Skip to main content

A Novel Kernel-Based Approach for Predicting Binding Peptides for HLA Class II Molecules

  • Conference paper
Bioinformatics Research and Applications (ISBRA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4463))

Included in the following conference series:

  • 837 Accesses

Abstract

Peptides that bind to Human Leukocyte Antigens (HLA) can be presented to T-cell receptor and trigger immune response. Identification of specific binding peptides is critical for immunology research and vaccine design. However, accurate prediction of peptides binding to HLA molecules is challenging. A variety of methods such as HMM and ANN have been applied to predict peptides that can bind to HLA class I molecules and therefore the number of candidate binders for experimental assay can be largely reduced. However, it is a more complex process to predict peptides that bind to HLA class II molecules. In this paper, we proposed a kernel-based method, integrating the BLOSUM matrix with string kernel to form a new kernel. The substitution score between amino acids in BLOSUM matrix is incorporated into computing the similarity between two binding peptides, which exhibits more biological meaning over traditional string kernels. The promising results of this approach show advantages than other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burden, F.R., Winkler, D.A.: Predictive Bayesian neural network models of MHC class II peptide binding. Journal of Molecular Graphics and Modelling 23, 481–489 (2005)

    Article  Google Scholar 

  2. Bhasin, M., Raghava, G.P.S.: SVM based method for predicting HLA-DRB1(*)0401 binding peptides in an antigen sequence. Bioinformatics 20(3), 421–423 (2004)

    Article  Google Scholar 

  3. Bozic, I., Zhang, G.L., Brusic, V.: Predictive Vaccinology: Optimisation of Predictions Using Support Vector Machine Classifiers. In: Gallagher, M., Hogan, J.P., Maire, F. (eds.) IDEAL 2005. LNCS, vol. 3578, pp. 375–381. Springer, Heidelberg (2005)

    Google Scholar 

  4. Chicz, R.M., et al.: Specificity and promiscuity among naturally processed peptides bound to HLA-DR alleles. J. Exp. Med. 178(1), 27–47 (1993)

    Article  Google Scholar 

  5. Chen, Y., et al.: Naturally processed peptides longer than nine amino acid residues bind to the class I MHC molecule HLA-A2.1 with high affinity and in different conformations. The journal of immunology 152, 2874–2881 (1994)

    Google Scholar 

  6. Brusic, V., et al.: Prediction of MHC class II-binding peptides using an evolutionary algorithm and artificial neural network. Bioinformatics 14, 121–130 (1998)

    Article  Google Scholar 

  7. Schueler-Furman, O., et al.: Bound peptides: a study of 23 complexes. Folding design 3, 549–564 (1998)

    Article  Google Scholar 

  8. Froloff, N., Windemuth, A., Honig, B.: On the calculation of binding free energies using continuum methods: Application to MHC class I protein-peptide interactions. Protein Sci. 6(6), 1293–1301 (1997)

    Article  Google Scholar 

  9. Rammensee, H.G., Friede, T., Stevanovic, S.: Mch Ligands And Peptide Motifs - First Listing. Immunogenetics 41(4), 178–228 (1995)

    Article  Google Scholar 

  10. Meister, G.E., et al.: 2 Novel T-Cell Epitope Prediction Algorithms Based On Mhc-Binding Motifs - Comparison Of Predicted And Published Epitopes From Mycobacterium-Tuberculosis And Hiv Protein Sequences. Vaccine 13(6), 581–591 (1995)

    Article  Google Scholar 

  11. Falk, K., et al.: Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature, 290–296 (1991)

    Google Scholar 

  12. Hammer, J., et al.: New Methods To Predict Mhc-Binding Sequences Within Protein Antigens. Current Opinion In Immunology 7(2), 263–269 (1995)

    Article  MathSciNet  Google Scholar 

  13. Hammer, J., et al.: Precise Prediction Of Major Histocompatibility Complex Class-Ii Peptide Interaction Based On Peptide Side-Chain Scanning. Journal Of Experimental Medicine 180(6), 2353–2358 (1994)

    Article  Google Scholar 

  14. Mallios, R.R.: Class II MHC quantitative binding motifs derived from a large molecular database with a versatile iterative stepwise discriminant analysis meta- algorithm. Bioinformatics 15(6), 432–439 (1999)

    Article  MathSciNet  Google Scholar 

  15. Sturniolo, T., et al.: Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices. Nature Biotechnology 17(6), 555–561 (1999)

    Article  Google Scholar 

  16. Rammensee, H.G., et al.: SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50(3-4), 213–219 (1999)

    Article  Google Scholar 

  17. Mamitsuka, H.M.: Predicting peptides that bind to MHC molecules using supervised learning of hidden Markov models. Proteins 33, 460–474 (1998)

    Article  Google Scholar 

  18. Donnes, P., Elofsson, A.: Prediction of MHC class I binding peptides, using SVMHC. Bmc Bioinformatics 3(1), 25–32 (2002)

    Article  Google Scholar 

  19. Zhao, Y.D., et al.: Application of support vector machines for T-cell epitopes prediction. Bioinformatics 19(15), 1978–1984 (2003)

    Article  Google Scholar 

  20. Wan, J., et al.: SVRMHC prediction server for MHC-binding peptides. BMC Bioinformatics 7(1), 463 (2006)

    Article  Google Scholar 

  21. Brusic, V., et al.: Data Cleansing for Computer Models: A Case Study from Immunology. In: Proceedings of ICONIP99, The Sixth International Conference on Neural Information Processing (1999)

    Google Scholar 

  22. Nielsen, M., et al.: Improved prediction of MHC class I and class II epitopes using a novel Gibbs sampling approach. Bioinformatics 20(9), 1388–1397 (2004)

    Article  Google Scholar 

  23. Karpenko, O., Shi, J., Dai, Y.: Prediction of MHC class II binders using the ant colony search strategy. Elsevier Science 35, 147–156 (2005)

    Google Scholar 

  24. Murugan, N., Dai, Y.: Prediction of MHC class II binding peptides based on an iterative learning model. Immunome Research 1(1), 6 (2005)

    Article  Google Scholar 

  25. Doytchinova, I.A., Flower, D.R.: Towards the in silico identification of class II restricted T-cell epitopes: a partial least squares iterative self-consistent algorithm for affinity prediction. Bioinformatics 19(17), 2263–2270 (2003)

    Article  Google Scholar 

  26. Yu, H., Zhu, X., Huang, M.: Using String Kernel to Predict Binding Peptides for MHC Molecules. In: The 8th International Conference on Signal Processing, Guilin, China, pp. 2499–2502. IEEE Press, Los Alamitos (2006)

    Google Scholar 

  27. Saigo, H., et al.: Protein homology detection using string alignment kernels. Bioinformatics 20(11), 1682–1689 (2004)

    Article  Google Scholar 

  28. Zhao, X.M., Cheung, Y.M., Huang, D.S.: A novel approach to extracting features from motif content and protein composition for protein sequence classification. Neural Networks 18(8), 1019–1028 (2005)

    Article  Google Scholar 

  29. Mercer, J.: Functions of positive and negative type and their connection with the theory of integral equations. Philos. Trans. Soc. 209, 415–446 (1909)

    Article  Google Scholar 

  30. Lodhi, H., et al.: Text classification using string kernels. Journal Of Machine Learning Research 2(3), 419–444 (2002)

    Article  MATH  Google Scholar 

  31. Brown, M.P.S., et al.: Knowledge-based analysis of microarray gene expression data by using support vector machines. PNAS 97(1), 262–267 (2000)

    Article  Google Scholar 

  32. Brusic, V., Rudy, G., Harrison, L.C.: MHCPEP, a database of MHC-binding peptides: update 1997. Nucl. Acids Res. 26(1), 368–371 (1998)

    Article  Google Scholar 

  33. Bhasin, M., Singh, H., Raghava, G.P.S.: MHCBN: a comprehensive database of MHC binding and non-binding peptides. Bioinformatics 19(5), 665–666 (2003)

    Article  Google Scholar 

  34. Joachims, T.: Making large-Scale SVM Learning Practical. In: Scholkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel Methods - Support Vector Learning, MIT Press, Cambridge (1999)

    Google Scholar 

  35. Max, H., et al.: Characterization of peptides bound to extracellular and intracellular HLA-DR1 molecules. Human immunology 38(3), 193–200 (1993)

    Article  Google Scholar 

  36. Marshall, K.W., et al.: Prediction of peptide affinity to HLA DRB1*0401. J. Immunol. 154(11), 5927–5933 (1995)

    Google Scholar 

  37. Borras-Cuesta, F., et al.: Specific and general HLA-DR binding motifs: comparison of algorithms. Human Immunology 61(3), 266 (2000)

    Article  Google Scholar 

  38. Bhasin, M., Raghava, G.P.S.: Prediction of CTL epitopes using QM, SVM and ANN techniques. Vaccine 22(23-24), 3195–3204 (2004)

    Article  Google Scholar 

  39. Singh, H., Raghava, G.P.S.: ProPred: prediction of HLA-DR binding sites. Bioinformatics 17(12), 1236–1237 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ion Măndoiu Alexander Zelikovsky

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yu, H., Huang, M., Zhu, X., Guo, Y. (2007). A Novel Kernel-Based Approach for Predicting Binding Peptides for HLA Class II Molecules. In: Măndoiu, I., Zelikovsky, A. (eds) Bioinformatics Research and Applications. ISBRA 2007. Lecture Notes in Computer Science(), vol 4463. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72031-7_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72031-7_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72030-0

  • Online ISBN: 978-3-540-72031-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics