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Abstract. An important issue in computational biology is the reverse
engineering problem for genetic networks. In this ongoing work we con-
sider reverse engineering in the context of univariate finite fields models.
A solution to the reverse engineering problem using multipoint inter-
polation relies on intensive arithmetic computations over finite fields,
where multiplication is the dominant operation. In this work, we de-
velop an efficient multiplier for fields GF (2m) generated by irreducible
trinomials of the form αm + αn + 1. We propose a design described by a
parallel/serial architecture that computes a multiplication in m clock cy-
cles. This approach exploits symmetries in Mastrovito matrices in order
to improve time complexities of an FPGA (Field Programmable Gate
Array) implementation. According to preliminary performance results,
our approach performs efficiently for large fields and has potential for
an efficient solution of the reverse engineering problem for large genetic
networks, as well as other finite fields applications such as cryptography
and Reed-Solomon decoders.

1 Introduction

An important problem in computational biology is modeling gene regulatory
networks in order to determine gene behavior in biological systems and how they
interact with each other. The reverse engineering problem for genetic networks
is the problem of determining the network that describes functional relations
between genes, given a set of experimental data.

In this ongoing work we consider the reverse engineering problem in the con-
text of univariate finite fields models [1,12]. The reverse engineering problem can
then be stated more precisely as follows:

Given a time series s0, s1, . . . , sk−1 of measurements of gene expression data
representing the states of m genes at times t0, t1, . . . tk−2, and a set of conditions
χ, the reverse engineering problem is the problem of finding a function f such
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that f : GF (q) → GF (q) has the property that f(sj) = sj+1, where sj =
(a0, a1, . . . , am−1), and f satisfies the conditions in χ.

Our solution f(x) to the reverse engineering problem then involves the de-
termination of a polynomial P (x), such that f(x) = P (x) + g(x), and P (si) =
P (si+1), and g(x) is a polynomial such that g(si) = 0, for i = 0, 1, . . . , k − 2.
The polynomial P (x) can be determined interpolating over the points si. Once
having determined P (x), the polynomial g(x) can be used to adjust the model
in order to satisfy the conditions in χ.

A classical method such as Lagrange interpolation formula can be used, but
it has computational complexity O(n2), where n is the number of points to be
interpolated. In contrast, Lipson’s algorithm has complexity O(n log2 n). Boll-
man et al [1] have shown that a parallel version of this algorithm is efficient for
reverse engineering univariate genetic networks.

2 Dealing with Large Genetic Networks

Various approaches have been taken for modeling gene regulatory networks, in-
cluding linear models, Bayesian networks, neural networks, nonlinear ordinary
differential equations, stochastic models and Boolean models. One model that
has received considerable attention is the Boolean model e.g., [6]. Recently, sev-
eral researchers have pointed out advantages in generalizing the Boolean model
to finite fields. Two types of finite field models have emerged, a multivariate
model as described by Laubenbacher [8] et al and a univariate model as de-
scribed by Moreno et al [12], [1]. The multivariate model gives local information
at each gene, whereas the univariate model gives global information about the
network.

In a finite field model for genetic networks we assume that gene expression is
discretized so that there are a prime number p of levels. There are several ways to
discretize the real-valued microarray data. One way is by thresholding. Another
way is to normalize gene expressions and use the deviation from the mean to
discretize the data. Inconsistencies due to either noise or biological variance can
be resolved by using information theoretic error correction [13].

If there are m genes and p levels of expression, then there are pm states and
we model such a network by the elements of GF (pm). In this work we consider
univariate finite field models with p = 2, so that each gene assumes just two
states, either on or off. Thus we restrict interpolation to fields GF (2m).

In practice, m can be quite large. For example, [10] outlines a study of gene
regulatory networks in yeast. Yeast has 6000+ genes. This study includes a
subset of 106 transcription factors and 2343 genes for which strong empirical
evidence of interaction was found using the experimental technique outlined in
the paper. Advances in techniques should yield data on all 6270 genes in yeast,
and eventually similar data will be available for all 20,000+ human genes. It
is thus of vital interest to develop algorithms to reverse engineering very large
networks.
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A solution to the reverse engineering problem for large values of m using
multipoint interpolation relies on intensive arithmetic computations over finite
fields. Addition and multiplication are two basic operations. Addition is easily
realized at very low computational cost, but multiplication is costly in terms of
computation time and circuit complexity. Other arithmetic operations on finite
fields used for reverse engineering such as inversion, squaring, exponentiation and
divisions are performed by repeated multiplications. Thus, in order to solve the
reverse engineering problem for the very large genetic networks that biologists
would like to consider, it is essential to develop capacity for performing fast and
efficient arithmetic over very large finite fields, especially multiplication.

