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Abstract. Web service technology provides a way for simplifying inter-
operability among different organizations. A piece of functionality avail-
able as a web service can be involved in a new business process. Given
the steadily growing number of available web services, it is hard for de-
velopers to find services appropriate for their needs. The main research
efforts in this area are oriented on developing a mechanism for seman-
tic web service description and matching. In this paper, we present an
alternative approach for supporting users in web service discovery. Our
system implements the implicit culture approach for recommending web
services to developers based on the history of decisions made by other
developers with similar needs. We explain the main ideas underlying our
approach and report on experimental results.

Keywords. Web Service Discovery, Recommendation Systems, Implicit
Culture

1 Introduction

The state-of-the-art in business integration is defined by implementation of the
service-oriented vision using web service technology. Web services are loosely
coupled, distributed entities that can be described, published, discovered and
invoked via the web infrastructure. Three main standards in this area include
Web Service Description Language (WSDL) for presenting service interfaces,
Universal Description, Discovery and Integration (UDDI) registries for publish-
ing, and Simple Object Access Protocol (SOAP) for message transporting.
With ever increasing number of available web services it is problematic to
find a service with required functionality and appropriate quality characteristics.
Most of the proposals in the area of web service discovery rely on logically precise
semantic descriptions of web services by providers [1][2][3]. Such approaches
are efficient only if providers publish exhaustive service specifications. Tools
for automatic or semi-automatic semantic annotation can significantly reduce
required amount of work, but, in principle, the consumer must trust the provider
to deliver the service fully compliant with the description. Additionally, web
services or providers can be evaluated by a trusted party, i.e., by a specialized
unbiased agency that tests web services, verifies their descriptions (whether there
is a discrepancy between specified and implemented features), publishes Quality



of Service (QoS) data, etc. This solution is relatively expensive and inefficient due
to its rather static nature. Automated central monitors are complex, and either
provide limited monitoring facilities or require involvement of domain-specific
logic for verifying web service behavior [4][5].

On the other hand, there are service clients who already have experience in
using web services and therefore can help in selecting services with adequate
quality. This principle is widely used by (collaborative) recommendation and
reputation systems [6][7]. Often web services are oriented not on public use but
aim at enabling easy information exchange between a set of partner organiza-
tions. Since web services belong to different domains, only a specific set of web
services is interesting for a particular consumer. A group of clients with com-
mon interests form a virtual community where they can exchange the experience,
i.e., the knowledge gained after having interaction with a web service. Being a
member of such a community can help to reduce the information overload and
enhance web service discovery and selection facilities.

In this paper, we present a system for discovery of web services. The system
is based on the implicit culture framework [8] and helps developers make a
decision about which services to use by getting suggestions from the community.
The implicit culture framework has been implemented in the form of a domain-
independent meta-recommendation service, the IC-Service, that uses web service
technology and can be tuned via configuration interface [9]. In our approach, no
communication between members of the community is needed, and no explicit
ratings of web services are required.

The paper is organized as follows. In Section 2, the basic idea of implicit
culture is presented and the configuration of the IC-Service for our application
is explained. Section 3 provides implementation details, while Section 4 presents
experimental results. Related work is analyzed in Section 5, and Section 6 draws
conclusions and outlines future work.

2 Implicit Culture

This section presents an overview of the general idea of the implicit culture frame-
work and the System for Implicit Culture Support (SICS). The SICS provides
the basis for the IC-Service we have used to provide recommendation facilities.

The behavior of a person in an unknown environment is far from optimal.
There exist many situations where it is difficult to take the right decision due to
the lack of knowledge. This might not be the case for experienced people who
have previously encountered similar problems and have acquired the necessary
knowledge. The knowledge about acting effectively in the environment is often
implicit (i.e., highly personalized) and specific to the community. Therefore, this
knowledge could be referred to as a community culture. The idea behind the
implicit culture framework is that it is possible to elicit the community culture
by observing the interactions of people with the environment and to encourage
the newcomer(s) to behave in a similar way. Implicit culture assumes that agents
perform actions on objects, and the actions are taken in the context of situations,



so agents perform situated actions. The “culture” contains information about
actions and their relation to situations, namely which actions are usually taken
by the observed group and in which situations. This information is then used
to produce recommendations for other agents. When newcomers start to behave
similarly to the community culture, it means that a knowledge transfer occurred.
The goal of the SICS is to perform such transfer of knowledge.

The basic architecture for the SICS [8] consists of the following three compo-
nents: the observer module, which records the actions performed by the client
during the use of the system; the inductive module, which analyzes the stored
observations and implements data mining techniques to discover behavior pat-
terns; the composer module, which exploits the information collected by the
observer module and analyzed by the inductive module in order to produce rec-
ommendations.

In terms of our problem domain, the observer saves the following informa-
tion: the user request (a textual description and characteristics of a required web
service), the context in which the request occurred, the services proposed as a
solution, the service chosen and invoked by the user, and, finally, the result of
the invocation (successful web service invocation, exception raised, etc.). Then,
the request-solution pairs that indicate which web services are selected for which
requests could be determined by analyzing the interaction history between users
and the system. This step is performed by the inductive module and it is now
omitted. Finally, the composer module matches the user request with web ser-
vices by calculating the similarity between the request given by the user and the
requests that users provided previously, and by selecting web services chosen for
the most similar past requests.

The described schema is implemented within the IC-Service [9] that pro-
vides recommendation facilities based on implicit culture. The configuration of
the IC-Service for our application is shown in Figure 2. Along with the SICS
core, which forms the main part of the service, the IC-Service includes the other
two important components: the remote client and the remote module. The rec-
ommendation system is available as a web service that can be accessed via the
remote client. The remote client presents a wrapper that hides protocols used
for information exchange with the SICS. The remote module defines protocols
for information exchange with the remote client from the direction of the SICS
and converts the objects of the SICS core in the format compatible with these
protocols. We refer the reader interested in the details of the modules to the
description of the IC-Service [9].

In the current version of our system we do not use the inductive module
to infer new behavior patterns, but predefine them manually. The IC-Service
allows for the adjustment of a recommendation strategy through configuring
theory rules. A theory rule is defined as follows:

if consequent(predicates) then antecedent(predicates),

where predicates describe either conditions on observations (action-predicates)
or conditions on time (temporal-predicates). Each predicate may include several



Application g
Objects Web Services

Proxies (Axis) Over SOAP

\

\

\

\

Ir

I Remote Madule
I AOP Helpers Remote Client Adapters
L

L

L

L

L

|
|
|
Exception Manag I
Legging Service Spring Proxies/iAdapters I

‘ Remote Module Spring Proxies/Adapters

\ AOP Helpers [
\ - ‘ Axis l'e
| Exception Manager | 2
| | &
\ | &

[ — el
L1 2]

L | Composer Adapters Composer Module | 2]
H\ EHE
- ;o

o
. —-_AeAs L a e e e A i L | gl o
1 =R
I s L
] . Core || z2l &
I [ XML Configuration || Rule Storage AOP | .§ 3l
| } I Storage Module Module Helpers | E’%I
£ 2
] H
| ‘ e——___ - - _ - i _ _ “o
|- — —— ]
IC-Service

Fig. 1. Configuration of the IC-Service for web service discovery

action-rules, which specify patterns on actions, agents, objects, scenes!, and their
attributes. Observations from the SICS storage are analyzed by the composer
module according to these patterns. For matching of the discovered observa-
tions a similarity algorithm must be defined. The IC-Service provides a simple
matching method that compares pairs of observations using predefined similarity
values for their elements (actions, objects, etc.). These values can be configured
for each particular type or for each particular instance of the element. A similar-
ity threshold for matching also can be tuned. In addition, a plug-in mechanism
enables the possibility of involving other similarity algorithms.

L a scene is the architectural abstraction of a situation



Table 1. Actions observed by the system.

[ Action [ Agents [ Objects |
invoke application operation, input
get_response application operation, output
raise_exception application operation, input
provide_feedback | application, developer | operation, rate
submit_request application, developer | request

3 A System for Web Service Discovery

This section gives a description of the process of web service discovery within
the system.

The motivation for adopting the implicit culture approach for web service
discovery stems from the difficulty of developers in finding and selecting web
services suitable for their applications [10]. The system is intended for the use
by a virtual community, giving suggestions about web services suitable for this
community. In our domain, developers and their applications perform actions on
web services. Types of actions analyzed by the SICS are presented in Table 1 and
will be explained later in more detail. Actions, agents and objects also may have
multiple attributes, i.e., features helpful for their analysis. For example, infor-
mation about a web service (id, name, provider, etc.) is stored as an attribute of
an object operation. The description of the complete set of the stored attributes
is not needed for understanding the current paper and therefore is omitted here.

In order to use the system, each user must install a remote client. The goal
of the remote client is to communicate with the SICS, in particular, forward
user requests and store observations about user actions, applications and be-
havior of web services. To enable observations of interaction with a web service
we have extended the JavaStubsWriter class of the open-source Apache Axis
framework?. This class generates stubs for web service invocation. The modifica-
tion that we implemented allows the stubs to report the information about the
communication between a user application and a web service to the IC-Service,
using the remote client. Thus, to join a virtual community that shares experi-
ence in retrieving of web services, the user must (1) install the remote client,
(2) generate stubs for service invocations using the modified version of the Axis
tool. No further intervention, user-to-user or user-to-system communications are
required, except for submitting requests. If the user does not need to search for
new web services, the system can be used for service monitoring on the client
side. Run-time web service monitoring is essential for real-world service-oriented
systems where control of service quality is needed [11][12].

The SICS remote client provides an interface for the user to access the sys-
tem by submitting requests. Request may include textual description of the goal,
name of the desired operation, description of its input/output parameters, de-
scription of a desired web service and its features (provider, etc.). By configuring
the similarity algorithm it is possible to define whether these requirements are

2 http://xml.apache.org/axis/
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Fig. 2. Sequence diagrams.

considered as strict (only services that meet them are recommended) or as pre-
ferred (services that better fit the request than others are recommended).

The search scenario is given in Figure 2(a). A user submits a request via the
remote client, from where the request is forwarded to the IC-Service, and a list of
recommended services is returned. The feedback is collected via the optional pro-
vide_feedback action, which expresses the level of user satisfaction with the result,
or through the invoke action, which marks a service as suitable for the request.
If the user decides to use one of the services, the further information is acquired.
The get_response action marks a service as available and the raise_exception ac-
tion signals that the service is not available or faulty. The monitoring process
is shown in Figure 2(b). In short, when the application invokes some operation
provided by a web service, the remote client reports to the IC-Service on the in-
voke action. Similarly, when the web service sends a response message or raises
an exception, the remote client reports to the IC-Service on the get_response
or raise_exception action, respectively. Having received a response message, the
user application can generate a feedback based on an extra-knowledge about the
expected result (e.g., the feedback is positive if the meaningful output has been
obtained, etc.)



The IC-Service processes the query from the system within two steps. In the
first step, the action contained in the query, i.e. the submit_request action, is
matched with the theory to determine the next action that must follow, i.e. the
invoke action. In the second step, the SICS finds situations where the invoke
action has been previously performed, determining web service operations used
for similar requests in the past. In this step, the similarity between the current
user request and the previously submitted requests is calculated. As a result, the
I1C-Service returns a set of services that have been used for similar requests in
the past.

Let us illustrate how the search process takes place in our example. The user
submits the request represented by the following query:

Goal : Get weather forecast for Rome (this is in Italy);
Operation : Get weather;
Input : City name, country name;
Output : Weather forecast (temperature, humidity, etc.).

The IC-Service matches the request action with the theory, which contains rules
of the following form:

if submit_request(request) then invoke(operation-X(service-Y), request).

This means that the invoke action must follow the submit_request action and
both actions are related to the same query. The SICS matches the request action
with the request part of the theory, and searches for situations where the invoke
action has been performed. It finds the following situations:

[ID ] Action [ Goal [ Operation |
1 [invoke |[get weather report for all major | getWeather (service = GlobalWeather)
cities around the world
2 |invoke | get conversion rate from one cur- | conversionRate (service = CurrencyConvertor)
rency to another currency
3 |invoke |return the weather for a given US | getWeatherByZip (service = DOTSFastWeather)
postal code

As a result, the SICS recommends that the user invokes either get Weather
operation of the GlobalWeather web service or getWeatherByZip operation of
the DOTSFastWeather web service. Having analyzed the proposed results, the
user invokes the former operation. After observing the invoke action, this service
will be marked as suitable for the above query. Further, it may be considered
relevant for requests asking for information about Italy.

Note, that instead of the invoke action, the get_response action can be put
in the theory. In this case, only web services invoked successfully at least once
will be considered. The same mechanism can be used for reputation-based web
service filtering: users can explicitly rate services using provide_feedback action.

