Skip to main content

DNA Sites Buried in Nucleosome Become Accessible at Room Temperature: A Discrete-Event-Simulation Based Modeling Approach

  • Conference paper
  • 831 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4463))

Abstract

Conformation of a canonical nucleosome inhibits the direct access of the binding proteins to portions of nucleosomal DNA. Nucleosome dynamics establish certain pathways through which nucleosome gets remodeled (spontaneously, covalently or non-covalently) and the buried DNA sites become accessible. Currently for most pathways no single model is available to capture the temporal behavior of these pathways. Plus traditional diffusion-based models in most cases are not precise. In this work we have given a systematic overview of such pathways. Then, we manipulate the probability of a binding site on array of N nucleosomes and chromatin of length G base pairs . We further identify three of the widely accepted thermal-driven (passive) pathways and model those based on stochastic process and the Discrete-Event-Simulation. For the output of the models we have sought either the site access rate or the sliding rate of the nucleosome. We also show that results from these models match the experimental data where available.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alberts, B., et al.: Molecular Biology of the Cell, 4th edn. Garland Science, New York (2002)

    Google Scholar 

  2. Richmond, T., Davey, C.A.: The Structure of DNA in Nucleosome Core. Nat. 423, 145–150 (2003)

    Article  Google Scholar 

  3. Li, G., et al.: Rapid spontaneous accessibility of nucleosomal DNA. Nat. Struc. & Mol. Bio. 12, 46–53 (2005)

    Article  Google Scholar 

  4. Beard, D.A., Schlick, T.: Computational Modeling Predicts the Structure and Dynamics of Chromatin Fiber. Els. J. Struc. 9, 105–114 (2001)

    Google Scholar 

  5. Ghosh, S., et al.: iSimBioSys: A Discrete Event Simulation Platform for ’in silico’ study of biological systems. In: Proc. of the 39th Annual Simulation Symp (ANSS’06) (2006)

    Google Scholar 

  6. Ghosh, P., et al.: A Stochastic model to estimate the time taken for Protein-Ligand Docking. In: IEEE CIBCB (2006)

    Google Scholar 

  7. Luger, K., et al.: Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389, 251–260 (1997)

    Article  Google Scholar 

  8. Flaus, A., Owen-Hughes, T.: Mechanism for Nucleosome Mobilization. J. Biopolymers 68, 563–578 (2003)

    Article  Google Scholar 

  9. Mellor, J.: The Dynamics of Chromatin Remodeling at Promoters. J. Molecular Cell 19, 147–157 (2005)

    Article  Google Scholar 

  10. Narlikar, G.J., Fan, H., Kingston, R.E.: Cooperation between Complexes that Regulate Chromatin Structure and Transcription. Cell 108, 475–487 (2002)

    Article  Google Scholar 

  11. Saha, A., Wittmeyer, J., Cairns, B.R.: Chromatin remodelling: the industrial revolution of DNA around histones. Nat. rev. Mol. Cell Biol. 7(6), 437–447 (2006)

    Article  Google Scholar 

  12. Kobor, M.S., et al.: A protein complex containing the conserved Swi2/Snf2-related ATPase Swr1p deposits histone variant H2A.Z into euchromatin. PLoS Biol. 2, E131 (2004)

    Google Scholar 

  13. Guo, X., Tatsuoka, K., Liu, A.R.: Histone acetylation and transcriptional regulation in the genome of Saccharomyces cerevisiae. Bioinformatics 22, 392–399 (2006)

    Article  Google Scholar 

  14. Pennings, S., Meersseman, G., Bradbury, E.M.: Mobility of positioned nucleosomes on 5 S rDNA. J. Mol. Biol. 220(1), 101–110 (1991)

    Article  Google Scholar 

  15. Levin, B.: Genes VIII. Prentice Hall, Upper Sadle River (2004)

    Google Scholar 

  16. Wiesenfeld, K., Jaramillo, F.: Minireview of stochastic c resonance. Chaos 8, 539–548 (1998)

    Article  Google Scholar 

  17. Das, S., et al.: Parallel Discrete Event Simulation in Star Networks with Applications to Telecommunications. In: Int. Workshop on Modeling, Analysis and Sim. of Computer and Telecom. Sys. (1995)

    Google Scholar 

  18. Kulic, I.M., Schiessel, H.: Nucleosome repositioning via loop formation. Biophys. J. (2003)

    Google Scholar 

  19. Yakushevich, L.V.: Nonlinear Physics of DNA. Wiley-VCH, Weinheim (2004)

    Google Scholar 

  20. Kulic, I.M., Schiessel, H.: chromatin Dynamics: Nuicleosome go Mobile through Twist Defects. Phy. rev. lett. 91(14) (2003)

    Google Scholar 

  21. Kivshar, Y.S., Braun, O.M.: The Frenkel-Kontorova Model: Concepts, Methods, and Applications. Springer, Heidelberg (2004)

    MATH  Google Scholar 

  22. van Kampen, N.G.: Stochastic Processes in Physics and Chemistry. Elsevier, Amsterdam (1992)

    Google Scholar 

  23. Schiessel, H.: The physics of chromatin. Max-Planck-Institut für Polymerforschung, Theory Group, Mainz, Germany (2003)

    Google Scholar 

  24. Schiessel, H., et al.: Polymer Reptation and Nucleosome Repositioning. Phy. rev. lett. 86(19), 4414–4417 (2001)

    Article  Google Scholar 

  25. Kleinrock, L.: Queueing Systems, vol. I: Theory. Wiley, New York (1975)

    MATH  Google Scholar 

  26. Ghosh, P., et al.: An Analytical Model to Estimate the time taken for Cytoplasmic Reactions for Stochastic Simulation of Complex Biological Systems. In: IEEE Granular Computing Conf. (2006)

    Google Scholar 

  27. Ghosh, P., et al.: A Model to estimate the time taken for protein-DNA binding for Stochastic discrete event simulation of biological processes. Accepted for pub. In: IEEE CIBCB, USA (2007)

    Google Scholar 

  28. Mazloom, A.R., Basu, K., Das, S.: A Random Walk Modelling Approach for Passive Metabolic Pathways in Gram-Negative Bacteria. In: IEEE CIBCB, Canada (2006)

    Google Scholar 

  29. Murthy, K.P.N., Kehr, K.W.: Mean first-passage time of random walks on a random lattice. Phys. rev A 40, 2082 (1989)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ion Măndoiu Alexander Zelikovsky

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mazloom, A.R., Basu, K., Mandal, S.S., Sorourian, M., Das, S. (2007). DNA Sites Buried in Nucleosome Become Accessible at Room Temperature: A Discrete-Event-Simulation Based Modeling Approach. In: Măndoiu, I., Zelikovsky, A. (eds) Bioinformatics Research and Applications. ISBRA 2007. Lecture Notes in Computer Science(), vol 4463. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72031-7_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72031-7_55

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72030-0

  • Online ISBN: 978-3-540-72031-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics