
Review of Security Models Applied to

Distributed Data Access

Antonia Ghiselli2, Federico Stagni1, and Riccardo Zappi2

1 Istituto Nazionale di Fisica Nucleare sez. di Ferrara,
via Saragat 1 - 44100 Ferrara, Italy
{federico.stagni}@fe.infn.it

http://www.fe.infn.it
2 Istituto Nazionale di Fisica Nucleare CNAF,
viale Berti Pichat, 6/2 - 40127 Bologna, Italy

{antonia.ghiselli,riccardo.zappi}@cnaf.infn.it
http://www.cnaf.infn.it

Abstract. In this paper, we explore the technologies behind the security
models applied to distributed data access in a Grid environment. Our
goal is to study a security model allowing data integrity, confidentiality,
authentication and authorization for VO users. We split the process for
data access in three levels: Grid authentication, Grid authorization, local
enforcement. For each level, we introduce at least one possible techno-
logical solution. Finally, we show our vision of a SOA oriented security
framework.

This work is developed as part of the CoreGRID Network of Excel-
lence, for the Institute on Knowledge and Data Management.

Keywords: Grid, data management, security, authentication, authoriza-
tion, policy, acl, XACML, SAML.

Introduction

In this report, we will explore the technologies behind the security models applied
to distributed data access in a Grid environment. Our goal is to study a security
model allowing data integrity, confidentiality, authentication and authorization
for VO (Virtual Organizations) users [13]. Although the effort will be to create
a generic model, the work will be based on a Grid framework with the following
assumptions: Grid users are organized in VOs with existing tools to manage
memberships and credentials. In other words, we want to define policies for
resource usage on the basis of user credentials, and to enforce them on the basis
of Grid status.

The rest of this paper is organized as follows: in section 1 we introduce our
approach to security with some definitions. In section 2 we explain some gen-
eral requirements. In section 3 we describe the technologies to build a security
framework. In section 4 we introduce the technologies to build a Grid data access
framework.

W. Lehner et al. (Eds.): Euro-Par 2006 Workshops, LNCS 4375, pp. 34–48, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://www.fe.infn.it
http://www.cnaf.infn.it


Review of Security Models Applied to Distributed Data Access 35

1 Definitions

Initially, the Grid was referred to as Computational Grid, thinking as a way to
share computational facilities. However, much of the Grid jobs are data inten-
sive, and to stress this point, today we normally think of Grids in term of Data
Grids : most large jobs that require Grid services, especially in the scientific do-
main, involve the generation of large datasets, and their consuption [1]. There
is a necessity for the reservation and the scheduling of data repositories, and so
we need to express some policies to govern their access. Moreover, thousands of
people may want to use storage resources to share him/her data with a limited
set of other researchers, or maybe with no one but themself. The future stor-
age systems will contain critical user information for various applications and
purposes, like for example life science and financial ones.

Grids need an authorization framework to handle the users privacy necessities,
and their limits too. In other words, we want to control the access to the Grid
users’ data on the basis of some high controlled sharing rules.

1.1 Grid Data Management Systems

A distributed system is a collection of independent computers that appears to
its users as a single coherent system. Similarly, a distributed data access system
is a distributed data storage, with ubiquitous and transparent data access and
migration. A Grid Data Management System (GDMS) is a data access system
acting in a Grid environment. GDMS offer a common view of storage resources
distributed over several administrative domains. Therefore, they must allow the
smooth integration or removal of resources, without affecting the integrity of
neither the individual independent domains nor the system as a whole. Problems
behind the implementations of such a system are:

– processes communication: the way distributed processes exchange
informations.

– Naming: name resolution and localization.
– Synchronization, consistency and replication: the way data are synchronized

and the definition of policies for the consistency and the replication of data.
– Security: the way to gain security for data access.

1.2 Security

We define a security architecture as a set of features and services that tackles a
set of security requirements and can handle a set of cases [16]. Grid systems in
use today do not address security in a systematic way: just to make an example,
historically in Globus [17] an authenticated user is a good user. This emphasizes
the authentication aspect, but Grids need a strong authorization mechanism.
Our aim is to enable new Grid infrastructure developer to create more secure
systems, capable to attract new Grid users and applications. Security models
should define “who can do what, when and where”. A Grid middleware should



36 A. Ghiselli, F. Stagni, and R. Zappi

encompass a security framework, in which we can distinguish two virtual black
boxes: the authentication box and the authorization box:

– authentication deals with the verification of the identity of an entity within a
network. An implementation should provide an agnostic plug point for mul-
tiple authentication mechanisms, and the means for conveying the specific
mechanism used in any given authentication operation.

