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Abstract. Cancer detection using mammography focuses on character-
istics of tiny microcalcifications, including the number, size, and spa-
tial arrangement of microcalcification clusters as well as morphologi-
cal features of individual microcalcifications. We developed state-of-the-
art wavelet-based methods to enhance the resolution of microcalcifica-
tions visible in digital mammograms, thereby improving the specificity of
breast cancer diagnoses. In our research, we develop, refine, and evaluate
a Wavelet Image Interpolation (WII) procedure and create accompany-
ing software to implement it. WII involves the application of an inverse
wavelet transformation to a coarse or degraded image and constructed
detail coefficients to produce an enhanced higher resolution image. The
construction of detail coefficients is supervised by the observed image
and innate regular scaling assessed by a statistical model. Methodology
we propose was tested by an experienced radiologist in a blind study
using 40 images from the University of South Florida Digital Database
for Screening Mammography (DDSM) (Heat et. al. [10]).

1 Introduction

In the United States, breast cancer is the second leading cause of death in women.
One out of eight women will develop breast cancer in their lifetime. Studies have
indicated that early detection and treatment improve the chances of survival for
breast cancer patients (Curpen et al. [6], Smart et al [20]). At present, mam-
mography is the only proven method that can detect minimal breast cancers.
Attempts to increase the specificity of mammmographic diagnoses, and there-
fore to reduce the number of unnecessary surgical operations, are based on the
evaluation of the number , size, and spatial arrangement of clustered microcal-
cifications (Millis et al [18]) as well as morphological features of single micro-
calcifications (Egan et al. [8]). We propose the development and application of
novel wavelet-based methods for improving cancer diagnoses by enhancing key
features of microcalcifications in digital mammography.

Although there are several objects/features in a mammogram image that are
critical for diagnosis of cancer (Fibroadenomas, phylloides, etc.), our research



focuses on microcalcifications. About half of the cancers detected by mammog-
raphy appear as a cluster of microcalcifications. Microcalcifications are the most
common mammographic sign of ductal carcinoma in situ (DCIS), which is an
early stage cancer confined to the breast ducts. Almost 90% of DCIS cases are
associated with microcalcifications.

In addition to specific clustering, the irregularity of microcalcification shapes
is an important attribute. Pleomorphic, polymorphic or multiform are synonyms
for an irregular shape or variability of shapes which can indicate DCIS. Such mi-
crocalcifications are usually more conspicuous than the amorphic forms (Coakley
and van Doorn [5]). Another malignant form includes fine, linear or fine, linear,
branching calcifications. These are thin, irregular calcifications that appear lin-
ear, but are discontinuous and under 0.5 mm in width. Their appearance suggests
filling of the lumen of a duct involved irregularly by breast cancer.

The main goal of this research was to generate a procedure for enhancing the
digital mammography images, based on wavelet transform methods.

1.1 Brief Overview of the Discrete Wavelet Transformation (DWT)

Let y be a data-vector of dimension (size) n. For the simplicity we choose n to
be a power of 2, say 2J .

Suppose that the vector y is wavelet-transformed to a vector d. This linear
and orthogonal transform can be fully described by an n× n orthogonal matrix
W. In practice, one performs the DWT without exhibiting the matrix W explic-
itly, but by using fast filtering algorithms. The filtering procedures are based on
so-called quadrature mirror filters which are uniquely determined by the wavelet
of choice and fast Mallat’s algorithm (Mallat [15]). The wavelet decomposition
of the vector y can be written as

d = (H`y,GH`−1y, . . . ,GH2y,GHy,Gy). (1)

Note that in (1), d has the same length as y and ` is any fixed number between
1 and J = log2 n. The operators H and G are defined coordinate-wise

(Ha)k =
∑

m∈Z

hm−2kam, and (Ga)k =
∑

m∈Z

gm−2kam, k ∈ Z

where g and h are high- and low-pass filters corresponding to the wavelet of
choice. Components of g and h are connected via the quadrature mirror relation-
ship gn = (−1)nh1−n. For all commonly used wavelet bases, the taps of filters
g and h are readily available in the literature or in standard wavelet software
packages.

