Skip to main content

Monocular Vision Based Obstacle Detection for Robot Navigation in Unstructured Environment

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4491))

Abstract

This paper proposes an algorithm to detect the obstacles in outdoor unstructured environment with monocular vision. It makes use of motion cues in the video streams. Firstly, optical flow at feature points is calculated. Then rotation of the camera and FOE(focal of expansion) are evaluated separately. A non-linear optimization method is adopted to refine the rotation and FOE. Finally, we get inverse TTC(time to contact) with rotation and FOE and detect the obstacles in the scene. The algorithm doesn’t need any assumption that the ground is flat or partially flat as the conventional methods. So it is suitable for outdoor unstructured environment. Qualitative and quantitative experiment results show that our algorithm works well on different kinds of terrains.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Urmson, C., Anhalt, J., Clark, M., et al.: High Speed Navigation of Unrehearsed Terrain: Red Team Technology for Grand Challenge 2004. CMU-RI-TR-04-37 (2004)

    Google Scholar 

  2. Dickinson, S., Davis, L., DeMenthon, D., Veatch, P.: Algorithms for Road Navigations. In: Masaki, I. (ed.) Vision-based Vehicle Guidance, pp. 83–110 (1990)

    Google Scholar 

  3. Maurette, M.: Mars Rover Autonomous Navigation. Autonomous Robots 14, 199–208 (2003)

    Article  MATH  Google Scholar 

  4. Goldberg, S., Maimone, M., Matthies, L.: Stereo Vision and Rover Navigation Software for Planetary Exploration. In: IEEE Aerospace Conference Proceedings, pp. 2025–2036 (2002)

    Google Scholar 

  5. Gremban, K., et al.: Vits—a Vision System for Autonomous Land Vehicle Navigation. IEEE Trans. Pattern Anal. Machine Intell. 10, 342–361 (1988)

    Article  Google Scholar 

  6. Enkelmann, W.: Obstacle Detection by Evaluation of Optical Flow Fields from Image Sequences. Image and Vision Computing 9, 160–168 (1991)

    Article  Google Scholar 

  7. Coombs, D., et al.: Real-time Obstacle Avoidance Using Central Flow Divergence and Peripheral Flow. In: Proc. Int. Conf. on Computer Vision, pp. 276–283 (1995)

    Google Scholar 

  8. Low, T., Wyeth, G.: Obstacle Detection Using Optical Flow. In: Proc. Australasian Conference on Robotics and Automation (2005)

    Google Scholar 

  9. Nelson, R., Aloimonos, J.: Obstacle Avoidance Using Flow Field Divergence. IEEE Trans. Pattern Anal. Machine Intell. 11, 1102–1106 (1989)

    Article  Google Scholar 

  10. Rodrigo, R., Samarabandu, J.: Monocular Vision for Robot Navigation. In: Proc. IEEE International Conference on Mechatronics and Automation, pp. 707–712 (2005)

    Google Scholar 

  11. Demonceaux, C., Potelle, A., Akkouche, D.: Obstacle Detection in a Road Scene Based on Motion Analysis. IEEE Trans. Vehicular Technology 53, 1649–1656 (2004)

    Article  Google Scholar 

  12. Dev, A., Krose, B., Groen, F.: Navigation of a Mobile Robot on the Temporal Development of the Optic Flow. In: Proc. Int. Conf. on Intelligent Robots and Systems, pp. 558–563 (1997)

    Google Scholar 

  13. Lee, D., Young, D.: Brain Mechanisms and Spatial Vision. Springer, Heidelberg (1985)

    Google Scholar 

  14. Shi, J., Tomasi, C.: Good Features to Track. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 593–600 (1994)

    Google Scholar 

  15. Fischler, M., Bolles, R.: Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Commun. Assoc. Comput. Mach. 24, 391–395 (1981)

    MathSciNet  Google Scholar 

  16. Beaton, A., Turkey, J.: The Fitting of Power Series, Meaning Polynomials, Illustrated on Band-spectroscopic Data. Technometrics 16, 147–185 (1974)

    Article  MATH  Google Scholar 

  17. Domke, J., Aloimonos, Y.: A Probabilistic Framework for Correspondence and Egomotion. In: Proc. ICCV Workshop on Dynamical Vision (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shen, Y., Du, X., Liu, J. (2007). Monocular Vision Based Obstacle Detection for Robot Navigation in Unstructured Environment. In: Liu, D., Fei, S., Hou, ZG., Zhang, H., Sun, C. (eds) Advances in Neural Networks – ISNN 2007. ISNN 2007. Lecture Notes in Computer Science, vol 4491. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72383-7_84

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72383-7_84

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72382-0

  • Online ISBN: 978-3-540-72383-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics