results but
ANT-STP needs more time to get such results.

Finally, we would like to mention that, to improve overall system efficiency,
ant algorithms are often enriched with extra capabilities such as lookahead, local
optimization, backtracking, and so on (which cannot be found in real ants).
This is the case in many implementations, where constructive ant systems have
been hybridized with local optimization procedures (see, e.g., [7], [15], [33]]). In
contrast with such hybrid ant heuristics, ANT-STP is competitive without using
any local search procedure to improve the solutions built by the ants.

References

1. Beasley, J.: Or-library: Distributing test problems by electronic mail. Journal of
the Operational Research Society 41 (1990) 1069–1072

2. Calegari, P., Coray, C., Hertz, A., Kobler, D., and Kuonen, P.: A taxonomy of
evolutionary algorithms in combinatorial optimization. Journal of Heuristics 5
(1999) 145–158

3. Chen, G., Houle, M., and Kuo, M.: The steiner problem in distributed computing
systems. Information Sciences 74(1) (1993) 73–96.

4. Cong, J., He, L., Koh, C., and Madden, P.: Performance optimization of vlsi
interconnect layout. Integration: the VLSI Journal 21 (1996) 1–94

5. Deering, S., and Cheriton, D.: Multicast routing in datagram internetworks and
extended lans. ACM Transaction on Computer Systems 8(2) (1990) 85–110

6. Diot, C., and Gautier, L.: A distributed architecture for multiplayer interactive
applications on the internet. IEEE Network 13(4) (1999) 6–15

7. Dorigo, M., and Gambardella, L.: Ant colony system: a cooperative learning ap-
proach to the traveling salesman problem. IEEE Transactions on Evolutionary
Computation 1 (1997) 53–66

8. Dorigo, M., Di Caro, G., and Gambardella, L.: Ant algorithms for discrete opti-
mization. Artificial Life 5 (1999) 137–172

9. Dorigo, M., Maniezzo, V., and Colorni, A.: Positive feedback as a search strategy.
Technical Report 91-016, Politecnico di Milano, Dipartimento di Elettronica, Italy
(1991)

10. Dorigo, M.: Optimization, learning and natural algorithms (in Italian). Ph.D.
Dissertation, Politecnico di Milano, Dipartimento di Elettronica, Italy (1992)

11. Dowsland, K.: Hill-climbing simulated annealing and the steiner problem in graphs.
Engineering Optimization 17 (1991) 91–107

12. Esbensen, H.: Computing near-optimal solutions to the steiner problem in a graph
using a genetic algorithm. Networks: An International Journal 26 (1995) 173–185

13. Fisher, H.: Multicast issues for collaborative virtual environments. IEEE Computer
Graphics and Applications 22(5) (2002) 68–75



An Ant Algorithm for the Steiner Tree Problem in Graphs 51

14. Foreman, D.: Managing data in distributed multimedia conferencing applications.
IEEE Multimedia 9(4) (2002) 30–37

15. Gambardella, L. M., and Dorigo, M.: HAS-SOP: An hybrid ant system for the
sequential ordering problem. Tech. Rep. 11-97, Lugano, Switzerland: IDSIA (1997)

16. Gendreau, M., Larochelle, J.-F., and Sansò, B.: A tabu search heuristic for the
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