Job Management Enterprise Application

Thomas Soddemann

Rechenzentrum der MPG (RZG), Institut fiir Plasmaphysik, Boltzmann-Str. 2,
85748 Garching, Germany

soddemann@rzg.mpg.de

Abstract. This paper describes the development of a Job Management
Enterprise Application (JMEA) which was developed by the DEISA ma-
terial science and plasma physics joint research activities. It is capable
of submitting jobs to a UNICORE server infrastructure and managing
them. Since it is a Java EE application, it can be used by multiple users
concurrently. Furthermore, it prefetches and caches request results in
order to able of responding as quick as possible to client requests. In
addition to normal user credentials it also supports the use of proxy
credentials and explicit trust delegation.

1 Introduction

The Distributed European Infrastructure for Supercomputing Applications
(DEISA) [I] is a consortium of leading national supercomputing centers that cur-
rently deploys and operates a persistent, production quality, distributed super-
computing environment with continental scope. The purpose of this FP6 funded
research infrastructure is to enable scientific discovery across a broad spectrum
of science and technology, by enhancing and reinforcing European capabilities
in the area of high performance computing. This becomes possible through a
deep integration of existing national high-end platforms, tightly coupled by a
dedicated network and supported by innovative system and grid software.

The DEISA supercomputing grid is a European research infrastructure result-
ing from the integration of national High Performance Computing (HPC) infras-
tructures. This integration of national resources — using modern grid technologies
such as UNICORE [6] — is expected to contribute to a significant enhancement
of HPC capability and capacity in Europe.

DEISA is structured as a layer on top of the national supercomputing ser-
vices, and coexists with them. This infrastructure addresses the computational
challenges that require the coordinated action of the different national supercom-
puting environments and services for both efficiency and performance. DEISA
provides scientific users with transparent access to a European pool of computing
resources. The coordinated operation of this environment is tailored to enable
new, ground breaking applications in computational sciences.

Eleven partners contribute currently to the DEISA infrastructure with their
top level supercomputers: BSC, Spain; CINECA, Italy; CSC, Finland; ECMWF,
UK; EPCC, UK; HLRS, Germany, IDRIS, France; FZJ, Germany, LRZ, Germany;

W. Lehner et al. (Eds.): Euro-Par 2006 Workshops, LNCS 4375, pp. 254-263] 2007.
© Springer-Verlag Berlin Heidelberg 2007



Job Management Enterprise Application 255

RZG ,Germany; SARA, Netherlands This heterogeneous grid of super-computers
includes of the most recent systems from leading vendors (IBM — PowerPC970,
Power 4, 4+, 5, SGI — ALTIX, NEC - SX8).

Science Gateways, Portals and Web Service interfaces, are crucial for enhanc-
ing the user’s adoption of sophisticated supercomputing infrastructures, by hid-
ing from them the complexities of the computational environment. This extends
up to the point that users make in their view direct use of an application. The
choice of resource utilization is completely left to the infrastructure providing
access to this application. So the portal solutions play the role of an application
service provider (ASP).

The DEISA joint research activities in material sciences and plasma physics
were faced with the development of comfortable means of access to the DEISA
resources for standard applications in their fields like CPMD [2] and CP2K [3] for
material sciences, and TORB [4] for plasma physics, a so-called science gateway.

Within DEISA several options for job submission across Cluster boundaries
exist, e.g., the Multi Cluster Load Leveler (MC-LL) allows submitting jobs from
the command line to any of the connected Load Leveler clusters (but naturally
not to non MC-LL sites). The middle ware service activity within the DEISA
project chose to employ the UNICORE suite as the default job submission inter-
face to all heterogeneous compute resources within DEISA. Hence any DEISA
job submission portal solution should be able to interface the UNICORE infras-
tructure deployed in DEISA in order to submit jobs in behalf of its users.

The UNICORE suite consists essentially of three components and one local
batch scheduling system interface implementation establishing the connection
to resource management systems like MC-LL and others. On the server side
the central component is the Network Job Scheduler (NJS). It takes care of job
submission, job management as well as file transfers and work flow execution. A
gateway is the central entry point from the client perspective and several NJSs
can be connected to it. A grid infrastructure relying on UNICORE can have
more than one gateway e.g. for an increased fault tolerance. A user typically
employs a rich client application (the UNICORE Client) to connect to several
NJSs via a single gateway (see Fig. [I]).

In the case of a portal application the job submission and management part
needs to be implemented by an appropriate interface component. This compo-
nents has to be able to carry out all tasks usually performed by the UNICORE
client. Ideally, this interface is as general as possible in order to be able to
deal with resource management systems besides UNICORE. The next section
describes the requirements for such general job submission and management
interface component.

The UNICORE suite offers a client library, the Arcon library, implementing an
API which offers most of the desired functionality in dealing with the UNICORE
server side. Unfortunately, this client library suffers from some minor deficiencies
which mainly affect its use in a multi user multi threaded environment. This will
be discussed in section [3.11



256 T. Soddemann

Gateway1 Gateway?2
// \\\\\\ ////;7 \\
7 \ S~ =T \
// \\ S~ - e \\
, N S e
/ AN - \
, \ - ~ 7 \
, \ - e \
/ PN AN \
/ - - >~ \
/ - \ - ~
, - \ - \\\ \
/ -=" \ e ~o \
NJS1a NJS1b NJS2

Fig. 1. Multiple gateways and NJSes deployed in a more sophisticated UNICORE
infrastructure such as DEISA. Each NJS connects to all gateways. A user sees all
NJSes regardless of the choice of the gateway.

Web Browser

UNICORE

o Rich client
Web Application application
Other EAs JMEA
Other middle-

UNICORE server side (NJS, ...)
ware

Fig. 2. Access to UNICORE within DEISA (without DESHL command line tooling).
The Job Management Enterprise Application sits on top of the UNICORE server side
infrastructure. A user accessing DEISA resources via the material science and plasma
physics portal application makes direct use if JMEA for submission and handling. Fur-
thermore, he is able to make use of other non-UNICORE related features like file system
access. The UNICORE rich client application offers essentially the same functionality
with respect to UNICORE. It speaks directly with the UNICORE server side. Pros
and Cons of these approaches are discussed in detail in [5].



Job Management Enterprise Application 257

Section 3.2 describes a implementation of the Job Submission and Manage-
ment interface described in section 2. It is implemented in form of a J2EE [10]
version 1.4 compliant Job Management enterprise application developed within
the DEISA project. It circumvents most of the problems described in section B3]
and provides in addition functionality well beyond those of an ordinary client
library. It is being used in the DEISA material science and plasma physics portal
application.

The last sections provides conclusion and outlook of future developments.

2 Requirements for a Job Management Application

Ideally, a job management component for a portal application is able to connect
to all grid job managers and local batch scheduling system. Adhering to this
design principle, an API has to be used which is independent of any underlying
job management component specifics. E.g. it should be able to work with a
Globus [II] GRAM as well as with UNICORE NJS.

Hence, we identified a set of operation which we think are applicable to all
kinds of resource management systems. This particular choice was motivated by
the APIs of several different resource management systems [7I8] and the job man-
agement API of GGF’s SAGA research group specified in their strawman API
document [9]. It contains: submit (submitting the job request, cancel (canceling
a job request which is not being executed), delete (delete a finished job request),
kill (kill a running job request), halt (halt a job which is being executed), resume
(resume a previously halted job). In addition it should be possible to retrieve
information about the available resources, information about the status of jobs
owned by a particular user, and results from a finished job such as console out-
put. It is evident that the implementation of the job manager has to be able to
deal with the identity management of the underlying resource management sys-
tem. Fig.[Blshows the JobManager interface definition. All previously mentioned
methods have been integrated into the definition. Additionally the client can se-
lect the gateway machine (if necessary as in the case of UNICORE) and retrieve
a list of all known virtual site, which are part of the resource infrastructure.

Furthermore, the application should be able to cope with different instances
of the same or different job management implementation at the same time,
e.g. UNICORE and Globus. Hence, in addition to the JobManager Interface, a
Factory for the JobManager is needed.

In the following we motivate two further requirements based on our expe-
riences with UNICORE. But they should also hold for other Grid and cluster
middle ware such as the Globus Tool Kit. The the requirements are derived from
the design principle of giving best user satisfaction by having shortest request
to response times and letting the user/client select the level of sophistication.

The UNICORE NJS requires a considerable amount of time to process many
of its requests, e.g. request for a job status. Since it is undesirable to have
users wait for anything, the application should answer right away. It should even
answer if the targeted NJS should be unavailable for whatever reason.



258 T. Soddemann

«drterfaces
O JobManager

getVirtualSites(): Collection

setGatewayURI(in gateway: String)

getGatewayURI(): String

getResources(in vsite: Object, in cert: X509Certificate, in signature: Signature): Collection
getRunningJobs(in vsite: Object, in user: X509Certificate, in signature: Signature): Collection
getJobStatus(in jobid: Object, in vsite: Object, in user: X509Certificate, in signature: Signature): JobStatus
cancelJob(in jobld: Object, in vsite: Object, in cert: X509Certificate, in signature: Signature)

killdoh(in jobld: Object, in vsite: Object, in cert: XS09Certificate, in signature: Signature)

haltJob(in jobld: Object, in vsite: Object, in cert: X509Certificate, in signature: Signature)

resumedJob(in jobld: Object, in vsite: Object, in cert: XS09Certificate, in signature: Signature)
deleteJob(in jobld: Object, in vsite: Object, in cert: XS509Certificate, in signature: Signature)
getResults(in jobld: Object, in vsite: Object, in cert: XS09Certificate, in signature: Signature): JobResult

Q0o 00O OOQOQOOOPOOO

Fig. 3. JobManager Interface definition

Ideally, the application should find out about available resources and cache
those information without user interaction.

3 Architecture and Implementation of the Job
Management Enterprise Application (JMEA)

The Job Management Enterprise Application (JMEA) is as its designed as a
multi-component application. It offers interface components such as the Job-
Manager for synchronous interaction and a similar component for asynchronous
interaction. Furthermore, persistent classes store jobs, job results, and job stati.
Service components take care of the things like the periodic querying of job stati
and automatic retrieval of results.

In the following we discuss why we choose to develop a new UNICORE client
library as a replacement for the current Arcon release. The second subsection
deals with the details of the implementation of JMEA.

3.1 The Arcon Client Library

In the case of UNICORE a client library exists which could be used to implement
the UNICORE job manager: the Arcon library.

The Arcon library is client library which allows application to interact with
the UNICORE server side (gateway and NJS). Although it works perfectly well
for a single user application with a single thread interacting with the UNICORE
server side, it has some limitations when employed in a multi user — multi thread
environment.

In order to avoid race conditions in multi threaded applications, one should
omit static variables, unless they are used for communication between the threads



Job Management Enterprise Application 259

and their access is synchronized. In the latter case, one has to make sure that syn-
chronized access does not lead to a performance bottleneck.

In the case of the JobManager class of the Arcon library three static vari-
ables can be identified which can have an impact on the use in a multi user
environment:

— outcome dir which specifies the directory, streamed files will be stored
— buffer size which reflects the buffer size for connections
— always_poll which tells if request are always asynchronous or not.

The static nature of those variables make it difficult to have per user settings
which are desirable at least for the outcome dir.
The abstract class Connection implements three static variables:

— keep_open which defines if the next connection is kept open after use.

— compression which tells if the transmission should be compressed or not.

— encrypt which defines whether the next retrieved connection should be en-
crypted communication or not.

While encryption may never been turned off, it is trivial to see that compres-
sion and keep open will definitely affect a multi user multi thread environment.
Setting keep_open to true in one thread in order to retrieve a connection which
stays open may result in an error, if that connection has been closed after first
use, if a concurrent thread acquired a keep_open=false connection.

There are other classes which implement static variables such as VsiteMan-
ager. In our opinion, those do not limit the Arcon libraries use in a multi user
environment.

The Arcon library implements its own proprietary logging mechanism which
is not compatible with any of the existing logging mechanisms as log4j and
the java.logging API. This makes it difficult to route logging messages to the
applications or container logging files and impossible to influence the logging in
the standard way.

Furthermore, in the implementation of some classes, e.g. in Connection, ex-
ceptions are used for flow control (bad style).

The main disadvantage at the time of the decision not to use the the original
Arcon library was the missing support for Explicit Trust Delegation (ETD) [12]
which allows a special user (agent) to formulate job request on behalf of a user
by using his own set of credentials. In the mean time an EDT supporting Arcon
library can be found at [13], which has not officially been released yet.