– Authorization deals with the verification of an action that an entity can
perform after authentication was performed successfully. The goal of an au-
thorization framework is to provide a light-weight, configurable, and easily
deployable policy-engine-chaining infrastructure that is agnostic to back-end
enforcers and evaluators, as well as the run-time container infrastructure and
the state model that hosts them. The framework allows for a combined and
flexible decision making process, taking into account information, assertions
and policies from a variety of authorities.

We can make a brief comparison between the high-level techniques besides au-
thentication and authorization. The first link in the Grid security chain is au-
thentication. Grid resources authenticate remote users using basically two ways:
the first uses a session key, and the second, which is the mostly used too, uses the
Public Key Interface (PKI). On the other hand, we need a Privilege Management
Infrastructure (PMI): a PMI is to authorization what a PKI is to authentication
[2]. Just to make an example, we can express some user’s attributes using the
X.509 Attribute Certificate (AC), which maintains a strong binding between a
user’s name and its attributes. Certification Authorities (CAs) digitally sign a
public key certificate; in a similar way, the entity that signs an AC is called
an Attribute Authority (AA), while the root of trust of the PMI is called the
Source of Authority (SOA), which may delegate its power to subordinate AAs.
Like Certificate Revocation List (CRL), an AA could issue an Attribute Certifi-
cate Revocation List (ACRL) to revoke privileges from an AC. Obviously, ACs
is just one of the possible solutions to join users and their attributes.

2 Requirements

Integration, interoperability and trust are the building blocks of the requirements
behind a Grid security infrastructure. In this section we give some brief and
general guidelines, but we want to point out that more specific requirements will
be glean in the proceeding of this paper.

– Confidentiality is the property that information doesn’t reach unauthorized
individuals, entities, or processes. It is achievable by a mechanism for ensur-
ing that only those entitled to see information or data can access them.

– Integrity is the assurance that information can only be accessed or modified
by those authorized to do so. Data integrity is a nontrivial problem especially
when storage hardware and networks are not perfect.



Review of Security Models Applied to Distributed Data Access 37

– Resilience is an important requirement as the Grid links and nodes are very
dynamic in nature and may change over the time. The GDMS security archi-
tecture should remain intact and should deliver the promised level of security
assurances even if its composition changes over the time. The resilience pro-
vides an abstraction layer to hide the architectural changes from the overall
security architecture.

– Data Lifecycle Management (DLM) is the process of managing data through-
out its lifecycle. GDMS should ensure that the data contents will be pro-
tected from malevolent entities.

– Fault Tolerance is a desirable feature especially when transfers of large data
files occur.

2.1 Data Types

In section 1, we’ve made a really brief history of the evolving of the concept of
Grid, from Computing Grids to Data Grids, and we mentioned the data types
involved in it. To understand all the security requirements, we have to think to
who is using Grid now, who is going to use it soon, and who wish to use it, but
can’t trust it for some security reason. At the present time, the majority of Grid
tools are growing behind some specific needs, mainly HEP1 experiments. These
applications produce and consume a considerably high amount of data with
heavy impact on the bandwith, but probably they don’t need a high security
system, because the main purpose of this activities is to be fast. In the future,
much more people is going to use Grids and peer-to-peer systems, not only with
the actual purposes. In the next generation file sharing, a user will want to give
access to his/her files only to a limited set of people. There’s the need for a high
control over who is authorized to view them. This means more protection levels,
but less performance too. What we want to stress here, is that every data type
needs different protection levels, and that a Grid security system must take care
of this principle. Different data types can determine the way we achieve data
integrity, confidentiality, authentication and authorization.

The next generation storage elements would be able to publish the Quality of
Protection (QoP) they can assure to the data they own. In this way, the QoP will
be decisive for the entire data storage system. Just to make an example, a user
should request the resource provider to not have read access to his/her data: this
is a non-trivial challenge, and obviously not all the storage elements will be able
to enforce this demand, because this is depending of the locally implemented
security system: it determines the QoP and the Service Level Agreement (SLA),
which defines how data is protected while in transit over the service. Security
negotiations should be used to establish secure sessions between the endpoints.
A security infrastructure featuring support for negotiations and establishment of
end-to-end and/or hop-to-hop security associations has broader applicability to
general networked environments like Grids. Security negotiations require some
brokering agent to mediate between the endpoints.