The elements of d are called “wavelet coefficients.” The sub-vectors described
in (1) correspond to detail levels in a levelwise organized decomposition. For
instance, the vector Gy contains n/2 coefficients representing the level of the
finest detail.



In general, jth detail level in the wavelet decomposition of y contains 2j

elements, and is given as

GHJ−j−1y = (dj,0, dj,1, . . . , dj,2j−1). (2)

Wavelet transform of 2-D objects (images) is performed by applying the univari-
ate transform on rows and columns of a 2-D object. One step of the decomposing
algorithm is described next. Consider a digital image A, which is in fact a ma-
trix comprised of pixel values. The process of wavelet decomposition begins by
applying the wavelet low pass filter H and high pass filter G to the rows of the
matrix A. This step produces two matrices HrA and GrA, both of dimension
2n × 2n−1 (the subscripts r suggest that the filters are applied on rows). Next,
the filtersH and G are applied to the columns of matricesHrA and GrA obtained
from step one, producing matrices HcHrA,GcHrA,HcGrA and GcGrA, each of
dimension 2n−1× 2n−1. The matrix HcHrA is an average or smooth representa-
tion of the original image, while the matrices GcHrA,HcGrA and GcGrA contain
details lost by degrading A to HcHrA. The transform is further carried out by
repeating the process on the average matrix HcHrA in place of A.

1.2 Previous work

Many computerized methods for detecting clustered microcalcifications based on
wavelets have been proposed.

Yoshida et.al. [25] use a combined difference-image technique and wavelet
transform to detect subtle microcalcifications. First the difference-image tech-
nique is used to increase the signal-to-noise ratio of microcalcifications, then the
wavelet-based scheme is applied to detect the subtle microcalcifications missed
by the first step. To extract small-scale structures, WT uses a fine “probe” that
is represented by a small wave.

In Lado et.al. [13] a computerized scheme for detecting “both individual
microcalcifications in regions of interest (ROIs) and clustered microcalcifica-
tions over the complete mammograms, based on the application of two different
wavelet transform techniques”(one-dimensional and two-dimensional WT) was
proposed. In Wang et. al. [24], an approach for detecting microcalcifications in
digital mammograms employing wavelet-based subband image decomposition is
presented. In Anastasio, Yoshida et.al. [2] the wavelet transform is employed as a
preprocessing step whose goal is to enhance the microcalcifications and suppress
the background structure in the mammogram. A parallel-genetic algorithm is
used in performing the optimization of the CAD procedure.

Strickland et.al. [21] developed a 2-stage method based on wavelet transforms
for detection and segmentation of calcifications. The first stage is based on un-
decimated wavelet transform. In the second stage, detected pixel sites in HH and
LH+HL are dilated then weighted before computing the inverse wavelet trans-
form. In Bruce and Adhami [3] the discrete wavelet transform mod-max method
was applied to the problem of mammographic mass classification. This method
was used to extract multiresolution features that quantify the mass shapes. They



showed that when utilizing a statistical classification system with Euclidian dis-
tance measures in determining class membership, the use of multiresolution fea-
tures significantly increases the classification rates. Ferrari et al. [9] presented a
method for the identification of pectoral muscle in MLO mammograms based on
the multiresolution technique using Gabor wavelets. Chang et al. [4] developed
an enhancement algorithm relying on multiscale wavelet analysis and extracted
oriented information at each scale of analysis wa investigated. Another approach
to image enhancement of digital mammography images in introduced by Seršić
and Lončarić in [19]. It consists of three steps: low-frequency tissue density com-
ponent removal, noise filtering, and microcalcification enhancement.

An overview of automatic methods for detection of microcalcifications was
given in a recent publication by Thangavel et.al. [22].

2 Description of the data

The collection of images we analyzed was obtained from the University of South
Florida’s Digital Database for Screening Mammography (Heat et al. [10]).
(http://marathon.csee.usf.edu/Mammography/Database.html). The DDSM
is described in details in Heat et al. [11]. Images containing suspicious areas
have associated pixel-level “ground truth” information about the locations and
types of suspicious regions. We selected a set of cases(studies) from the DDSM
from volumes 6 and 7. Each case contains four mammograms (two for each
breast, the craniocaudal (CC) and mediolateral oblique (MLO) projections) from
a screening exam. We analyzed the data from 10 benign cases and 8 malignant
cases, each containing calcifications.