Furthermore, the Arcon library does not directly support Proxy Certificates
which are favored in some environments over the use of ETD.

Based on these facts the decision was made to re-implement a client li-
brary, the new JobManager Library. Parts of the Arcon library’s code base have
been reused and those parts which were identified to be problematic have been
replaced.

The new JobManager library now supports ETD, Proxy Certificates and is
usable in a multi-user/multi threaded environment without limitations.



260 T. Soddemann

3.2 The Components

Fig.@sketches the main components of the job management enterprise application.

JobManager MD Bean

r—————————————————————
o
<)
T
=
D
E]
o
Q
]
<
[’d
o
1
s
3
o
=
o
o
o
E]

JobManager EJB £---- |
— i
i

I
I
I
| ResourceService MBean
I
I
U

Fig. 4. Main components of the Job Management Enterprise Application

The JobManager Enterprise Java Bean (EJB) is the workhorse of the appli-
cation. Its main purpose is to wrap calls to the JobManager library and han-
dle persistent objects (see below). This EJB is implemented as a stateless EJB
which allows the Application container to pool instances. The size of the pool
can adjusted to optimize the balance the number of concurrent requests and
responsiveness of the application.

The JobManager Message Driven Bean wraps the job update methods Job-
Manager EJB and allows each of them to be executed asynchronously. These
beans receive messages containing the AJO id of the job whose status is to be
updated or performs a bulk update on all jobs for a particular user.

The JobManager Service Management Bean performs service tasks such as
the periodic initiation of status update requests for running jobs. It employs
the JobManager Message driven beans and the RunningJobs persistent object
in order to achieve its goal.

Resources such as available software etc. are published in UNICORE on a per
site basis. Hence the enterprise application queries the resources in configurable
intervals and makes the result available to all of its users. The JobManager Re-
source Service Management Bean is responsible for querying the various NJS
server instances and caching the query result. Furthermore, it provides informa-
tion about the status of an NJS (available/not available). Since it has cached
information, a temporarly unavailability does not mean that a client does not
get information from it.



Job Management Enterprise Application 261

Several persistent classes have been used in order to store job requests, job
stati, job results, and running jobs. Hibernate [I4] is used for object relational
(O/R) mapping purposes. Among the persistent classes are the JobStatus class,
JobResult class and the RunningJobs class. JobStatus contains all status infor-
mation available from UNICORE. In a similar way the results of finished jobs
including stdout and stderr are stored in objects of the JobResult class. Ob-
jects of the RunningJobs class contains information about all running jobs for a
particular user who is known to the enterprise application.

As mentioned in sec. 2] especially the UNICORE NJS requires some time to
process certain requests. To circumvent this behavior and give an answer to the
client side as quick as possible, information such as the job status, which obvi-
ously can change (e.g. from queued to running to finished), is polled periodically
and cached by the application. The JobManagerService MBean operates a timer
service which periodically initiates the polling by sending messages to the Job-
Manager Message Driven Beans. These utilize instances of the JobManager EJB
in order to retrieve and cache the required information from the NJS. When a
client asks the JobManager EJB about such information it answers by query-
ing the cache. A similar conecept is applied for the caching of a site’s resource
information.

Generally, requests should be grouped, if possible. Refreshes should be per-
formed at suitable intervals. This shortens the time to a response on client re-
quests for information using the application. Only information which need a
special user authorization have to be retrieved separately, e.g. asynchronously
after the user/client has authenticated himself to the application and provided
the necessary credentials so that the application is able to act on the user’s
behalf. If the concept of explicit trust delegation (ETD) is enabled in the tar-
geted UNICORE deployment, this task is trivial, since the NJS checks the
authorization.

3.3 Security

In the current version of the enterprise application different security models
are in place. The enterprise application itself can be protected by employing the
container’s security mechanisms. Once authenticated and authorized, a client can
access all methods of all EJBs deployed in this application. There are currently no
priviledged methods which need role based access restrictions. Access to the NJS
via the enterprise application can be achieved in three ways of authentication
by either employing
— the concept of Explicit Trust Delegation [12],

— Proxy credentials [I5], or
— using the user credentials,

UNICORE is able to deal with one level of proxy certificates if the NJS
check_signers property has been switched on. In that case the client needs to

provide a Signature object for most of the operations which result in an interac-
tion with a NJS. The JobManager library act in this case as a mediating NJS.



