UC Irvine
UC Irvine Previously Published Works

Title
Server-Side Parallel Data Reduction and Analysis

Permalink
https://escholarship.org/uc/item/06569528

ISBN
9783540723592

Authors

Wang, Daniel L
Zender, Charles S
Jenks, Stephen F

Publication Date
2007

DOI
10.1007/978-3-540-72360-8_67

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California

https://escholarship.org/uc/item/06569528
https://escholarship.org
http://www.cdlib.org/

Server-Side Parallel Data Reduction and
Analysis

Daniel L. Wang, Charles S. Zender, and Stephen F. Jenks

University of California, Irvine, Irvine, CA 92697
{wangd,zender,sjenks}Quci.edu

Abstract. Geoscience analysis is currently limited by cumbersome ac-
cess and manipulation of large datasets from remote sources. Due to their
data-heavy and compute-light nature, these analysis workloads represent
a class of applications unsuited to a computational grid optimized for
compute-intensive applications. We present the Script Workflow Analy-
sis for MultiProcessing (SWAMP) system, which relocates data-intensive
workflows from scientists’ workstations to the hosting datacenters in or-
der to reduce data transfer and exploit locality. Our colocation of compu-
tation and data leverages the typically reductive characteristics of these
workflows, allowing SWAMP to complete workflows in a fraction of the
time and with much less data transfer. We describe SWAMP’s imple-
mentation and interface, which is designed to leverage scientists’ exist-
ing script-based workflows. Tests with a production geoscience workflow
show drastic improvements not only in overall execution time, but in
computation time as well. SWAMP’s workflow analysis capability al-
lows it to detect dependencies, optimize I/O, and dynamically parallelize
execution. Benchmarks quantify the drastic reduction in transfer time,
computation time, and end-to-end execution time.

1 Introduction

Despite the frenetic pace of technology advancement towards faster, better, and
cheaper hardware, terascale data reduction and analysis remain elusive for most.
Disk technology advances now enable scientists to store such data volumes locally,
but long-haul network bandwidth considerations all but prohibit frequent teras-
cale transfers. Bell et al. have noted that downloading data for computation is
worthwhile only if the analysis involves more than 100,000 CPU cycles per byte of
data, meaning that a 1GB dataset is only worth downloading if analysis requires
100 teracycles, or nearly 14 hours on a 2GHz CPU [I]. A typical case of evaluating
global temperature change in 10 years requires averaging 8GB down to 330KB,
and takes just 11 minutes to compute on a modern workstation, after spending
over half an hour to download the input data over a speedy 30Mbits/s link. In data-
intensive scientific analysis, data volume rather than CPU speed drives through-
put, pointing to a need for a system that colocates computation with data.

Our Script Workflow Analysis for Multi-Processing (SWAMP) system pro-
vides a facility for colocating comput ation with data sources, leveraging shell

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 744-1750] 2007.
© Springer-Verlag Berlin Heidelberg 2007

Server-Side Parallel Data Reduction and Analysis 745

script-based analysis methods to specify details through an interface piggy-
backed over the Data Access Protocol (DAP) protocol [2]. Scripts of netCDF Op-
erator (NCO) [3] commands are sent through an interface extended from DAP’s
subsetting facility and processed by a server-side execution engine. Resultant
datasets may be retrieved in the same DAP request or deferred for later retrieval.
The SWAMP execution engine additionally parses scripts for data-dependencies
and exploits parallelism opportunities from the extracted workflow. By meld-
ing a computation service with a data hosting service, SWAMP eliminates data
movement inefficiencies that are not addressed in current frameworks, which
treat high data volume and high computational intensity as separate problems.

2 Background

The Grid computing field continues to grow rapidly in both hardware and soft-
ware infrastructure. Computational grids offer highly parallel and distributed
heterogeneous computing resources bound together by open standards, imple-
mented by middleware such as the Globus Toolkit [4]. These grids are able to
flexibly allocate resources and appropriately schedule generic applications, but
are targeted towards large, compute-limited applications, such as grand chal-
lenges [5l6] where input data locality is not a primary scheduling concern. The
Globus toolkit for grid systems allows users to define input and output files to
be staged to and from compute nodes [7], but, as a generic system, does not
detect when data movement costs exceed computational costs.