One very fast method for performing arithmetic on GF (2m) involves the use
of Zech logarithm tables. By using lookup tables we can perform arithmetic op-
erations at “almost no cost”, but the memory space becomes a great limitation.
For instance, a 32-bit word length for storing the elements of GF (230) in a table,
requires 22 ·230 bytes = 4 GB in main memory. This method is efficient for small
finite fields, but it is not practical for the large fields that arise in real reverse
engineering problems.

A natural approach for multiplication in GF (2m) is to multiply two elements
in the field as polynomial multiplication modulo a m-degree irreducible poly-
nomial over GF (2). This operation is accomplished by simply using left-shifts
and exclusive or’s. In this simple procedure (also known as the direct or clas-
sical method) the memory space is not a limitation, but in a basic CPU based
implementation the field size is limited by the architecture word-length.

One approach to addressing large finite fields is to use composite fields
GF ((2r)s), combining lookup tables with direct multiplication. The accelera-
tion of finite fields multiplication using FPGAs is determined mainly by access
time between FPGAs and memory, since a composite field multiplication requires
multiple accesses to lookup tables stored in memory.

In this work, we present an FPGA-based implementation of a multiplication
algorithm over GF (2m) that exploits the symmetries in the Mastrovito matrix
[11]. The proposed approach performs efficiently for large fields and has poten-
tial for efficient solutions of the reverse engineering problem for large genetic
networks, as well as other finite fields applications such as cryptography and
Reed-Solomon decoders.

3 Finite Field Multiplication

An element in the finite field GF (2m) can be represented as a sequence of m
bits in GF (2) describing the coefficients of a binary polynomial. This representa-
tion is useful for manipulating finite field elements via bitwise operations, so we
can exploit the hardware architecture of computers by carrying out finite field
arithmetic by means of bit-level operations. In essence the arithmetic computa-
tion over GF (2m) is suitable for FPGAs implementations. We take advantage
of reconfigurable hardware resources with the aim of accelerating computations
considerably.



Toward a Solution of the Reverse Engineering Problem Using FPGAs 307

Multiplication is the dominant operation in the interpolation phase of the
solution of the reverse engineering problem for genetic networks. Many solutions
have been proposed for efficient multiplication over finite fields. Solutions are
based on purely software approaches, purely hardware approaches, and more
recently, on hardware/software using reconfigurable computing.

The representation of the field elements distinguishes the particular features
of a finite field multiplier. The most common representations are dual basis,
normal basis, and standard basis. In this work we deal with finite field elements
represented in standard (or polynomial or canonical) basis, such that the finite
field GF (2m) consists of a finite set of all binary polynomials of degree less than
m. For example GF (22) = {0, 1, α, α + 1}, where α is a root in GF (22) of the
irreducible polynomial α2 + α + 1.

A very natural approach for standard basis multiplication in GF (2m) is to
multiply two elements in the field as polynomial multiplication modulo an ir-
reducible polynomial. This operation is typically accomplished in two stages:
polynomial multiplication and modular reduction.

Let A(α), B(α), C(α) elements in GF (2m) and f(α) the irreducible polyno-
mial generating GF (2m). Then the finite field multiplication C(α) = A(α)B(α)
is accomplished by calculating

C(α) = A(α) ∗ B(α) mod f(α) (1)

where ∗ denotes polynomial multiplication. In a first stage the product A(α) ∗
B(α) is calculated, resulting in a polynomial Q(α) of degree at most 2m − 2.

Q(α) = A(α) ∗ B(α) =

(
m−1∑
i=0

aiα
i

)(
m−1∑
i=0

biα
i

)
(2)

In a second stage the modular reduction is performed on Q(α), that is, C(α) =
Q(α) mod f(α), resulting in the polynomial C(α) of degree at most m − 1.

It is easy to show that the expansion of equation (2) can be expressed as a
matrix-vector product Q = MB, where Q is a vector of dimension 2m−1, which
consists of the coefficients of Q(α). In the same way B is a m dimensional vector
which consists of the coefficients of B(α), while the (2m − 1) × m matrix M
involves coefficients of A(α) (see for example [14]).

Notice that the last m − 1 components of the vector Q (i.e. [qm, . . . , q2m−2])
contain terms with degree greater than m − 1. These terms must be reduced
modulo the irreducible polynomial f(α) = αm + g(α) in order to express them
as polynomials in the field GF (2m). This reduction is obtained by using the
reducing identity αm = g(α), so all the terms with degree greater than m − 1
will be reduced to terms with degree in the proper range [0, m−1]. Each reduced
term is added to the respective terms in [q0, . . . , qm−1], and so we get C(α). A
particular term may need to be reduced several times. The maximum number
of reductions is determined by:

N [m, n] =
⌈

m − 1
∆

⌉
where ∆ = m − n [5].
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For example, let m = 3 and f(α) = α3+α2+1, thus α3 = α2+1 and α4 = α3+
α. Using these identities the term q3α

3 is reduced only once: q3α
3 = q3α

2 + q3,
while q4α

4 is reduced twice: q4α
4 = q4α

3 + q4α = q4α
2 + q4α+ q4, and so we get

C(α) = q4α
4+q3α

3+q2α
2+q1α+q0 = (q4+q3+q2)α2+(q4+q1)α+(q4+q3+q0).

Notice that the maximum number of reductions is N [3, 2] = 2.
An alternative to the two-stage method, described above, for computing C

is to perform the reduction directly over the matrix M , obtaining an already
reduced m × m dimensional matrix Z, such that C = ZB. Z is called the
Mastrovito matrix [11].

4 A New FPGA-Based Approach

A common approach to the design of multipliers that is based on the Mastrovito
matrix Z is to compute Z and then do the multiplication in GF (2m) by means
of matrix-vector multiplication. In our approach, we exploit the symmetry of Z
without actually computing Z.

A method for constructing the Mastrovito matrix is proposed in [5]. According
to this method if GF (2m) is defined by the trinomial αm + αn + 1 then Z is
given by

Z =
[

U
L

]
where U and L are Toeplitz matrices defined as follows:

Let F = [0 am−1 am−2 . . . a1 ] and for each i = 0, 1, . . . , m − 1, let F [i →] be
the result of shifting F i positions to the right (vacated positions on the left are
filled with zeros). Also let G = [an an−1 . . . a1 a0 am . . . an+1 ]

U is n × m, its first column is [a0 a1 . . . an−1 ]T , and its first row is

[a0]||
N−1∑
i=0

F [i∆ →]

where ∆ = m − n, || represents concatenation, and N is a short notation for
N [m, n].

L is ∆ × m, its first column is [an an+1 . . . am−1 ]T , and its first row is

G +
N−1∑
i=0

F [i∆ →]

Although the previously described method is used for constructing the en-
tire Mastrovito matrix Z, in this work we construct only one row of Z which is
sufficient in our approach for carrying out multiplications in GF (2m). By con-
structing the n-th row Zn (where rows are numbered 0, 1, . . .), the remaining
rows of Z can be obtained by means of right-shifts and concatenations over Zn.

Example: If GF (27) is defined by α7 + α4 + 1, then ∆ = 3, N = 2, and

G = [a4 a3 a2 a1 a0 a6 a5 ]
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N−1∑
i=0

F [i∆ →] = F + F [∆ →] = [ 0 a6 a5 a4 a3 a2 a1 ] + [ 0 0 0 0 a6 a5 a4 ]

and so L0 is

Z4 = [a4 a3 + a6 a2 + a5 a1 + a4 a0 + a3 + a6 a6 + a2 + a5 a5 + a1 + a4 ]

The proposed multiplier is implemented in a parallel/serial architecture which
computes a multiplication in m clock cycles. One output bit of C is obtained in
each cycle by multiplying (inner product) the current row Zi by B, the current
row is obtained by right-shifting the previous row and filling the vacated position
on the left with ai. Algorithm 1 shows this process.

Algorithm 1

Input: A(α), B(α), Zn; A(α), B(α) ∈ GF (2m)
Output: C(α) = A(α)B(α); C(α) ∈ GF (2m)

S ← Zn

for i = 0 to m − 1
c(i+n) mod m ← S · B
S ← right-shift(S)
s0 ← ai+n

end for
return(C)

5 Experimental Results

This research is focused on accelerating finite field arithmetic using FPGAs
for efficient solution to the reverse engineering problem in a hardware/software
environment. Our target platform is a Cray XD1 system which includes six
FPGAs units tightly integrated to 12 2.2 GHz Opteron AMD processors through
a high bandwidth interconnection system. FPGA units are Xilinx Virtex II-Pro
xc2vp50-7.