The images were scanned on either a HOWTEK 960 or HOWTEK Multi-
RAD 850 digitizer with a sample rate of 43.5 microns per second at 12 bits per
pixel. They were stored in a format using lossless JPEG compression. However,
even with the compression, each image file is quite large because the films were
scanned with resolution between 42 and 100 microns. The source code for the
program used to compress, as well as the program used to uncompress the images
are available to download from the web site.

3 Methodology

Wavelets have been applied for image enhancement since the early 1990’s, and
some of the prime applications are in digital mammography (Aldroubi and
Unser [1], Heinlein et al. [12], Lemaur et al. [14], McLeod et al. [16]; Wang
and Karayiannis [24], etc.) Most wavelet-based approaches involve threshold-
ing, a procedure that eliminates background noise. Wavelets are also applied
to generate “difference” images in which nonessential background is eliminated.
The method proposed in this paper is novel and involves inverse wavelet trans-
forms of low-resolution images. To simplify the exposition of our methods, we
present a conceptual description of wavelet image decompositions and illustrate
the application of wavelet decompositions in a general setting using a standard



image template from the image processing community. Subsequently, we present
a conceptual description of the WII procedure and demonstrate the utility of
this approach for digital mammography.

Our approach consists of several steps. First, an image enhancement method
is used to detect the regions of interest on each image. The area(s) with ROIs
are then cropped from the original image. (From now on we will refer to those
cropped images as the “original images.”) To confirm that the correct regions
were identified, we compare our ROIs with the information available from the
DDSM where abnormalities were marked by experienced radiologists. After de-
tecting the regions of interest on images from our data set, a three-level wavelet
decomposition is applied to each image. In order to construct informative detail
spaces, the WII procedure is combined with a linear regression approach, based
on pixel intensity scaling after which thresholding is applied on the resulting
images. Finally, the 2-D inverse wavelet transform was applied with the original
image as the smooth part and the estimated informative details to obtained the
higher resolution enhanced image of microcalcifications.

We now describe each of these steps in more detail.

3.1 Detection of Regions of Interest (ROI)

We first consider an algorithm similar to that presented in Seršić and Lončarić
[19] which aims to detect microcalcifications between 0.1mm and 1mm in di-
ameter. Thus, in an original digital mammogram of 50µm× 50µm resolution, a
microcalcification may appear to be 2 to 20 pixels wide. A 5-level redundant 2D
wavelet decomposition on the original mammogram yields detail coefficients with
a spatial resolution from 0.1mm×0.1mm to 1.6mm×1.6mm, thus encompassing
the range of microcalcification size considered.

Wavelet coefficient images corresponding to the first level detail coefficients
seem to mostly spatially white noise in the absence of microcalcifications between
0.05mm and 0.1mm in diameter. However, the detail coefficients of levels 2 −
5, the mammogram signal becomes apparent and microcalcifications begin to
visually emerge from the background noise. The approximation coefficients at
the 5th level contain the low frequency mammogram information such as tissue
density and breast shape information.

Several different wavelet families are considered for the ROI detection algo-
rithm, but 2D polyharmonic B-spline wavelets with quincunx subsampling (see
Van de Ville et. al. [23]) are utilized due to their symmetry and lack of directional
(horizontal, vertical, and diagonal) bias in the detection of microcalcifications.
A significant difference between the algorithm presented here and that given in
[19] is the use of a 2-D non-separable polyharmonic wavelet basis which intro-
duces no directional bias due to the quincunx based subsampling scheme. The
algorithm presented by [19] utilizes recursive 1-D decompositions which favor
horizontal, vertical, and diagonal directions which may bias the structure of the
microcalcifications.



3.2 WII procedure

The proposed WII procedure is conceptually simple. If the forward wavelet trans-
form, described previously, degrades an image by decomposition into a smooth
part and the details, then the inverse wavelet transform performed on a de-
graded image will interpolate the image and reveal a higher degree of details.
Operationally, the procedure proceeds as follows:

1. One starts with an empty image (all entries 0) and performs k wavelet decom-
position steps. Of course, the transform is linear and the resulting smooth
and detail sub-matrices are all zero-matrices.

2. The degraded image from a digital mammogram is inserted into the position
of the smooth matrix containing zeros. This step requires that the degraded
input image and the original smooth part have equal dimensions. The detail
matrices from step 1 retain the 0 values in all entries.

3. Back-transform the object by k steps.

This process increases the resolution of the degraded, pixelized image and
contains 4k times the number of pixels in the original input For example, a
three-step transform produces an enhanced image with 64 times the number of
pixels in the original degraded image. The main contribution of our algorithm
is building detail spaces based on degraded image and general scaling properties
of natural images.

3.3 Imputing Details

In wavelet-inverting the structure consisting of pixelized image as the smooth
part and three matrices of the same size as details we assumed that the de-
tail coefficients are all zeros. Such assumption was equivalent to wavelet-based
interpolation of the pixelized image.

It is natural to propose utilization of detail spaces to further enhance the
information in the interpolated image. Several avenues are possible: template
details, background details, wavelet-bootstrap by resampling the details, etc.
Our proposal is to utilize the self-similarity of wavelet decompositions in building
informative detail spaces.

Most of the natural images scale and this scaling can be assessed in the
wavelet domain. Informally, scaling means that the “energy” (squared wavelet
coefficients) cascades when the resolution of wavelet decomposition changes. This
is particularly true for some medical images (tissue, bones, cancer, etc). This
scaling was described and utilized in statistical inference by many researchers,
see Aldrubi and Unser [1] and the references therein.

When an image possesses regular scaling this means that the logarithms of
average energies in the detail spaces decay linearly when the resolution of scale
increases. The standard 2-D wavelet transform have three detail hierarchies:
horizontal, vertical, and diagonal; all are characterized by their intrinsic scaling.



In the standard multiresolution hierarchy of images, the representation space
Vj is decomposed as

Vj = Vj−1 + W
(h)
j−1 + W

(v)
j−1 + W

(d)
j−1,

where the Vj−1 is the coarser representation and W
(h)
j−1,W

(v)
j−1,W

(d)
j−1 are spaces

of horizontal, vertical, and diagonal details. This representation is nested, and
the coarse representation space Vj−1 can be further split in the same fashion.
Assume that the direction (h), (v), or (d) of detail spaces is fixed. Suppose that
dj;k1,k2 is the wavelet coefficient at scale j at the location (k1, k2) and that Ej

is the average of d2
j;k1,k2

for all (k1, k2), i.e., Ej = 1
N

∑
(k1,k2)

d2
j;k1,k2

, where N
is total number of coefficients at this particular detail space. By a convention, j
is a dyadic index corresponding to a logarithm for base 2 of the scale. The scale
decreases (resolution increases) with the increase of index j. Then,

log Ej = β0 + β1 × j, (3)

with the slope β1 characterizing regular scaling. The parameters β0 and β1 in
(3) are estimated from the wavelet decomposition by the least-square linear
regression on pairs (j, log Ej) for a properly selected range of scale indices j, j0 ≤
j ≤ j1.

We utilize the intrinsic scaling in natural images to construct informative
detail spaces. The algorithm is detailed below.

Algorithm description. The procedure begins with a three-level wavelet decom-
position of the original coarse image. We denote the components of the first level
decomposition by A1, H1, V1, and D1, and the components of level 2 and level
3 decomposition correspondingly. Data sets were transformed to the wavelet do-
main utilizing the Daubechies 4 wavelet. To estimate the detail components, we
then apply the following regression steps on the components (here illustrated
only for horizontal details component):

H2
1 = β

(1)
0 + β

(1)
1 H2

2 e and H2
2 = β

(2)
0 + β

(2)
1 H2

3 e,

where the components are reshaped into vectors and H2
2 e and H2

3 e denote
H

(2)
2 and H

(2)
3 vectors upsampled using the WII method. As we pointed out,

the constant β1 < 0 is connected to the global Hurst exponent; it describes
intrinsic self-similarity of the image. Intercept β0 depends on the total energy
of the image and does not affect scaling. In our analysis we actually found that
the non-intercept model is appropriate.

Next, Ĥ1 and Ĥ2 are estimated as

Ĥ1 = [β̂(1)
0 + β̂

(1)
1 H2

2 e]1/2 and Ĥ2 = [β̂(2)
0 + β̂

(2)
1 H2

3 e]1/2.

