
A Versatile Execution Management System for
Next-Generation UNICORE Grids

Bernd Schuller, Roger Menday, and Achim Streit

Research Center Jülich, Central Institute for Applied Mathematics, Jülich, Germany
{b.schuller,r.menday,a.streit}@fz-juelich.de

Abstract. This paper builds on extensive experience with the UNI-
CORE middleware to derive requirements for the next generation of Grid
execution management systems. We present some well-known architec-
tural ideas and design principles that allow building Grid servers that
are adaptable to any type of target systems, from single workstations or
PCs to huge supercomputers, and flexible enough for the novel usage sce-
narios and business models that are coming up in next-generation Grid
systems. These ideas are used to implement an execution management
system similar in scope to the UNICORE NJS.

1 Introduction

Compute resources available in present-day Grids range from small systems, such
as single PCs, to very large systems such as supercomputers (for example in the
DEISA project [1]) or PC farms as in EGEE[2].

These resources are made accessible through Grid middleware, specifically
execution management systems (EMS). They serve a variety of functions in the
areas authentication, authorisation and accounting (AAA), data management
and execution management.

Grid execution management systems have to serve a wide range of compute
resource capabilities, number of concurrent client connections, number of con-
current jobs, amount of data transferred and so on.

Additionally, in next-generation Grids new requirements are emerging [4]. In
traditional scenarios such as scientific computing Grids, business rules such as
billing or auditing procedures are simple, and usually hardcoded. However, busi-
ness concerns such as service level agreements play an increasingly prominent
role, as investigated for example in the NextGrid project[3]. To accommodate
these needs, EMSs in next-generation Grids have to be highly flexible and re-
configurable.

The remainder of this paper is organised as follows: in the next section we
present and review some experiences with the UNICORE Grid middleware made
in the course of project and production use. From the capabilities and more
importantly the shortcomings of this mature system, we derive a set of require-
ments for next-generation Grid servers. The remaining sections are devoted to
design and partial implementation of a system called XNJS, respecting these
requirements.

W. Lehner et al. (Eds.): Euro-Par 2006 Workshops, LNCS 4375, pp. 195–204, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



196 B. Schuller, R. Menday, and A. Streit

2 Experiences with UNICORE

UNICORE, developed in the course of several German and European projects
since 1997, is a mature Grid middleware that is deployed and used in a variety of
settings, from small projects to large (multi-site) infrastructures involving high-
performance computing resources. UNICORE can be characterised as a vertically
integrated Grid system, that comprises a graphical client and various server and
target system components. The communication is based on a proprietary protocol
using serialised Java objects (abstract job objects, AJOs). An overview on the his-
tory and usage scenarios is given in [6]. UNICORE is being used in various projects
and production environments such as DEISA [1]. In the EU FP6 project UniGrids
[7], it has evolved into a web services based Grid environment compliant with the
web service resource framework (WSRF)[8], which is the prime candidate for re-
alising the Open Grid Services Architecture (OGSA)[9] vision.

The UNICORE software is available open-source under a liberal, BSD-type
license from the SourceForge repository [5].

The server side components of the current version of the UNICORE middle-
ware (UNICORE 4) are organised into three tiers, the Gateway, NJS and TSI,
that usually run on separate machines (Fig. 1).

Fig. 1. The UNICORE 4 architecture

They serve distinct functions. The gateway is the primary point of entry,
and can be considered a software firewall. It authenticates client requests and
forwards them on to the next tier. The target system interface (TSI) is a stateless
component talking directly to the underlying batch system. It offers a simple,
text-based protocol to the batch system, and is used to execute scripts, submit
batch jobs, request job status, get or write files and perform some common file
system operations such as “list directory” or “copy”. The main component in a
UNICORE server installation is the network job supervisor (NJS), which will be
discussed in detail in the next section.



A Versatile Execution Management System 197

2.1 The UNICORE NJS: A Gap Analysis

The central component of the UNICORE server side is the NJS (network job
supervisor). The NJS is a multithreaded Java application that offers a variety of
features, such as

– authorising users using the UNICORE user database (UUDB),
– translating the incoming abstract jobs into concrete jobs for the target sys-

tem using a process called incarnation,
– submitting the concrete jobs to the TSI and monitoring their status,
– managing the outcome,
– communicating with the gateway,
– submitting sub-jobs to other Grid sites,
– keeping job state.

In UNICORE, abstract jobs can be arbitrarily complex and may involve work-
flows spanning multiple Grid sites. The NJS is a combination of a workflow
processing engine and an execution management system for “atomic” jobs such
as executing a script on the target system associated with the NJS.