We have done an initial test to determine the acceleration gained by using FP-
GAs versus a high performance processor. A performance evaluation of FPGA
and CPU implementation for the direct multiplier in GF (263) was made on the
Cray XD1 platform; the field size was chosen to fit the 64-bit word-length of the
target CPU architecture. A performance comparison between these multipliers
and our approach is presented in Table 1. Times are measured for stand alone
designs, in order to avoid the high overhead times arising from communication
between the FPGA and the processor. Notice that the direct multiplier imple-
mentation on CPU is faster than the FPGA version of this method, a fact that
is attributable to differences in clock speed: The clock rate for the Virtex-2P
FPGA is about one-tenth that of on Opteron processor. However, when imple-
mented on the same FPGA, our approach is about 65 % faster than the direct
multiplier method.
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Table 1. Multipliers comparison for the field GF (263) on Cray XD1: FPGA Virtex-2P
xc2vp50-7, CPU 2.2 GHz AMD-Opteron

Multiplier Time
Clock-period
(Frequency)

Our approach
0.62 µs

9.838 ns
on FPGA 101.6 MHz

Direct multiplier
1.02 µs

16.168 ns
on FPGA 61.9 MHz

Direct multiplier
0.78 µs

on CPU

In Table 2 we compare our approach with other efficient multipliers reported
in [3,4]. The field sizes used in this experiment are the same as those used in the
cited references, the only suitable benchmarks for comparisons that are known
to us. However, our approach can be implemented for larger finite fields. Finite
fields elements are represented as bit-arrays in our implementation. These arrays
are a part of the entire logic design, which uses a small number of slices. For
instance, the multiplier for GF (2239) uses 1.53 % of slices in the Cray XD1
FPGA (see Table 3). Therefore there are many slices available for implementing
larger finite field multipliers.

The times in Table 2 have been measured using FPGA synthesis results re-
ported by Xilinx tool XST (Xilinx Synthesize Technology) included in the pack-
age ISE Foundation 7.1. Our implementations are synthesized without area and
timing constraints.

Table 2. Multipliers comparison

Field Target FPGA Implementation
Time Space
(µs) (slices)

GF (2210)
Xilinx Virtex Reference [7] 12.30 343
xcv-300-6T This work 2.21 334

GF (2233)
Xilinx Reference [4] 2.58 not reported

xc2v-6000-4 This work 2.42 415

GF (2239)
Xilinx Virtex Reference [3] 3.10 359

xcv-300-6 This work 2.47 385

According to the given results, our implementation exhibits the best time
performance, whereas the area is not the most favorable for some cases. However
our main goal is to achieve very fast computation using reasonably the physical
devices.

Higher acceleration rates are obtained using the Cray XD1 FPGA (see Table 3).
According to our results, there are significant opportunities for speeding up re-
verse engineering for large genetic networks on the Cray XD1 using reasonably
the FPGA’s physical space, however the communication time between CPU and
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Table 3. Multipliers comparison on the Cray XD1 FPGA

Field
Time Space Space
(µs) (slices) Utilization

GF (2210) 1.85 305 1.29%

GF (2233) 2.02 369 1.56%

GF (2239) 2.04 363 1.53%

FPGA becomes an obstacle. The communication model that we have used is a
simple push-model in which the CPU pushes the input data to the FPGA’s reg-
isters, and reads the output data from a destination register on the FPGA. Our
experimental results indicate that this is a costly communication model, for exam-
ple the direct multiplier for GF (263) spent 2.77 µs for communications and 0.62
µs for computations. Other works such as [2] have reported similar comunication
problems with the Cray XD1.

6 Conclusions and Future Work

Finite field multiplication is the dominant operation in the interpolation phase of
reverse engineering genetic networks. Traditionally CPU-based implementations
of large finite field multiplication have implied challenging efforts in order to deal
with common limitations such as architecture word-size, and storage space. Our
approach overcomes these traditional obstacles and at the same time contributes
to improved performance, achieving better times than other efficient FPGAs
finite field multipliers.

Although our approach has shown to be efficient for the finite fields reported
in the previous section, it promises more efficient results for multipliers on larger
fields. In order to efficiently solve the reverse engineering problem for large
genetic networks, our FPGA implementation could be used as a co-processor
for accelerating a CPU-based interpolation algorithm, provided that we can re-
solve the problem of high communication costs. An alternative would be to shift
more of the computational burden to FPGAs by embedding our multiplier in an
FPGA-based interpolation algorithm.

Future work includes extending our implementation of multiplication to finite
fields generated by irreducible pentanomials. We also would like to extend the
field size in order to deal with genetic networks with m ≥ 500 genes. The multi-
point interpolation for solving reverse engineering problem for very large genetic
networks using high performance reconfigurable computing requires a judicious
partitioning of the problem between high performance CPUs and FPGAs. Here
the communication overhead is an important issue and we have to consider al-
ternative ways of communication in order to improve the overall performance.
A potential solution is to take advantage of FPGA Transfer Region of Memory
using the I/O subsystem developed by OSC [2].

Finally, we could extend our ideas for doing multiplication over finite fields
GF (2m) to doing the algebra of polynomials over GF (2m). This would enable
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us to carry out the whole interpolation algorithm needed for the reverse engi-
neering problem in FPGAs, thus allowing better optimization of the ration of
computation time to communication time.
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