The IC-Service enables saving various information and defining inferring
rules and similarity measures on them. In the context of the presented sys-
tem, the IC-Service is used to collect reports of service invocations by clients,
to keep previous user requests, and to define similarities between users based on
the information about the services they use. The implemented schema can be
extended to store other important information about web services, such as cases



of Service Level Agreement (SLA) [13] violation or measurements of QoS para-
meters. This information further can be dynamically involved in the refined web
service discovery and selection through defining new theory rules. The meta-data
about web services, augmented with the help of our system, can be further used
for hybrid web service matching algorithms [14]. In the simplest scenario, the
remote client can submit user requests to the UDDI registry through UDDI4J?
API in order to get information about recently appeared web services.

4 Experimental Evaluation

The goal of the experiment is to evaluate the performance of the system. We
have defined user profiles in order to simulate the behavior of real users. A user
profile contains a set of queries and a set of web service operations relevant to
these queries. The set of queries is exploited to simulate the request-generation
behavior by choosing and submitting a query randomly, while the set of web
service operations is used to simulate the result-selection behavior by selecting
one of the operations. Each query consists of a brief natural language description
of the desired operation. The intuition behind the user profile is as follows: the
user submits a request for a service operation. After getting suggestions, (s)he
will invoke one of the operations (s)he considers relevant. This invocation is
monitored by the remote client of the IC-Service. The choice of the user that
submits a request to the system in a given moment is random.

The quality of recommendations is measured using the precision, recall and
F-measure [15]:

Relevant () Retrieved Relevant [ Retrieved 2 * Precision * Recall
Precision = Recall = F = .
Retrieved Relevant Precision + Recall

The precision measures the fraction of relevant items among those recommended.
The recall measures the fraction of the relevant items included in the recommen-
dations. The F-measure is a tradeoff between these two metrics.

Since internally suggestions are filtered by the composer module of the SICS
within the IC-Service, the precision in our case depends on the similarity measure
adopted in the composer module. The recall in our settings demonstrates how
the system learns from past experience.

In the experiment we used the Vector Space Model with Term Frequency
- Inverse Document Frequency (TF-IDF) metric in the composer module to
calculate the similarity between queries. More precisely, a query in this model is
represented as a sequence of terms, ¢ = (t1,tg, ..., t|4), where |g| is the length of
the query and ¢t; € T, j = m T is a vocabulary of terms, containing all terms
from the collection of queries @ = {q1, ..., g, } submitted to the system, where
n is a total number of queries. For each term t; let n;; denote the number of
occurrences of ¢; in ¢;, and n; the number of queries that contain ¢; at least once.

3 http://uddidj.sourceforge.net/doc.html



Table 2. Experimental collection

[ Category [ Web service

[ Operation

{http://www.webserviceX.NET/} CurrencyConvertor conversionRate

Currency | {http://www.xmethods.net/sd/}CurrencyExchangeService getRate
{http://www.myasptools.com/}currency WS getRate
{http://www.xignite.com/services/}XigniteCurrencies getLatestCrossRate
{http://www.themindelectric.com/wsdl/Blast/}Blast searchSimple

DNA {http://www.themindelectric.com/wsdl/Fasta/} Fasta searchSimple
{http://www.themindelectric.com/wsdl/TxSearch/}TxSearch |searchSimple
{http://www.themindelectric.com/wsdl/SRS/}SRS searchSimple
{http://www.webserviceX.NET}Send SMSWorld sendSMS
SMS {http://www.sms.mio.it/webservices/sendmessages.asmx} sendSMS

{http://ws.AcrossCommunications.com/}SMS SendEx
{http://SMSServer.dotnetISP.com}ServiceSMS sendSmsText
{http://www.webserviceX.NET } GlobalWeather getWeather

Weather | {http://ejse.com/WeatherService/}Service getWeatherInfo
{http://www.myasptools.com/} WeatherFetcher getWeather
{http://www.serviceobjects.com/}DOTSFastWeather getWeatherByZip
{http://www.jasongaylord.com/webservices/zipcodes}ZipCodes | zipCodesFromCityState

ZIP {http://ripedev.com/xsd/ZipCodeResults.xsd } ZipCode cityToZipCode

{http://webservices.eraserver.net/} ZipCodeResolver shortZipCode
{http://www.webserviceX.NET } USZip getInfoByCity

For calculating the TF-IDF weight of the term ¢; in the query ¢; and defining
the similarity between queries ¢; and g the following formulas are used:

Here w;

T

w; = *log(ﬁ) cos(w;, wy) = Wi Wk
Y gl n;’’ v vV w; Tw;/wi T wy,

(Wily ey Wirn )y W = (Wk1, -, Wiim ) denote vectors of TF-IDF weights

corresponding to the queries ¢; and gi, and m is the length of the vocabulary.

In the experiment we used a collection of 20 web services from XMeth-
ods.com, divided into five topic categories (see Table 2). For each category we
chose four semantically equivalent operations and formed 20 queries based on
their short natural language descriptions from WSDL files. The number of the
users in the experiment is equal to four and the number of requests submitted
to the system is equal to 100.

The results of the simulations are given in Figure 4. The precision, recall,
and F-measure of the recommendations of the SICS for each of the five groups
are given and the average performance of the system for all requests is drawn.
According to these results, the precision, recall and F-measure of the system tend
to increase with the number of user requests. This is justified by the fact that the
number of observations about past selections in the system also increases and,
as a result, the SICS has more information for the analysis. We can see that just
after 20 searches the precision reaches and maintains a quite high level.

5 Related Work

The idea of applying collaborative filtering to web service selection appeared in
the literature several times, see papers by Kerrigan [16] and Sherchan [17] for
example. Most of the approaches consider ratings of service providers based on
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subjective opinions of web service users. Manikrao and Prabhakar [18] describe
a web service selection framework which combines a recommendation system
with semantic matching of service requirements. The approach is based on user
feedback and collaborative filtering techniques and is oriented towards helping a
user to select a web service from a set of similar services. When the user invokes
a web service, the system asks the user to rate the service. However, the previous
research has shown that users are very unlikely to provide explicit ratings [19].

Alternatively, user profiles can be obtained by implicitly observing user inter-
actions with the system. Maximilien et al. [20] propose an agent-based framework
where agents act as proxies to collect information and to build the reputation
of semantic web services. Agents are used to manage available service resources:
an agent acting on behalf of the owner looks for services and evaluates possi-
ble choices. Three-level ontology is proposed to model quality issues of services.
Another multi-agent framework for QoS-based web service selection is proposed
by Wang et al. [21]. The authors present a distributed reputation assessment
algorithm for QoS support.

The problem of unfair ratings is typical for such kind of systems. However,
there exist also approaches that can successfully eliminate ratings from malicious
agents [22]. The underlying idea in this approach is to associate ratings with some
level of quality and ignore the ratings with associated quality below a certain
threshold and ratings from the clients that have a credibility below a certain
threshold. For example, credibility of a newcomer may grow up with number of
the reports compliant with the reports from other clients. Sherchan et al. [17]
analyze user rating behavior to infer the rationale for ratings in a web services
environment.

Casati et al. [23] present a system for dynamic web service selection based on
data mining techniques. The authors analyze past executions of the composite
web services and build a set of context-sensitive selection models to be applied
at each stage in the composite service execution.

The idea of using monitored data and/or past user experience for collabora-
tive QoS-driven web service selection is examined in several research works. In
our system, we use such an approach to match web services with user requests.
The fact that the recommended web services are exploited by other users guar-
antees a certain level of their quality. The idea behind this is that web services
with low quality do not have many clients. Our system allows for the reuse of
experience by new service consumers through considering past behavior of users
in similar situations. In this way, non-existent, often unavailable, incomplete or
faulty services (whose descriptions, however, may be published in the registries)
are filtered.

6 Conclusions and Future Work

We have presented a recommendation system that facilitates the discovery of
web services satisfying user needs. The system is based on the implicit culture
framework that uses the history of user-system interactions and client-service



communication logs to provide recommendations on web services. It can be used
to enhance the retrieval API of service registries.

Future work includes the implementation and evaluation of more complex

recommendation scenarios such as collaborative service testing through mining
dependencies between exceptions of a specified type and sort of input data, web
service monitoring and QoS-based selection. We are planning to evaluate the
ability of inductive module to infer behavior patterns for web service discovery.
In perspective, other similarity metrics, including semantic methods for matching
observations, can be implemented in the system.
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