Furthermore, the NJS offers several interfaces for add-on functionality such
as brokering, resource reservation, and alternative file transfer mechanisms.

While the NJS (and thus UNICORE as a whole) offers a lot of functionality,
there are some shortcomings as well, in the areas of flexibility, scalability and
fault resilience.

Flexible processing and business rules. One limitation of the NJS is the fact that
the processing rules as well as the business rules are hardcoded. Therefore, new
requirements are only implementable by changing the core NJS code.

Currently, the processing rules are encoded into an object model, thus to add
new types of actions or to modify the processing for certain types of action needs
modifications of existing Java code.

Business rules are currently fixed as well (and mostly implicit). As an example
scenario for the need for flexible business rules, one might think of different
billing schemes based on the current user, such as pay-per-use for User A and
a computing time budget for User B. Another business rule might be related to
providing different resource views for different users. For example, User A should
be able to use at most 10 nodes of a cluster, while User B should be allowed to
use the full cluster. Currently, all users have the same set of available resources,
and UNICORE relies on the underlying batch system to enforce policies such as
the ones mentioned.

Scalability. As with any single software component, there are scalability issues
with the NJS as well. There is no possiblity for clustering groups of NJSs. Fur-
thermore, the current implementation of the NJS keeps a lot of state information
in-memory, so during long-term operation, out of memory errors may occur.



198 B. Schuller, R. Menday, and A. Streit

Fault resilience. Fault resilience has many facets, but as an example scenario,
consider the following. UNICORE was the Grid middleware of choice in the
OpenMolGRID project [10][11], that sucessfully targeted Grid-based drug de-
sign. Often, complex multi-step jobs involving many Grid sites were run. How-
ever, sometimes job parts failed due to networking problems, or failure of one
site, etc. This led to a failure of the whole job, and often to loss of results from
other job parts, because the users did not take any precautions such as saving
intermediary results. Here, the need for improved fault handling was felt, which
should be based on a flexible set of business rules.

Limiting the scope. The UNICORE NJS does both atomic jobs (plain execution
tasks) and multi-step, multisite workflows. We believe the workflow functionality
should be provided elsewhere, in the interest of simplicity and modularity, and
thus maintainability.

2.2 Requirements for a Next-Generation NJS

Analysing the experiences in using the current UNICORE implementation, we
can identify a set of principles for designing a next-generation Grid execution
management system. These can also be seen as non-functional requirements.

– Highly modular, reconfigurable and scalable architecture: The system must be
composed of building blocks with well-defined functionality and well-defined
responsibilities. These components must interact only using interfaces. The
components must not make any assumptions about their environment.

This ensures that an implementation of a subsystem can be replaced by
another implementation without breaking other parts of the system.

– No hardcoded processing rules: The actions executed to run a job, or to
transfer a file must be easy to modify, extend or even switch off. Additional
processing steps (such as encryption / decryption) should be pluggable into
the processing. It must be possible to add new types of actions without
having to change the system core.

– No hardcoded business rules: There must be no static business rules in the
system core. All business rules should be explicitly defined and configurable,
ideally even on a per client request basis.

– Scope limited to single-site actions: The system should only deal with ac-
tions on a single site. Multi-site workflow functionality should be provided
elsewhere.

A system that respects these principles will be easy to extend and adapt to
new requirements.

To keep such a highly flexible system transparent and manageable, one has
to take special care to give system administrators a detailed view on the current
configuration, and to allow them to monitor the system closely.



A Versatile Execution Management System 199

3 The XNJS: Design and Implementation of a
Next-Generation UNICORE NJS

In this section we outline the design and partial implemention of a Grid exe-
cution management system with we have named XNJS, that respects the basic
requirements outlined in section 2.2.

A high-level depiction of a typical Grid node is shown in Fig. 2. The execution
server resides in the “ Grid tier”.

Fig. 2. Three-tier architecture representation of a Grid node

The front-controller subsystem takes care of the client communication. In
present-day Grid systems this will usually be a set of WSRF compliant web
services or components talking a proprietary protocol.

The services offered by the EMS can be grouped into execution services, file I/O
services, and security services (authentication, authorization and accounting).

The actual resource, such as a batch system or database, is in the separate
target system tier. Here, there are two scenarios: the target system and the EMS
are running on the same machine, or, the EMS is running on a separate machine.

Additionally, there are aspects such as persistence, management, logging, etc.,
that are not shown in the figure but have to be taken into account in the design
and implementation as well.



