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Abstract. Defining the standard Boolean operations on fuzzy Booleans with 
the compositional rule of inference (CRI) or Zadeh's extension principle gives 
counter-intuitive results. We introduce and motivate a slight adaptation of the 
CRI, which only effects the results for non-normal fuzzy sets. It is shown that 
the adapted CRI gives the expected results for the standard Boolean 
operations on fuzzy Booleans. As a second application, we show that the 
adapted CRI enables a don't-care value in approximate reasoning. From the 
close connection between the CRI and Zadeh's extension principle, we derive 
an adaptation of the extension principle, which, like the modified CRI, also 
gives the expected Boolean operations on fuzzy Booleans. 
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1   Introduction 

Fuzzy Booleans are introduced in [1], in analogy with the concept of fuzzy numbers 
[2], as fuzzy sets over the domain of truth-values {true, false}. A fuzzy Boolean is 
denoted as (a,b), where a and b are numbers from the interval [0,1], a shorthand for 
the conventional notation "a/true + b/false". The truth-values 'true' and 'false' are 
represented by (1,0) and (0,1) respectively. The advantage of fuzzy booleans is that 
they allow fuzzy reasoning with concepts 'contradiction' and 'undefined'. For 
instance, when interpreted as possibilities, (1,1) is 'undefined', and (0,0) is 
'contradiction'; when interpreted as necessities, this is just the other way around. 

Let AND and OR be the fuzzy equivalents of the crisp Boolean operators and 
and or, respectively. They may be defined by means of approximate reasoning. For 
instance, AND is defined by the following four fuzzy rules: 

 
IF X1=(1,0) AND X2=(1,0) THEN Y=(1,0) (1a) 
IF X1=(1,0) AND X2=(0,1) THEN Y=(0,1) (1b) 
IF X1=(0,1) AND X2=(1,0) THEN Y=(0,1) (1c) 
IF X1=(0,1) AND X2=(0,1) THEN Y=(0,1) . (1d) 

 
With approximate reasoning, using the CRI, we obtain 



AND ((a,b),(c,d)) = (min(a,c), max {min (a,d), min(b,c), min(b,d)}) . (2) 
 
Using the abbreviations T = (1,0) (True), F = (0,1) (False), C = (1,1) (Contra-

diction) and U = (0,0) (Unknown), we obtain for AND: 
 

AND  | T F C U 
--------------------------------------- 
T | T F C U 
F | F F F U 
C | C F C U 
U | U U U U . 

 
This is not in accordance with our intuitive understanding of the AND-operation. 

For instance, AND (F,U) = U, where we would expect AND (F,U) = F. Indeed, 
since U is the empty set, the CRI will give U whenever one of the arguments of 
AND is U. The same thing happens when we define AND with Zadeh's extension 
principle: whenever one of the arguments of AND is U, the result is U. 

The aim of this paper is to introduce and motivate a slight adaptation of the CRI, 
which only effects the results for non-normal fuzzy sets, and show that the adapted 
CRI gives the expected results for the standard Boolean operations on fuzzy 
Booleans. As a second application, we will show that the adapted CRI enables a 
don't-care value in approximate reasoning. From the close connection between the 
CRI and Zadeh's extension principle, we will derive an adaptation of the extension 
principle, which, like the modified CRI, also gives the expected Boolean operations 
on fuzzy Booleans. 

This paper is organised as follows. In the next section, we will introduce the 
adaptation of the CRI. In section 3 we describe approximate reasoning with the 
adapted CRI. In section 4 we show that the adapted CRI gives results for the 
standard Boolean operations on fuzzy Booleans which are in accordance with our 
intuitive understanding of the AND-operation. In section 5 we show that the adapted 
CRI enables a don't-care value in approximate reasoning. In section 6 we derive a 
adaptation of the extension principle, and show that with the adapted extension 
principle we also obtain the expected Boolean operations on fuzzy Booleans. 
Section 7 concludes the paper. 