The Pegasus framework [R[9/T0] leverages grid technology for complex data-
dependent scientific workflows. Scientists use tools to specify workflows as di-
rected acyclic task graphs containing data dependencies. Pegasus implements ad-
vanced resource allocation and locality-aware scheduling, but does not integrate
with data services or apply automatic dependence extraction. Its locality-aware
scheduling makes it worth considering for SWAMP backend processing.

Data grids focus on providing legible accessibility to terascale and petascale
datasets with computational service limited to simple subsetting, if available.
The Open-source Project for a Network Data Access Protocol (OPeNDAP)
server serves a significant fraction of available geoscience data [2], and is the
data service with which SWAMP integrates. The Earth System Grid II (ESG)
project provides data via a later version of OPeNDAP (Hyrax), and is in the
process of exploring the implementation of filtering servers that permit data to
be processed and reduced closer to its point of residence [I1]. We are exploring
integration of SWAMP with ESG II data services. Other systems such as [12]
[13] [4] exist to process or serve data in the geosciences data, but SWAMP
differs from these projects in its shell-script interface and its focus on a class of
application workflows that are data-intensive and compute-light.

3 Overview of SWAMP

The goal of the SWAMP system is to bring casual terascale computing to the
average scientist. “Casual” implies that the system’s interface must encourage

746 D.L. Wang, C.S. Zender, and S.F. Jenks

everyday usage, while “terascale” implies that the system’s design must sup-
port terabyte data volumes. SWAMP is designed to support scientists’ everyday
shell scripts and supports high data volumes by shifting computation to data
sources, trading expensive long-haul WAN bandwidth for relatively cheap LAN
bandwidth. Computation efficiency is further enhanced by detecting and exploit-
ing operator parallelization and I/O optimization opportunities in the scripted
workflows. SWAMP differs from existing systems in its focus on a shell-script-
based interface, aiming to derive data dependencies automatically with as little
help from the scientist as possible. SWAMP also differs in its focus on data-
intensive, compute-light workflows, targeting a class of data-heavy workflows
where I/O, rather than CPU considerations dominate the decision to distribute
computation.

3.1 Shell-Script Interface

The netCDF Operators (NCO) [I5] are popular in the geoscience community
for their ability to process gridded data at the granularity of files or sets of
files, rather than single variables. This coarse granularity is crucial for practical
analysis of the high volumes of data commonly resulting from satellite/surface
measurements or Earth simulation runs. Because of their efficiency and ease at
this scale, scientists commonly use compositions of these operators to describe
their data analysis in shell scripts. SWAMP is unique in its ability to automati-
cally parallelize shell-script execution through a custom parser that understands
NCO command-line options and parameters. Special tags to flag intermediate
(temporary) and output filenames are the only modifications needed. The result-
ing syntax, a subset of Bourne shell syntax, becomes a domain-specific language
whose primitives are application binaries operating on files in a filesystem instead
of variables in memory.

Fig. 1. SWAMP operation

Server-Side Parallel Data Reduction and Analysis ey

3.2 Parallel Execution Engine

SWAMP scripts are processed on an execution engine implemented as an OPeN-
DAP data handler. This execution engine parses the user script for basic cor-
rectness and dataflow information, and manages execution of the script com-
mands, optionally detecting and exploiting parallelism where available. File-
names are remapped to server-configured paths, and commands involving re-
mote files are split into fetch and execute commands, allowing download to
be overlapped with execution. Figure [I] summarizes parsing and execution in
SWAMP.

Experience has shown that real scientific workflow scripts exhibit significant
script-line-level parallelism. To exploit this, SWAMP builds a dependency tree
at parse time. Initially, the only commands ready to execute are the tree roots,
but as commands finish, dependent commands which have no unfinished parents
become ready as well. After parsing, SWAMP forks off worker processes to begin
parallel script execution. Workers cooperate in a peer model, communicating and
preventing duplicate work by updating execution state in a shared relational
database, currently SQLite. Thus, we can satisfy n-wide execution as long as
n commands are ready to execute. SWAMP’s SQLite database is stored in a
standard Linux tmpfs RAM-based filesystem. Originally, the database was stored
on standard disk, but performance suffered greatly due to I/O contention in
concurrent execution modes.

4 Results

4.1 Test Setup

We tested our system with a script that resamples Community Atmospheric
Model simulation data into time-steps that can be better compared against ob-
served NASA Quick Scatterometer (QuikSCAT) data [16]. In this script, ten
years of data at 20-minute timesteps are masked for their surface wind speed
values at 6:00AM and 6:00PM, the local times from the QuikSCAT satellite
passes. The script contains over 14,000 NCO command-lines for masking, aver-
aging, concatenating, and editing, which produce 228MB of resultant data from
8230MB of input data, and generate 26GB of temporary intermediate files in
the process.

We tested our system on a dual Opteron 270 with 16GB of memory with dual
500GB SATA drives in RAID 1, running CentOS 4.3 Linux. Figure Plsummarizes
the test results. Transfer times listed are estimated assuming 3MBytes /s (3%220)
bandwidth, based on NPAD pathdiag [I7] measurement of 30Mbits/s band-
width between UCI and the National Center for Atmospheric Research(NCAR).
In our example, a scientist can avoid downloading nearly 8 GB, obtaining just
228MB of output rather than the entire input dataset and saving 46 minutes
of transfer time. Our baseline case shows the execution time of the original
shell script and the time to download the input data, and takes 99 minutes
overall.

748 D.L. Wang, C.S. Zender, and S.F. Jenks

4.2 Performance Gain

Test results are summarized in Figure 21 Figureshows that SWAMP’s over-
head over baseline is slight, with parse and script analysis increasing computa-
tional time by 14% (1 worker case, no opt), but more than compensated when I/O
optimization is enabled. Figure shows the domination of transfer time sav-
ings, along with the parallezation benefit that is only through SWAMP’s unique
script dependency extraction. Parallelization easily saturates the test system’s
four CPU cores, bringing overall time from 99 minutes without SWAMP to 16
minutes with SWAMP configured for four workers, giving a 6x performance gain.

SWAMP Performance SWAMP Parallelization
100
¥ Il Compute
. 80 [Transfer
gl) L
2
=
g
g
g @ no opt
2 1 ¥ tmp in RAM
B ideal
0 ‘ ‘ ‘ i ‘ ‘ ‘ “
Non- Serial 2 4 8 0 4 8
SWAMP workers workers workers
workers
(a) Overall I/O-optimized performance (b) Parallelization speedup

Fig. 2. SWAMP performance

4.3 I/0O Optimization

In Figure we compare the performance of SWAMP with varying numbers
of worker processes and toggling intermediate file optimization. Heavy I/O con-
tention was obvious in early testing, leading to our development of a mechanism
for explicitly storing intermediate files in a tmpfs (ramdisk-backed) filesystem
rather than a disk-backed filesystem. Referring to Figure we see that the
performance degradation with a disk-backed filesystem at 8 workers is signifi-
cant (~24% relative to 4 workers), but eliminated by our I/O optimization. With
this simple optimization, we see SWAMP’s performance closely tracking an ideal
speedup curve.

4.4 Summary

Our system targets scientists with compute capacity or network connectivity less
than what a data center offers, which we believe should include most scientists.
Data centers should benefit as well from reduced external network usage, which is
often more costly than computational capacity. Our tests quantify the significant
savings in bandwidth usage and the corresponding transfer time due to the
relocation of computation off the desktop. Our tests also show the potential
performance increase which is enabled by simple analysis of scripts.

Server-Side Parallel Data Reduction and Analysis 749
5 Conclusion

A server-side data reduction and analysis system saves scientists time and band-
width, enabling them to exploit potentially greater computing resources with
minimal additional effort. We have leveraged existing script-based methods of
analysis and the widely used DAP protocol to provide simple distributed com-
puting to non-computer-scientists. Combining computation with data services
has drastically reduced network transfer, and exploiting script-level parallelism
has yielded linear speedup with CPU count, thus yielding a 6 times performance
improvement in our test. Our tests have also shown the importance of I/O is-
sues in data intensive workflows, quantifying the performance degradation and
offering a possible solution. While performance of the current implementation
already provides a significant speedup, future implementations will further ex-
ploit clustering and parallelism available at the data center, further enhancing
performance. Systems such as ours that colocate computation with data will be
well poised to meet the demands of more comprehensive, more detailed, and
more frequent analyses, and will facilitate data-intensive science.

Acknowledgments

The authors would like to thank Scott Capps, whose research makes use of the
above workflow. This research is supported by the National Science Foundation
under Grants ATM-0231380 and I1S-0431203.

References

1. Bell, G., Gray, J., Szalay, A.: Petascale computational systems. IEEE Computer
39(1) (2006) 110-112

2. Cornillon, P.: OPeNDAP: Accessing data in a distributed, heterogeneous environ-
ment. Data Science Journal 2 (2003) 164-174

3. Zender, C.S.: netCDF Operators (NCO) for analysis of self-describing gridded
geoscience data. Submitted to Environ. Modell. Softw. (2006) Available from
http://dust.ess.uci.edu/ppr/ppr ZenO7.pdf.

4. Foster, I., Kesselman, C.: The Grid: Blueprint for a New Computing Infrastructure.
Morgan Kaufmann, San Francisco, CA (1998)

5. Feigenbaum, E.A.: Some challenges and grand challenges for computational intel-
ligence. J.ACM 50(1) (2003) 32-40

6. Gray, J.: What next?: A dozen information-technology research goals. J.ACM
50(1) (2003) 41-57

7. Foster, 1., Kesselman, C.: Globus: A Metacomputing Infrastructure Toolkit. Inter-
national Journal of Supercomputer Applications 11(2) (1997) 115-128

8. Maechling, P., Chalupsky, H., Dougherty, M., Deelman, E., Gil, Y., Gullapalli, S.,
Gupta, V., Kesselman, C., Kim, J., Mehta, G., Mendenhall, B., Russ, T., Singh, G.,
Spraragen, M., Staples, G., Vahi, K.: Simplifying construction of complex work-
flows for non-expert users of the southern california earthquake center community
modeling environment. SIGMOD Rec. 34(3) (2005) 24-30

http://dust.ess.uci.edu/ppr/ppr_Zen07.pdf

750

9.

10.

11.

12.

13.

14.

15.

16.

17.

D.L. Wang, C.S. Zender, and S.F. Jenks

Singh, G., Deelman, E., Mehta, G., Vahi, K., Su, M.H., Berriman, G.B., Good, J., Ja-
cob, J.C., Katz, D.S., Lazzarini, A., Blackburn, K., Koranda, S.: The pegasus portal:
web based grid computing. In: SAC ’05: Proceedings of the 2005 ACM symposium
on Applied computing, New York, NY, USA, ACM Press (2005) 680686
Deelman, E., Singh, G., Su, M.H., Blythe, J., Gil, Y., Kesselman, C., Mehta, G.,
Vahi, K., Berriman, G.B., Good, J., Laity, A., Jacob, J.C., Katz, D.S.: Pegasus:
A framework for mapping complex scientific workflows onto distributed systems.
Scientific Programming 13(3) (2005) 219-238

Bernholdt, D., Bharathi, S., Brown, D., Chanchio, K., Chen, M., Chervenak, A.,
Cinquini, L., Drach, B., Foster, 1., Fox, P., Garcia, J., Kesselman, C., Markel, R.,
Middleton, D., Nefedova, V., Pouchard, L., Shoshani, A., Sim, A., Strand, G.,
Williams, D.: The earth system grid: Supporting the next generation of climate
modeling research. Proceedings of the IEEE 93(3) (2005) 485-495

Abramson, D., Kommineni, J., McGregor, J.L., Katzfey, J.: An atmospheric sci-
ences workflow and its implementation with web services. Future Gener. Comput.
Syst. 21(1) (2005) 69-78

Woolf, A., Haines, K., Liu, C.: A Web Service Model for Climate Data Access
on the Grid. International Journal of High Performance Computing Applications
17(3) (2003) 281-295

Chen, L., Agrawal, G.: Resource allocation in a middleware for streaming data. In:
Proceedings of the 2nd workshop on Middleware for grid computing, New York,
NY, USA, ACM Press (2004) 5-10

Zender, C.S.: NCO User’s Guide, version 3.1.4. http://nco.sf.net/nco.pdf (2006)
Tsai, W.Y., Spencer, M., Wu, C., Winn, C., Kellogg, K.: SeaWinds on QuikSCAT:
Sensor Description and Mission Overview. In: Proceedings of the IEEE Interna-
tional Geoscience and Remote Sensing Symposium. Volume 3., Honolulu, HI (2000)
1021-1023

Mathis, M., Heffner, J., Reddy, R.: Web100: extended tcp instrumentation for
research, education and diagnosis. SIGCOMM Comput. Commun. Rev. 33(3)
(2003) 69-79

	Introduction
	Background
	Overview of SWAMP
	Shell-Script Interface
	Parallel Execution Engine

	Results
	Test Setup
	Performance Gain
	I/O Optimization
	Summary

	Conclusion