200 B. Schuller, R. Menday, and A. Streit

3.1 Core Architecture

It is well known that one fundamental principle for designing modular systems
is the separation of interface from implementation [12]. When some component
uses some other component of the system, it must not refer to a concrete imple-
mentation, but to the abstract interface of that service only.

For the XNJS, we have chosen an architecture similar to the “Microkernel”
pattern [13] to maximise reconfigurability.

To realise this architecture, a component repository or component container
is necessary, allowing storage and retrieval of concrete realisations of needed
interfaces.

Using Java, this can be implemented using simple, lightweight containers such
as the PicoContainer [16] or more complex frameworks such as Spring [17]. These
containers offer convenient methods for dealing with component lifecycle, i.e.
starting and stopping components. For our implementation we have chosen Pico-
Container because of its easy embeddability and low memory footprint. Most
services will in turn be dependent on other services. To resolve these dependen-
cies, it is convenient to let the container take care of this task, and let it inject
the dependencies using setter methods or constructor parameters[15]. A very
important non-functional aspect of using dependency-injection is the improved
testability of the individual components. For tests, “mock” dependencies can be
used, allowing unit testing.

The actual runtime system configuration is defined at deployment time using
configuration files.

3.2 Execution Management

In this section we focus on the execution management engine. Its functionality is
the ability to execute a set of actions, keep track of action state, and offer some
interfaces to the outside world for adding new actions and querying their status.
Keeping such an engine flexible involves an extensible set of basic executable
“building blocks” and a reconfigurable and extensible processing scheme for these
executables.

Actions. Actions are the basic execution units in the XNJS. Actions are usually
created within the front-end controller of the XNJS, and submitted for processing
to the core execution engine. Their state chart is shown in Fig. 3.

If needed, the actions will communicate with the target system, invoke I/O
services, start sub-actions etc.

The Action includes an XML work description, for example, a JSDL [18]
document. The type of XML that is used defines the “type” of Action. The XNJS
can be extended easily by adding support for new types of actions, specifically
by adding processing code as outlined in the next section.

Processing Chains. The design of the processing itself should be flexible and
adaptable to various deployment and usage scenarios. For this purpose, we have
chosen to adopt a design pattern similar to the “chain of responsibility” from



A Versatile Execution Management System 201

Fig. 3. The statechart for actions

[14]. The processing of an Action instance is done by a finite chain of processing
elements (processors), that are called one after the other as depicted in Fig. 4.
Each processor may perform arbitrary operations, change the action state, etc.
Context information can be stored in the Action object itself that is passed along
the processing chain. The processing chain for a given Action type is configurable,
even at runtime if needed.

Processors can be used for any type of operation relevant during action ex-
ecution, such as running an application, data encryption and decryption, , ac-
counting and billing, or user notification. In this way, we realise the requirement
that there are no hardcoded business or processing rules.

One disadvantage of this concept may be noted: processing can become quite
complex, especially when different processors share context information, as is
common during processing of workflows. Here, the processor responsible for
workflow processing will start sub-actions, and will have to monitor these in
order to decide when to start any dependent parts of the workflow.

3.3 Security

In Grids, many different trust and security policies are used, which may also
change, thus it is vital that the EMS is flexible and does not have any hardcoded



202 B. Schuller, R. Menday, and A. Streit

Fig. 4. A chain of processing elements

security settings. Thus, the core XNJS just provides a set of classes and patterns
that can be used to build a solution that meets the security needs of the Grid it
is deployed into.

Client information. A Client class can be used to capture information about
the party that executes Actions on the XNJS, such as their name, authorization
tokens. The Client object is usually generated in the front-end component, using
information from the transport layer or the original message. This Client object
is part of the Action during the Action’s lifecycle.

Method call interception. We have employed the method call interception tech-
nique to allow very fine grained security checks. In the XNJS, the core method
calls include authentication information in the form of a “Client” object. These
method calls can be intercepted, and security checks can be executed. We have
used aspect-oriented programming techniques [19] using AspectJ [20]. Rules and
policies used to enforce security are pluggable, and easily extensible.

3.4 Status of the XNJS

The current status of the XNJS implementation is as follows.

Status of JSDL Processing. The most important functionality available in
the XNJS is processing of atomic jobs, as defined by a JSDL document. The
XNJS can execute JSDL jobs, including file staging in and out through local
copy or HTTP. It supports important UNICORE concepts, such as abstract
Application resources and abstract Filespaces (such as Root, Home, or Uspace).

Target System Support. Two target system interfaces currently exist. To sup-
port the use of the XNJS as “embedded” execution engine, a Java target system
interface is available. This executes jobs locally by spawning a sub-process. Al-
ternatively, an interface to a conventional Unicore 4.x TSI is available. Thus the
XNJS can be used as execution management system for all those batch systems
that can be accessed using Unicore 4.x, such as IBM LoadLeveler or PBS.



A Versatile Execution Management System 203

Management Interface. A running XNJS instance may be managed through
the standard Java Management Extensions (JMX) interface. This allows to mon-
itor the status of the Java virtual machine, to modify operational parameters,
and to cleanly shutdown the XNJS.[21]

4 Conclusions and Outlook

Starting from an analysis of the Unicore NJS Grid execution server, we have
derived some principles we believe to be indispensable for the next generation of
Grid execution management servers. Using several well known design principles
and patterns, we have designed and partly implemented a versatile, highly mod-
ular system that can be configured to suit various deployment needs and usage
scenarios.

The use of a microkernel architecture with dependency injection allows easy
configuration and simple testing and deployment of the system. The use of the
“chain of responsibility” pattern within the execution engine allows building
arbitrarily complex processing and business logic without modifying the core
software.

The inherent flexibility and reconfigurability of the XNJS makes it useful in
a variety of scenarios, for example

– as the backend behind a set of WSRF services implementing the UniGrids
Atomic Services or OGSA-BES interfaces, with the XNJS embedded into
the web services hosting,

– as a execution engine behind a web-application front end or a Representa-
tional State Transfer (REST)[22] interface,

– as part of a dynamic cluster of simple standalone worker nodes.

Future work will focus on ways to make the business rules of the system
(including terms of use, billing, access rights and permissions) more explicit and
dynamic.

References

1. DEISA: Distributed European Infrastructure for Supercomputing Applications
http://www.deisa.org

2. EGEE: Enabling Grids for e-Science
http://public.eu-egee.org/

3. NextGrid: Next-Generation Grids
http://www.nextgrid.org

4. Third report of the “Next Generation Grids” Expert Group
ftp://ftp.cordis.lu/pub/ist/docs/grids/ngg3_eg_final.pdf

5. UNICORE at SourceForge:
http://unicore.sourceforge.net

6. A. Streit, D. Erwin, Th. Lippert, D. Mallmann, R. Menday, M. Rambadt, M.
Riedel, M. Romberg, B. Schuller, and Ph. Wieder: UNICORE - From Project
Results to Production Grids. L. Grandinetti (Edt.) "Grid Computing: The New
Frontiers of High Performance Processing", pp. 357-376, Elsevier 2005



204 B. Schuller, R. Menday, and A. Streit

7. UniGrids homepage:
http://www.unigrids.org

8. Web Service Resource Framework:
http://www.oasis-open.org/committees/tc

¯
home.php?wg

¯
abbrev=wsrf

9. The Open Grid Services Architecture, version 1:
http://www.ggf.org/documents/GFD.30.pdf

10. OpenMolGRID homepage:
http://www.openmolgrid.org

11. Dubitzky, W., McCourt, D., Galushka, M., Romberg, M., Schuller, B. Grid-
enabled data warehousing for molecular engineering; Parallel Computing 30 (2004),
1019–1035

12. David L. Parnas: “On the criteria to be used in decomposing systems into modules”,
Communications of the ACM 15(2), Dec. 1972,1053-1058.

13. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P.: “A System of Patterns:
Pattern-Oriented Software Architecture, Volume 1”, Wiley, 1996

14. E. Gamma, R. Helm, R. Johnson, J. Vlissides: “Design Patterns”, Addison-Wesley
Publishing Company, 1995

15. Dependency Injection: http://www.martinfowler.com/articles/injection.html
16. PicoContainer:

http://picocontainer.codehaus.org
17. The Spring framework:

http://www.springframework.org
18. Job submission description language (JSDL):

http://forge.gridforum.org/projects/jsdl-wg/
19. Elrad, T., Filman, R.E., Bader, A.: “Aspect-oriented programming: Introduction”,

Communications of the ACM, 44 (2001), p. 29-32
20. AspectJ:

http://www.eclipse.org/aspectj
21. Java Management Extensions (JMX):

http://java.sun.com/products/JavaManagement
22. Fielding, R. Th.: “Architectural Styles and the Design of Network-based Software

Architectures.” Doctoral dissertation, University of California, Irvine, 2000.


	Introduction
	Experiences with UNICORE
	The UNICORE NJS: A Gap Analysis
	Requirements for a Next-Generation NJS

	The XNJS: Design and Implementation of a Next-Generation UNICORE NJS
	Core Architecture
	Execution Management
	Security
	Status of the XNJS

	Conclusions and Outlook