1 High Energy Physics.



38 A. Ghiselli, F. Stagni, and R. Zappi

3 Data Management Security Technologies

We can roughly divide the process to reach access to a Grid resource in 3 lev-
els: first of all there’s a Grid authentication process, then authorization on a
Grid-ID base, and finally local enforcement using the resource-specific security
framework. In figure 1 you can see the all-round security process.

Fig. 1. The security process

3.1 Authentication

Grid computing is, in its essence, about bridging organizational boundaries. In
order to do so, we can report here two commonly identified solutions: virtual
organizations [13] and federated trust.2 We are not going to explain the difference
between these two models, because they are quite theoretical and in practice
it is often hard to distinguish the boundaries between them. Grid users are
traditionally organized in VOs.

In a Grid environment the authentication model is normally based on the con-
cept of trusted third parties (TTPs): the first link in the authentication chain is the
certification authorities (CAs), which in practice are trust anchors for VOs. This
model makes use of the Public Key Infrastructure (PKI) technology: CAs issue
X.509 certificates, where essentially a unique identity name and the public key of
an entity are bound through the digital signature of that CA. It is possible that
some GDMS may require further security controls, but these issues are out of the
scope of a Grid authentication service, because they suppose a specific contract
between the user and the resource, outside the Grid security infrastructure.

2 For more information, see http://www.projectliberty.org/



Review of Security Models Applied to Distributed Data Access 39

An authentication service must define distinctly the Grid identity of any user:
this mean that every user inside a Grid is given a background, a description.
With description we mean not only user’s VOs, but his/her role inside every VO
he is member of. In the proceeding of this paper we will refer to this kind of
enhanced authentication as of “Grid authentication”.

Role Based Access Control. Access Control technologies has evolved from
two fundamental types: Discretionary Access Control (DAC), and Mandatory
Access Control (MAC). DAC permits the granting and revoking of access control
privileges to be left to the discretion of end users, typically the resource owner.
MAC is a way of restricting access to objects based on the sensitivity of the
information contained in the objects. These policies aren’t well suited for VOs
authorization requirements, because we need to take access decisions on the basis
of the roles that individual users have as part of an (Virtual) Organization. In the
Role Based Access Control (RBAC) [5] user access rights are defined by roles
in the form of user attributes, letting a separated management access control
policy defining what roles are allowed to do what actions on resources. The roles
represent typically organizational roles such as secretary, manager, employee,
etc. In the authorization policy, they are given a set of permissions, and each
user is then assigned to some or more roles. When accessing a target, a user
establishes a session and, during it, he can request the activation of some of
the roles he is authorized to play. After that, the user will be represented by
his/her roles, and so the authorization framework will deal with roles rather
users themselves.

We present here two existing estensions. The first is the hierarchical RBAC
model, which is just a more sophisticated RBAC type, in which the senior roles
inherit the privileges of the more junior roles. For example, there might be the
following hierarchy:

employee ≤ programmer ≤ manager ≤ director

Giving the role “programmer” some permissions means that managers and di-
rectors will inherit them. The hierarchical extension to RBAC fits very well the
Grid VO requirements, and so we assume that the Grid end systems, like the
storage ones, will be able to enforce the capabilities applied to VO roles in a
hierarchical fashion.

The second RBAC extension is the temporal RBAC model (TRBAC) [6],
which supports periodic role enabling and disabling, and temporal dependencies
among such actions. Consider for example the case of a part-time staff in a
company: what we want to do, is to give him authorization only on working
days. With TRBAC, we can assign the part-time staff a role, and enable it
only during a temporal interval. The role enabling/disabling depends on some
requirements, that can be used to constrain the set of roles that a particular user
can activate at a given time. Enabling/disabling actions can be given a priority
to help in solving conflicts.

An RBAC system will become a must to manage the future Grid authoriza-
tions. Without it, the wide mutable nature of VO-like systems would become a



40 A. Ghiselli, F. Stagni, and R. Zappi

nightmare for all systems administrators, who should take care of granting ev-
ery single user with his/her capabilities. RBAC simplify the VO’s administrator
life too, because they have just to assign every user with a somewhat restricted
set of roles. In this way the user’s identity is managed at VO-level, while the
end-systems deal with roles only. We can have the right granularity level with
the less possible effort.