262 T. Soddemann

In the case of Explicit Trust delegation, it is not necessary for the client to
provide a Signature object. The JobManger library here is used in the Agent
mode, and signs all request with as a agent while setting the user attribute
fields in the AJOs accordingly. The only thing needed in both cases is the X509
certificate.

In the case of ETD it should in principle suffice to provide a X500 DN of
the user. This would simplify things, if the certificate is not available to the
JobManager application. In discussions with the NJS authors it became clear
that the certificate is used to identify users in cases where different users have
the same DN. Nevertheless, in our opinion, only certificate authorities should be
used which do not reuse their DNs or have overlapping name spaces. E.g. CAs,
which are members of the EUGridPMA, qualify for that.

4 Conclusion and Outlook

The Job Management is currently in production use for the materials science
and plasma physics portal of the according DEISA activities. In the mean time
extension plans towards an integration of WS-GRAM are made. Furthermore,
JMEA will be used in the implementation of the UNICORE connector for Grid-
SAM [I6]. This will allow users of the OMII [I6] and hence users of the AHE
[17] to submit jobs to the DEISA infrastructure. The reader might have missed a
treatment of file transfer. Currently, file transfers are not implemented in JMEA
itself (apart from the fact, that files can be embedded in job objects). An ad-
ditional file management application is used to transfer file with appropriate
mechanisms. Since JMEA will primarily be used in connection with web appli-
cations and web services, transfers of large volume data using HTTP/HTTPS
as the transport layer in form of a multi-part HT'TP request or embedded in an
XML document is for performance reasons not advisable.

The Arcon library could easily be extended to integrate seamlessly into a
multi threaded — multi user environment and a part of this work has already
been incorporated in the unreleased version [I3]. This would certainly help to
build third party applications on top of UNICORE which do not rely on the
UNICORE rich client.

A few ideas came into the authors’ minds when working on JMEA. These
could also enhance the integrability of UNICORE into third party applications.
In some applications connectors to UNICORE have easy access to the Princi-
pal class of the user, but often accessing the user/client certificate or even the
whole certificate chain is everything else than trivial. Hence, X500Principal ob-
ject should be used rather than the whole certificate in the class UserAttributes.

Furthermore, there are requests which do not necessarily need to be performed
by a user. E.g. requests for resource information could be performed by an ETD
agent as well. Result could then be handled by the agent itself and e.g. delivered
to all users. This would reduce the number of request to make to an NJS. But
currently an agent is not allowed to make such a request. This should be changed
in our opinion.



Job Management Enterprise Application 263

References

© 00N DT W

14.
15.
16.
17.

. DEISA, Distributed European Infrastructure for Supercomputing Applications,

http://www.deisa.eu

. CPMD, http://www.cpmd.org

. CP2K, http://cp2k.berlios.de

. Hatzky R, Tran TM, Knies A, Kleiber R, Allfrey SJ. Phys.Plasmas 2002; 9: 898.
. Thomas Soddemann, Concurrency Computat.: Pract. Exper., DOI 10.1002/cpe

UNICORE, http://unicore.sf.net/
http://www-03.ibm.com/servers/eserver/clusters/software/loadleveler.html

. http://gridengine.sunsource.net
. A. Merzky, et al., https://forge.gridforum.org/sf/docman/do/downloadDocument/

projects.saga-rg/docman.root/doc12183

. Java 2 Enterprise Edition
11.
12.
13.

The Globus Toolkit, http://www.globus.org/

D. Snelling, et al., http://www.fujitsu.com/downloads/MAG /vol40-2/paper12.pdf
Unreleased EDT version of the arcon library,
http://fisheyel.cenqua.com/browse/unicore/unicore/optional/arconclient
Hibernate http://www.hibernate.org/

Proxy Certificate RCF3820

Open Middleware Infrastructure Institute, http://www.omii.ac.uk/

Application Hosting Environment, http://www.realitygrid.org/AHE/



	Introduction
	Requirements for a Job Management Application
	Architecture and Implementation of the Job Management Enterprise Application (JMEA)
	The Arcon Client Library
	The Components
	Security

	Conclusion and Outlook



