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Foreword

Efforts to understand and predict the behavior of software date back to the earliest
days of computer programming, over half a century ago. In the intervening decades,
the need for effective methods of understanding software has only increased; soft-
ware has spread to become the underpinning of much of modern society, and the
potentially disastrous consequences of broken or poorly understood software have
become all too apparent. Ben Liblit’s work reconsiders two common assumptions
about how we should analyze software and it arrives at some striking new results.

In principle, understanding software is not such a hard problem. Certainly a com-
puter scientist studying programs appears to be in a much stronger position than,
say, a biologist trying to understand a living organism or an economist trying to
understand the behavior of markets, because the biologist and the economist must
rely on indirect observation of the basic processes they wish to understand. A com-
puter scientist, however, starts with a complete, precise description of the behavior of
software—the program itself! Of course, the story turns out not to be so straightfor-
ward, because despite having a perfect description, programs are sufficiently com-
plex that it is usually difficult or even impossible to answer many simple questions
about them. Ben’s first change of assumption comes from the observation that if
programs are hard to understand, perhaps we could make use of some of the tools
that biologists and economists use to understand their complicated systems: maybe
it would be productive to regard programs as statistical processes and use statistical
techniques to understand software. We can simply run the program, make some ob-
servations and, if we ask the right questions, learn something useful about program
behavior. What questions to ask, and how to answer them, is the topic of the second
half of this book.

The second key ingredient comes from asking the question: Which program runs
should we use to gather the observations? Using test cases or automatically synthe-
sized inputs is a bit unsatisfying, as these executions may not be representative of the
reality of what users do with the software. And therein lies the answer: Use the runs
of the program’s users. These runs define the reality of how the software behaves in
practice; in a real sense, these are the executions that matter. In a networked world
it is possible to gather a small amount of information from every execution ever per-



VIII Foreword

formed and from that information build up a model of program behavior about which
statistically meaningful statements can be made. How to actually gather that infor-
mation in a way that is unobtrusive and efficient as well as statistically sound is the
subject of the first half of this book.

The centerpiece of the monograph is an algorithm for isolating multiple bugs
from sparsely sampled data taken from many thousands of program executions. The
basic idea is to see which program events are strongly correlated with a subset of
program failures, remove those failures from consideration and then, recursively,
compute what events are correlated with the remaining failures. This algorithm has
unique properties that complement other program analysis techniques; in particu-
lar, it is potentially able to find the root cause of any program failure without first
requiring an explicit specification of the property to check. While Ben’s work fo-
cuses on finding the causes of bugs, the underlying approach is much more general
and should be adaptable to any program-understanding problem where one wants to
discover which program events are strongly correlated with some observable behav-
ior. The results Ben presents represent a new and fundamental approach to software
analysis and should provide a source of ideas and inspiration to the field for many
years to come.

January 2007 Alex Aiken



Preface

This book contains a revised version of the dissertation the author wrote in the Com-
puter Science Division of the Department of Electrical Engineering and Computer
Science of the University of California, Berkeley. The dissertation was submitted to
the Graduate Division in conformity with the requirements for the degree of Doc-
tor of Philosophy in December 2004. It was honored with the 2005 ACM Doctoral
Dissertation Award in May 2005.

Abstract

Debugging does not end with deployment. Static analysis, in-house testing, and good
software engineering practices can catch or prevent many problems before software
is distributed. Yet mainstream commercial software still ships with both known and
unknown bugs. Real software still fails in the hands of real users. The need remains
to identify and repair bugs that are only discovered, or whose importance is only re-
vealed, after the software is released. Unfortunately, we know almost nothing about
how software behaves (and misbehaves) in the hands of end users. Traditional post-
deployment feedback mechanisms, such as technical support phone calls or hand-
composed bug reports, are informal, inconsistent, and highly dependent on manual,
human intervention. This approach clouds the view, preventing engineers from see-
ing a complete and truly representative picture of how and why problems occur.

This book proposes a system to support debugging based on feedback from ac-
tual users. Cooperative Bug Isolation (CBI) leverages the key strength of user com-
munities: their overwhelming numbers. We propose a low-overhead instrumentation
strategy for gathering information from the executions experienced by large numbers
of software end users. Our approach limits overhead using sparse random sampling
rather than complete data collection, while simultaneously ensuring that the observed
data is an unbiased, representative subset of the complete program behavior across
all runs. We discuss a number of specific instrumentation schemes that may be cou-
pled with the general sampling transformation to produce feedback data that we have
found to be useful for isolating the causes of a wide variety of bugs.
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Collecting feedback from real code, especially real buggy code, is a nontrivial
exercise. This book presents our approach to a number of practical challenges that
arise in building a complete, working CBI system. We discuss how the general sam-
pling transformation scheme can be extended to deal with native compilers, libraries,
dynamically loaded code, threads, and other features of modern software. We address
questions of privacy and security as well as related issues of user interaction and in-
formed user consent. This design and engineering investment has allowed us to begin
an actual public deployment of a CBI system, initial results from which we report
here.

Of course, feedback data is only as useful as the sense we can make of it. When
data is fair but very sparse, the noise level is high and traditional manual debugging
techniques insufficient. This book presents a suite of new algorithms for statistical
debugging: finding and fixing software errors based on statistical analysis of sparse
feedback data. The techniques vary in complexity and sophistication, from simple
process of elimination strategies to regression techniques that build models of sus-
pect program behaviors as failure predictors. Our most advanced technique combines
a number of general and domain-specific statistical filtering and ranking techniques
to separate the effects of different bugs and identify predictors that are associated
with individual bugs. These predictors reveal both the circumstances under which
bugs occur and the frequencies of failure modes, making it easier to prioritize de-
bugging efforts. Our algorithm is validated using several case studies. These case
studies include examples in which the algorithm found previously unknown, signifi-
cant crashing bugs in widely used systems.
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