Anyway, this isn’t perfect yet: assume that a user, like

User = JohnDoe/V O = NeV O/Roles = ExRole, NeRole

is trying to do something nasty, for example he is using his ExRole capabilities
to store a malware in his role shared space. If the system (or the administrator)
recognizes it, it should be possible for him to boot that user from his resources
without affecting his entire VO/role. There are two possibilities:

– if the end-system doesn’t deal with the users authentication names, the only
possibility is to do a report to the NeVO VO, asking it to reject that user: to
do this, there is first the need to recognize the user, and this isn’t practical
nor fast.

– The second and best option is to let the end-systems to know the effective
user names, although the policy end-systems should only use the VO/roles
associations to determine the capabilities. In other words, the end-systems
authorization frameworks should use the effective user names only for in-
depth security reasons.

State of the Art: VOMS. In 3.1 we have stated that, from our point of view,
a “Grid authentication” should give a user a complete background and identi-
fication. Actually, a framework that can be used to reach this objective is the
Virtual Organization Membership Service [8], which is an accepted authentica-
tion and authorization framework into existing Grid projects, like for example
EGEE3 and OSG.4

VOMS is an Attribute Authority (AA). Users can be organized in a hierar-
chical structure with groups and subgroups, thus implementing a hierarchical
RBAC system. To allow for more flexibility, users are also characterized by two
other sets of credentials: roles and capabilities. Roles are used to specify the users’
properties as members of some groups. The main difference between groups and
roles is that a user can choose which of his roles are to be listed in his credentials,
while all his groups are always specified. Capabilities are expressed as free-form
strings of characters, and can be used to describe the user’s special character-
istics. VOMS is traditionally presented as an authorization framework, but in
this paper we introduced it as an authentication one. The reason besides this
choice is that VOMS is used to define the “Grid user identity” (it can provide a
“Grid authentication”), which is not a grant for authorization on any end sys-
tem: the enforcement of these VO-managed attributes at local level must reflect

3 http://public.eu-egee.org/
4 http://www.openscienceGrid.org/



Review of Security Models Applied to Distributed Data Access 41

the agreements between the VO and the Resource Provider (RP). However it
should be possible for an RP to override the permissions granted by a VO, for
example banning unwanted users.

3.2 Authorization

Authentication frameworks and Attribute Authorities (AA) can provide a coarse-
grained granularity to identify the users’ roles and background in a Grid. An
authorization system can make use of these information for fine-grained access
decisions, using a policy authorization service.

Evaluating the Policies. In this section we will explore the policy interactions
and their relations with the Privilege Management Infrastructure (PMI) intro-
duced in section 1.2. First of all, we have to remind some of the requirements
for a policy authorization service:

– a future authorization service will be based on a recognized policy expression
language and exchange format, and will use a Request/Response protocol to
allow intra-site and multiple site scalability. This implies the investigation
for the use of “standard” format languages and protocols.

– It will use the principle of ownership in respect to the policy and decision
making precedence. This means that the final decision will always reside with
the resource owner. It should be able to explicitly accept or reject policies
from other domains, and to distribute them.

– A future authorization service will separate authorization infrastructure from
the policy itself, providing only secure environment and mechanism for site-
authority controlled policy enforcement. The policy evaluation engine will be
implemented as a separate service that will be able to call external separate
decision points.

We can give a more formal specification for this requirements, using the following
definitions:

Policy: The combination of rules and services, where rules define the criteria
for resource access and usage.

Policy Decision Point (PDP): The point where decisions about the policies
are made. It evaluates applicable policies and renders authorization decisions. In
a loosely coupled distributed environment like Grid, a local to a resource (des-
ignated) PDP can call other PDPs requesting for evaluating policy components
related to their domain of authority to provide a final decision.

Policy Enforcement Point (PEP): The point where the policy decisions
are actually enforced. This is the system entity that performs access control,
by making decision requests and enforcing authorization decisions. From a data
management perspective, this means that every storage resource should have a
local PEP to enforce the policy decisions.



42 A. Ghiselli, F. Stagni, and R. Zappi

Policy Authority Point (PAP): The point that owns the authority over the
PDPs. We should remind that sometimes PAP indicates the Policy Administra-
tion Point, which is the system entity that creates and administer the policies.

Policy Information Point (PIP): The system entity that act as a source of
attribute values.

The PDP-PEP interaction is the key for a good policy distribution. There are
two possible basic implementations, the pull model and the push model. The
pull model is the more used one, in which a supplicant first ask for the resource
PEP to authorize himself, and then the PEP ask to an external PDP for the final
decision. We can see a brief example to clarify the way these policy points interact
each other. To allow user access on a storage resource, for example a SRM[1]
implementation, the storage agent requests via his own PEP an authorization
decision from a designated PDP, that evaluates the authorization request against
the policy defined for the request, resource and user attributes/roles. During the
policy evaluation, the PDP may also request specific user attributes from a Policy
Information Point (PIP), or asking an authentication service for user identity
confirmation. It should be noted that these controls are a burden for a high
percentage of the actual Grid data, but should be a must for some of the future
Grid storage uses: data owners and the system administrators should be able to
choose how much security controls will be needed. When the PDP identifies the
applicable policy instance, it collects the required context information, evaluates
the request against the policy, and communicate the decision back to the PEP.
After receiving a PDP decision, the PEP conveys the service request to the
resource, that may also have a locally determined policy implying additional
restrictions on resource usage and/or access. All these communications can be
secured using cryptographic technologies like SSL/TLS or MLS.

In essence, when making an authorization decision, we should be able to
combine information from a number of different sources. In other words, policies
should be defined at different levels, like VO, site, or other stakeholders. It should
be noted that every level should have the permission to define different kind of
policies, and that sometimes they could overlap each other. For example, a VO-
level PDP could force some of his self-managed group/role to not exceed a disk
quota of 100 Mbytes, but a resource-level PDP should impose a more restrictive
permission. We think that every controversial decision should be resolved in favor
of the local decision point, which could be the PEP closest match. This PDP,
called “Master PDP”, composes the final decision, optionally contacting other
PDPs. In figure 2, we show a possible interaction flow between Policy Points.

The solution presented above has known performance problems: requesting a
remote PDP decision involves the use of time and resource hungry components,
such as building a remote SSL/TLS connection, message parsing, possible re-
mote policy request and PDP/AuthZ service invocation [11]. For this reasons,
there’s the need for investigation over the PDP-network topology, in order to
avoid useless communications. This trade-off can be resolved using distributed
policy caching, combining pull and push operation models, using short-validity
authorization tickets, or implementing a policy guessing mechanism. In addition,



Review of Security Models Applied to Distributed Data Access 43

Fig. 2. Interactions between Policy Points in an all-round authorization process. Not
all of the shown communication are mandatory.

everyone of the listed services should be a bottleneck for the entire authorization
framework; in this situation, consider for example the devastating effects of a
Denial Of Service (DOS) attack to anyone of the listed policy points.

Using a standard policy language. Nowadays, the language for writing ac-
cess control polices that best fit the listed requirements is the eXtensible Access
Control Markup Language (XACML) [20], which is an XML based technology
developed and standardized by Organization for the Advancement of Structured
Information Standards (OASIS).5 It should be considered a “de facto” standard
for expressing policies. XACML includes an access control language, a process-
ing environment and a request-and-response protocol that let developers write
policies that determine what users can access on a network or over the Web.
XACML can also be used to connect disparate access control policy engines.
Every policy is defined for the target triad “Subject-Resource-Action”. The pro-
cessing environment assumes interactions between the policy points described in
the previous section.

XACML has many benefits over other access control policy languages:

– One standard access control policy language can replace dozens of application-
specific languages.

5 http://www.oasis-open.org/



44 A. Ghiselli, F. Stagni, and R. Zappi

– Administrators save time and money because they don’t need to rewrite
their policies in many different languages.

– Developers save time and money because they don’t have to invent new
policy languages and write code to support them. They can reuse existing
code.

– Good tools for writing and managing XACML policies will be developed,
since they can be used with many applications.

– XACML is flexible enough to accommodate most access control policy needs
and extensible so that new requirements can be supported.

– One XACML policy can cover many resources. This helps avoid inconsistent
policies on different resources.

– XACML allows one policy to refer to another. This is important for large
organizations. For instance, a site-specific policy may refer to a company-
wide policy and a country-specific policy.

– It provides facilities to support the core and hierarchical RBAC approach.