The sign of the generated detail coefficients is assigned to be the same as
the sign in the observed coefficients in the degraded image. From the scaling



property, the scaling coefficient k equals

k =
log Ej−1 − log Ej

j − (j − 1)
= log

Ej−1

Ej
. (4)

We then calculate the scaling coefficient k and use it to estimate the horizontal
detail component H0 as follows

k = log
( ¯̂

H
2

1

¯̂
H

2

2 e

)
⇒ k = log

(
H̄2

0

¯̂
H

2

1 e

)
.

From this we approximate H0 as

H2
0 = ek · Ĥ2

1 e i.e. H0 = [ek · Ĥ2
1 e]1/2.

The generated object is “rich” in coefficients; to reduce dimension we apply the
threshold, setting small detail coefficients to 0. We choose universal threshold
(Donoho and Johnstone, [7]) and note that other shrinkage strategies are possi-
ble.

The threshold λ =
√

2 log N ·σ is applied on the estimated wavelet coefficients.
As an estimator of σ we use MAD (median absolute deviation from the median):

σ̂ =
1

0.6745
·MAD[d(J−1)] = 1.4828 ·median[|d̃(J−1) −median(d̃(J−1)|],

where d̃(J−1) is the vector of finest detail coefficients associated to the multires-
olution subspace WJ−1 (assuming the original data “reside” in VJ ).

This procedure is repeated for the other two detail components (the vertical
and the diagonal). Once we have the estimated detail components, we apply the
inverse wavelet transform with our original coarse image as the smooth part and
estimated detail components as details, to obtain a higher resolution enhanced
image.

4 Results

The data analyzed in our study are from the University of South Florida’s Digi-
tal Database for Screening Mammography (DDSM) [10]. (For more information
see Section 2). We analyzed 8 malignant and 10 benign cases; each case contains
4 mammograms. First the ROI detection method described in Section 3.1 was
applied to each of the images. ROIs were cropped to smaller images, which con-
tain calcifications of approximately 0.05-1mm in dimension (in terms of pixels:
20× 20 to 50× 50 pixels). Our main algorithm explained in 3.3 can be applied
to 2n × 2m pixels size images, it will here be illustrated on 64× 64 images .

Figure 1 shows the result of applying the WII algorithm on an image of a
malignant case. We notice a significant improvement from level 0 to level 1 and
from level 1 to level 2, while the difference between levels 2 and 3 is barely
noticeable.
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Fig. 1. Results of applying WII method on an image of a malignant calcification



The images on Figure 1 were obtained by imputing zeros into the details
components of the WII algorithm, with the original image as the smooth part.

Figure 2(left) shows another malignant case image (original image) with a
cluster of microcalcifications. Figure 2(right) shows the result of our image en-
hancement algorithm, described in 3.3, applied on image on Figure 2(left). We
used the gray scale representation of the image since it was preferred by the
clinical radiologist who was making the assessment of the images.
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Fig. 2. Results of applying WII algorithm on an image of a malignant calcification(s);
left: original image, right: enhanced image

Figure 3(left) shows a benign case image (original image). Figure 3(right)
shows the result of the image enhancement algorithm, applied on image on Figure
3(left).

5 Conclusions

Motivated by the ubiquitous presence of regular scaling in the medical images,
we propose regression based approach to extrapolate on wavelet coefficients of an
image to be enhanced. The observed image and its extrapolated details are then
transformed by an inverse wavelet transform and the image of higher resolution
is obtained. This process corresponds to a wavelet based image interpolation
that is improved by information about regular scaling in detail coefficients.

It is found that proposed procedure is efficient and useful in capturing rele-
vant clinical information in the context of mammography imaging. This assess-
ment is made by a clinical radiologist in a blind study involving the 18 cases.

Several research avenues are envisioned for a future research. We plan to (i)
develop new shrinkage strategies and replace the traditional universal thresh-
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Fig. 3. Results of applying WII algorithm on an image of a benign calcification(s); left:
original image, right: enhanced image

olding, (ii) select the wavelet optimal for the particular case in hand, and (iii)
formalize and expand the evaluation phase with several radiologists involved in
a blind repeated measure design study involving an extensive number of cases.
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