Anyway, XACML doesn’t define protocols or transport mechanisms to protect
the message security with authenticity, integrity and confidentiality. Full imple-
mentation of this model depends on use of other standards, for example the
OASIS Security Assertion Markup Language (SAML) [19] [21]. SAML is an
XML standard that supports web single sign on, attribute-based authorization
and securing web services. There are threes basic SAML components: assertions,
protocol, and binding. Assertions can be one of three types: authentication, at-
tribute, and authorization. Authentication assertion validates the identity of the
user. The attribute assertion contains specific information about the user, while
the authorization assertion identifies what the user is authorized to do. The
protocol defines how SAML request and receives assertions. There are several
available binding for SAML, that define how message exchanges are mapped to
SOAP, HTTP, SMTP and FTP among others.

State of the Art: Gridmap File, CAS, G-PBox. One of the first attempt to
provide authorization in Grid was in the form of the Globus Gridmap File. This
file was simply a list of the authorized user, identified by a distinguished name,
and the equivalent local user account name they are to be mapped into. This
solution is infeasible for the next generation Grids, because the resource owner
can’t set a policy for who is allowed to do what, and maximize the workload of
the resource administrator who must keep track of all the authorized users. This
system isn’t scalable nor flexible [3].

The Globus team developed the Community Authorization Service (CAS) [9].
CAS allows for a separation of concerns between site policies and VO policies. It
allows the resource owner to grant access to a portion of his/her resource to a VO.
The CAS server acts as a trusted intermediary between VO users and resources:
the users first contact the CAS asking for a permission to use a resource, the
CAS server consults its policy, and grants or deny the access. CAS does not
issue Attribute Certificate’s (AC), but whole new proxy certificates, and this
isn’t a good solutions, because a security system should use standards. Another



Review of Security Models Applied to Distributed Data Access 45

problem is that CAS completely remove control from site administrators, and
that it requires a VO to know everything about the configuration of its farms.

One of the most interesting authorization framework is the Grid Policy Box
(G-PBox),[7] which can be used for the representation and management of poli-
cies for Grid infrastructures. It’s based upon the composition of modular objects,
Policy Boxes (PBox), which are policy repositories hierarchically-distributed to
independent administrative-based layers, each containing only policies regarding
itself. In G-PBox, there are PBoxes at VO, domain, farm and site level, with the
possibility to have sub-farm levels. Each and every client that wants to be policy-
aware, has a configured PBox that will be contacted whenever a policy decision
is required. From a theoretical point of view, we can think at every PBox as
being a Policy Authority Point containing a Policy Decision Point, while every
resource should have a local Policy Enforcement Point. In G-PBox, the policies
are defined using XACML.

3.3 Local Security Enforcement

There are basically two ways to enforce access control over data: the first is to
allow Grid access only, the second is to allow local access in parallel to Grid
access.

In the Grid enforced security model, users can access their files only via Grid
tools and services. As stated in [14], “the easiest way of implementing this is
to assign all files in a storage element to a service userid, for example gstorage,
and to add a component, which runs under this identity and interacts with the
user”: the users should go through the Grid middleware services to gain access to
their files. With this type of service, we can easily have a standard authorization
service for all the Grid resources, with uniform security semantics, that can take
authorization decisions like a centralized authorization service. This model gives
support for resources with weak local authorization mechanism.

In the Site enforced security model, if we want to allow local access in parallel
to Grid access, we have to implement a mapping from Grid identities to local
userids. If a Grid service has to act on the user’s behalf, then it needs the user’s
credential to be delegated. With this model, the site storage administrator has
full control over his resources, and he will be able to use the local authorization
mechanism he prefers.

The choice from a Grid user’s point of view should be the Grid security model,
because it integrates the site peculiarities into a uniform security model, where
every Grid storage site looks the same. Although this last point could be reached
also in the site enforced security model using an additional layer for the stan-
dardization, we have to remind that an external security service will let site
administrators to administer their own local security, in a site technology inde-
pendent fashion. The real problem besides this is that the Grid security model is
not acceptable by some sites due to their local policies, and in addition existing
security infrastructure can’t be replaced overnight. Each domain typically has
its own authentication and authorization infrastructure that is reputed secure
and reliable, and site administrators won’t replace it in favor of a single new



46 A. Ghiselli, F. Stagni, and R. Zappi

model or mechanism. From the beginning of the Grid computing one of the fun-
damental requirements was to let every site to use his own security mechanism,
and this implies the use of a site enforced security model. In the Globus Toolkit
[17], gateways are used to translate between the common GSI infrastructure and
local site mechanisms, for example Kerberos Identities or local UNIX users and
groups. In LCMAPS [18], we can map Grid users to local ones, and primary and
secondary local groups, which are predefined by the resource owner: LCMAPS
is used to delegate some global Grid credentials to the local site security system,
in this case the UNIX uid/gid match, with the possibility to add ACLs if the
file system (and the kernel) can handle them.

Access Control List. Access Control List (ACL) is a means of determining
the appropriate access rights to a given object, depending on certain aspects of
the process that is making the request, principally the process’s user identity.
This is a deliberately general definition, because ACLs have been implemented
in many ways in different environments.

The POSIX.1e ACLs [12] are an estension of the POSIX.1 permission model,
the standard 9-bit access permissions of the UNIX systems. The extended ACLs
support more fine-grained and complex permission scenarios, that are difficult
or impossible to implement with the minimal model. Unfortunately, the work
behind ACLs never became a POSIX formal standard, and at the time of writing
there’s a wild mix of implementations with subtle differences and incompatibil-
ities. We aren’t going to explain how they work, we just say that they can be
applied to files and directories, increasing flexibility and security.

For our purposes, the worst problems come when we have to preserve per-
missions in a distributed system: it’s very difficult to implement a system able
to preserve as much information as possible. There are a number of complica-
tions that make the operation prone to implementation errors, especially when
we have different kernels and file systems. The semantics of ACLs differ widely
among UNIX systems alone, not to speak of non-UNIX ones. A full ACL support
over any kind of distributed system requires a mechanism so that all access de-
cisions are performed in a way that honors ACLs: this means that every remote
site should have a system-ACL support. Using only fs-ACLs will will lead to
interoperability problems, although the good part is that they are automatically
enforced on the end systems. In a Grid environment, there’s the need to translate
the resource-dependent ACLs in a common format.

In a Grid, we need to map a global security mechanism into a local one, which
is independent from the “Grid security infrastructure”. This brief discussion on
ACL wants to remark the fact that every Grid resource should expose its security
capabilities because not all of them are able to enforce the security and privacy
requirement of some data types, due to the lack of security potentiality.

A PEP implementation can be used to map a Grid-ID in a local account, using
File System ACL to enforce the Grid Authorization response. For our purposes,
an example of an SRM implementation that can act as a PEP is StoRM [4].



Review of Security Models Applied to Distributed Data Access 47

4 Building a Grid Data Access Framework

Grid middleware should define a Grid security framework, encompassing both
authentication and authorization in a standard way, and interfacing with local
storage elements. Ensuring integrity, confidentiality and interoperability between
heterogeneous systems can be achieved using a Web Service Architecture [22],
which is an incarnation of a Service Oriented Architecture (SOA) in the context
of the World Wide Web. SOA is the leading architectural style for building the
current and future generation Grid technologies. Protocols based on Web Ser-
vices provide important benefits for Grids, particularly in avoiding the tendency
that proprietary binary protocols frequently become closely tied to particular
implementations or languages. As stated in [10], “the Grid authorization model
should be built on top of upcoming standards in the area of authorization, e.g.
XACML, SAML, and WS-Authorization”.

We think that a Grid authentication model should include an attribute au-
thority that issues attribute assertions, and that a Grid authorization model
should be built over a standard policy language. Different Policy Points should
make decisions based on initiator identity and attributes, and so what is needed
is a standard attribute language, that allow for interoperability between AA’s
and and PDPs. In addition, we have to remember that there may be sev-
eral authorities that assert attributes for users, including other users. In sec-
tion 3.2 we have already outlined the Policy Points actions, using the pull and
push models. We should extend these variants thinking at the interactions be-
tween an authorization mechanism and a AA. From a technological point of
view, a number of methods for requesting and encoding attributes already ex-
ist: for example X.509 Attribute Certificates[15], SAML[19] Attribute Asser-
tions and XACML[20] Attributes. Since the emerging of the use of XACML
for policy expression and the capabilities of SAML for attribute encoding, we
should be able to combine this upcoming standards building a Grid Data Access
Framework.

5 Conclusions

In the past sections we explored the technologies behind security in a Grid en-
vironment, focusing on the Grid Data Management Systems security aspects.
With this paper, we didn’t want to propose a definite solution, instead we de-
fined some of the requirements and boundaries that we’ll guide our future works
in this field. In the following months, we will outline a Grid-based RBAC model
for accessing distributed data, and we’ll follow the implementation of a multipol-
icy authorization framework, based on XACML and SAML specifications. We’ll
define policies applicable to GDMS, their distribution and consuption, and inter-
actions with monitoring and accounting services. At the same time we’ll study
methods to increase the performance of the whole authorization system.



48 A. Ghiselli, F. Stagni, and R. Zappi

References

1. J. Gu A. Shoshani, A. Sim. Storage resource manager: Essential components for
the grid. 2003.

2. D. Chadwick. An x.509 role-base privilege management infrastructure. Technical
report, 2002.

3. D. Chadwick. Authorization in grid computing. Information Security Technical
Report, (10):33–40, 2005.

4. E. Corso, S. Cozzini, F. Donno, A. Ghiselli, L. Magnoni, M. Mazzucato, R. Murri,
P.P. Ricci, H. Stockinger, A. Terpin, V. Vagnoni, and R. Zappi. Storm, an srm
Implementation for lhc Analysis Farms, Computing in High Energy Physics. In
In Proceedings of the International Conference on Computing in High Energy and
Nuclear Physics (CHEP2006), Mumbai, India, Feb 2006.

5. S. Gavrila D.R. Kuhn R. Chandramouli D. Ferraiolo, R. Sandhu. Proposed nist
standard for role-based access control. ACM Transactions on Information and
System Security (TISSEC), (3):224–274, 2001.

6. E. Ferrari E. Bertino, P. A. Bonatti. Trbac: A temporal role-based access control
model. ACM Transactions on Information and System Security (TISSEC), (4):
191 – 233, 2001.

7. A. Caltroni et al. G-Pbox: a Policy Framework for Grid Environments. INFN
Grid-it.

8. Alfieri et al. Voms, an authorization system for virtual organizations. In In pro-
ceedings of 1st European Across Grid Conference.

9. L. Pearlman et al. The community authorization service: Status and future. In In
proceedings at CHEP03, March 24-28 2003, La Jolla, California.

10. Nagaratman et al. Security architecture for open grid services. memo GWD-I,
GGF OGSA Security Workgroup, 2002m revised 2003.

11. Y. Demchenko et al. Job-centric Security model for Open Collaborative Environ-
ment, pages 69–77. IEEE Computer Society, 2005.

12. A. Grunbacher. Posix access control lists on linux. In Submitted for publication at
the USENIX ATC, San Antonio, Texas, June 2003.

13. S. Tuecke I. Foster, C. Kesselman. The anatomy of the grid: Enabling scalable
virtual organizations. International J. Supercomputer Applications, (15(3)), 2001.

14. A. Frohner P. Kunszt. glite data management security model disussion, 2005.
15. R. Housley S. Farrel. Rfc3281: An internet attribute certificate profile for autho-

rization. Technical report, 2002.
16. EGEE security JRA3. Global security architecture. 2004.
17. The Globus security team. Gt 4.0 security. http://www.globus.org/toolkit/docs/

4.0/security/, 2005.
18. M. Steenbakkers. Guide to lcmaps version 0.0.23. http://www.dutchGrid.nl/

DataGrid/wp4/lcmaps/edg-lcmaps gcc3 2 2-0.0.23/, 2003.
19. OASIS SAML TC. Oasis security assertion markup language (saml) tc.

http://www.oasis-open.org/committees/tc home.php?wg abbrev=security, 2005.
20. OASIS XACML TC. Oasis extensible access control markup language (xacml) tc.

http://www.oasis-open.org/committees/tc home.php?wg abbrev=xacml#
XACML20, 2005.

21. OASIS XACML TC. Saml 2.0 profile of xacml v2.0. http://docs.oasis-open.org/
xacml/2.0/access control-xacml-2.0-saml-profile-spec-os.pdf, 2005.

22. W3C WG. Web services architecture. http://www.w3.org/TR/ws-arch/, 2004.


	Introduction
	Definitions
	Grid Data Management Systems
	Security

	Requirements
	Data Types

	Data Management Security Technologies
	Authentication
	Authorization
	Local Security Enforcement

	Building a Grid Data Access Framework
	Conclusions