2   Adaptation of the compositional rule of inference 

Given a fuzzy set A on a domain U and a fuzzy relation R on the domain U⊗V, the 
CRI gives the fuzzy set B on V which is given by 

 
B(v) = supu min (A(u), R(u,v)) . (3) 

 
If A is non-normal, B is non-normal as well. If A is empty, B is empty as well. If 

A is the crisp singleton set containing only u0, then B(v) = R(u0,v). So, for each crisp 
singleton set A  



 
B(v) >= infu R(u,v) . (4) 

 
Our adaptation of the CRI is such that eq. (4) holds for every fuzzy set A. Instead 

of eq. (3), we thus propose 
 

B(v) = supu max(infu R(u,v), min (A(u), R(u,v)) . (5) 
 

This adaptation can only give a different result when A is non-normal. Indeed, if 
A(u0) = 1 for some u0 in U then supu min (A(u), R(u,v)) >= min (A(u0), R(u0,v))         
= R(u0,v) >= infu R(u,v), and so eq. (5) reduces to eq. (3). Also, when R(u,v) = 0 for 
some u in U there is no difference between eq. (5) and eq. (3). 

Next we will define how to adapt a composition of two applications of the CRI 
as in 

 
B(v) = sup(u1,u2) min(A1(u1), min (A2(u2), R((u1,u2),v))) . (6) 

 
Here it is not appropriate to adapt this in a single step by first writing this as  

 
B(v) = supu min(A1⊗A2 (u), R(u,v))) (7) 

 
where A1⊗A2 is the Cartesean product of A1 and A2 and u = (u1,u2). Instead, the 
adaptation should be applied twice, which leads to 

 
B(v) = sup(u1,u2) max(infu1 max(infu2 R((u1,u2),v), min(A2(u2), R((u1,u2),v))),  

min(A1(u1), max(infu2 R((u1,u2),v), min(A2 (u2), R((u1,u2),v))))) . (8) 

3   Approximate reasoning with the adapted CRI 

Consider the fuzzy rule 
 

IF X = A' THEN Y = B' . (9) 
 
Given the fact X = A, approximate reasoning with the standard CRI gives Y = B, 

where B is given by eq. (3), and R(u,v) is given by  
 

R(u,v) = Q (A'(u), B'(v)) . (10) 
 
In case of approximate reasoning with the interpolation method [4], the operator 

Q is a t-norm; the most commonly used t-norm is the minimum operator. In case of 
approximate reasoning with the implication method [3], the operator Q is an 
implication operator. 

In case of multiple fuzzy rules, one calculates a relation as in eq. (10) for each 
fuzzy rule, and then aggregates the results. Aggregation is done with the maximum 
operator in the interpolation method, and with the minimum operator in the 



implication method. The resulting aggregated relation is then used to calculate the 
inference results with eq. (3). Using the adapted CRI means that eq. (5) should be 
used instead of eq. (3). 

Consider next the fuzzy rule with two antecedents 
 

IF X1 = A'1 AND X2 =A'2 THEN Y = B' . (11) 
 

With the standard CRI we have, given the input X1 = A1 AND X2 =A2, the output Y 
= B, where B is given by eq. (6), and 

 
R((u1,u2),v) = Q (min (A'1(u1), A'2(u2)), B'(v)) (12) 

 
In case of multiple fuzzy rules, one calculates a relation as in eq. (12) for each 

fuzzy rule, and then aggregates the results. The resulting aggregated relation is then 
used to calculate the inference results with eq. (6). Using the adapted CRI means 
that eq. (8) should be used instead of eq. (6). Generalisation to three or more 
antecedents is straightforward. 

Note that we described here the FATI (first aggregate, then inference) approach. 
In Mamdani's original approach [4], the interpolation method with the minimum 
operator as t-norm, the FITA (first inference, then aggregate) approach is used. 
Indeed, it happens that the inference results of FATI and FITA are the same in this 
case. This is no longer true when the adapted CRI is used. So, with the adapted CRI, 
one should always adopt the FATI approach. 

4   Application to fuzzy Booleans 

In this section we will use the results of the previous section to compute the 
inference results for the four fuzzy rules of eq. (1) with the adapted CRI.  

First we compute the four relations R1, R2, R3 and R4 for the fuzzy rules of eqs. 
(1a,1b,1c,1d) respectively, and their aggregation R in the interpolation method, 
using eq. (12): 

 
 | ((t,t),t)  ((t,f),t) ((f,t),t) ((f,f),t) (t,t),f) ((t,f),f) ((f,t),f) ((f,f),f) 
---------------------------------------------------------------------------------------- 
R1 | 1 0 0 0 0 0 0 0 
R2 | 0 0 0 0 0 1 0 0 
R3 | 0 0 0 0 0 0 1 0 
R4 | 0 0 0 0 0 0 0 1 
R | 1 0 0 0 0 1 1 1 
 

Here we used the abbreviations t and f for true and false, respectively.  
Next we compute the four relations R1, R2, R3 and R4 and their aggregation R in 

the implication method: 
 

 



 | ((t,t),t)  ((t,f),t) ((f,t),t) ((f,f),t) (t,t),f) ((t,f),f) ((f,t),f) ((f,f),f) 
---------------------------------------------------------------------------------------- 
R1 | 1 1 1 1 0 1 1 1 
R2 | 1 0 1 1 1 1 1 1 
R3 | 1 1 0 1 1 1 1 1 
R4 | 1 1 1 0 1 1 1 1 
R | 1 0 0 0 0 1 1 1 
 

Note that the aggregated relation R is the same for both methods, and is 
independent of Q. This is in accordance with in general result in [1], where it is 
proved that this is always the case when the set of fuzzy rules is a complete set of 
fuzzy rules with crisp antecedents.  

Substituting this relation in eq. (8) now gives 
 

AND ((a,b),(c,d)) = (min(a,c), max (b,d)) (13) 
 

whereas with the standard CRI (eq. (6)) we would have obtained eq.(2). We can 
verify that eq. (13) is in accordance with our intuitive understanding of the AND-
operation. Indeed, eq. (13) just says that the "trueness" of AND P Q is the trueness 
of both P and Q, and the "falseness" of AND P Q is the falseness of either P or Q. 
This should be compared with eq. (2), where the falseness of P does not imply the 
falseness of AND P Q; the falseness of AND P Q follows only if in addition to the 
falseness of P we also have either the trueness or the falseness of Q. The table in the 
introduction is replaced by 
 

AND  | T F C U 
--------------------------------------- 
T | T F C U 
F | F F F F 
C | C F C F 
U | U F F U . 
 

In the same way, we obtain the expression  
 
OR ((a,b),(c,d)) = (max (a,c),min (b,d)) (14) 
 

and the table 
 

OR  | T F C U 
--------------------------------------- 
T | T T T T 
F | T F C U 
C | T C C T 
U | T U T U  
 



which are in accordance with our intuitive understanding of the OR-operation. 
Finally, the NOT-operation, given by NOT (a,b) = (b,a), is not affected by our 
adaptation of the CRI. 

5   Don't-care value in approximate reasoning 

As a second application of the adapted CRI, we will show in this section that with 
the adapted CRI there exists a don't-care value in approximate reasoning. Consider 
first the fuzzy rule of eq. (9). Given the fact X = A, approximate reasoning with the 
CRI gives Y = B, where B is given by 

 
B(v) = supu min (A(u), Q (A'(u),B'(v))) . (15) 

 
We will consider first the interpolation method, i.e. Q is a t-norm. The fuzzy set 

A' is a don't-care value if B(v) = B'(v) for all v in V and all fuzzy sets A. Since B(v) 
<= B'(v) for all v in V, and B(v) increases if A' increases, the best value for A' is the 
universe U itself, i.e A'(u) = 1 for all u in U. Then eq. (15) becomes 

 
B(v) = supu min (A(u), B'(v)) (16) 

 
which means that we have the desired property only if we restrict the input A to be 
normal. So, a don't-care value does not exist. 

The inference result of the fuzzy rule in eq. (9) with the adapted CRI is 
 

B(v) = supu max (infu (Q (A'(u),B'(v))), min (A(u), Q (A'(u),B'(v)))) . (17) 
 

Substituting A'(u) = 1 for all u in U gives B(v) = B'(v), which shows that with the 
adapted CRI A' has the required property, even for non-normal input A. Therefore, 
the universe U can be taken as don't-care value. 

Consider next the following two fuzzy rules: 
 

IF X1 = A1 THEN Y = B1 (18a) 
IF X2 = A2 THEN Y = B2 (18b) 

 
where the domains of X1,X2 and Y are U1,U2 and V respectively. For instance when 
one wants to compile a single relation for both fuzzy rules, one would like to write 
this as 

 
IF X1 = A1 AND X2 = DC2 THEN Y = B1 (19a) 
IF X1 = DC1 AND X2 = A2 THEN Y = B2 (19a) 

 
where DC denotes a don't-care fuzzy set, i.e. the results for the fuzzy rules in eq. 
(19) should be the same as the results for the fuzzy rules in eq. (18). As above, such 
a don't-care fuzzy set does not exist. It is however a straightforward exercise to 



verify, by using the inference results with the adapted CRI (eqs. (5,8)), that the fuzzy 
rule 
 

IF X1 = A1 AND X2 = U2 THEN Y = B (20) 
 

gives the same result as the rule 
 

IF X1 = A1 THEN Y = B (21) 
 

and that the rule 
 

IF X1 = U1 AND X2 = A2 THEN Y = B (22) 
 
gives the same result as  
 

IF X2 = A2 THEN Y = B (23) 
 

showing that in case of fuzzy rules with two antecedents the universe can be taken as 
a don't-care fuzzy set. Generalisation to three or more antecedents is straightforward. 

Next we consider the implication method. Then Q, in eq. (15), is an implication 
operator. Analogously to the reasoning above, we find that the fuzzy set A' with 
A'(u) = 0 for all u in U, i.e. the empty set, is a don't-care value. 

So the conclusion of this section is that with the adapted CRI there exists a don't-
care value for approximate reasoning; this don't-care value is the universe in case of 
the interpolation method and it is the empty set in case of the implication method. 

6   Adaptation of Zadeh's extension principle 

Zadeh’s extension principle, developed by Zadeh [6] and elaborated by Yager [5], 
extends functions from their domain to fuzzy sets on their domain. Let f be a 
function from the universe U onto the universe V. By Zadeh's extension principle, f 
maps each fuzzy set A on U onto a fuzzy set B on V which is given by 
 

B(v) = supu:f(u)=v A(u) . (24) 
 

There exists an intimate relation between the extension principle and the CRI: 
When the relation R is defined by 
 

∀u∈U : R (u,f(u)) = 1 (25a) 
∀u∈U ∀v∈V : v≠f(u) ⇒ R (u,v) = 0 (25b) 

 
then eq. (24) is an immediate consequence of eq. (3). 

We derive the adapted extension principle in the same way from the adapted 
CRI. When the relation of eq. (25) is substituted in eq. (5) we find 

 



B(v) = 1, if ∀u∈U: f(u) = v (26a) 
B(v) = supu:f(u)=v A(u), otherwise . (26b) 

 
So there is a difference with the standard extension principle only in case f is a 

constant function. Then the membership value of f(u) is equal to 1, while it is equal 
to  supu A(u) according to the standard extension principle. So, if A is normal there 
is no difference. We feel that this adaptation makes sense; indeed, where f maps 
each crisp element u of U to the same element v of V, there is no doubt that a fuzzy 
set on U should be mapped to the singleton set containing v. 

This adaptation holds for functions with a single argument. In the case where f is 
a function with two arguments, whose domains are U1 and U2 respectively, we 
derive the adapted extension principle from eq.(8). We find that  

 
f(A1,A2)(v) = sup(u1,u2):f(u1,u2)=v C(u1,u2) (27a) 
C(u1,u2) = 1, if ∀u3∈U1, ∀u4∈U2: f(u3, u4) = v (27b) 
C(u1,u2) = max(A1(u1), A2(u2)),  
 if ∀u4∈U2: f(u1,u4) = v & ∀u3∈U1: f(u3,u2) = v (27c) 
C(u1,u2) = A1(u1), if ∀u4∈U2: f(u1,u4) = v (27d) 
C(u1,u2) = A2(u2), if ∀u3∈U1: f(u3,u2) = v (27e) 
C(u1,u2) = max(A1(u1), A2(u2)), otherwise . (27f) 

 
Here the conditions of the five clauses for C(u1,u2) should be checked from above. 

As an example, let us again compute AND ((a,b),(c,d)). From eq. (25) we find 
that 

 
AND ((a,b),(c,d)) (true) = C(true,true) (28a) 
AND ((a,b),(c,d)) (false) =  

max (C(true,false), C(false,true), C(false,false)) (28b) 
 

where C is given by 
 

C(true,true) = min ((a,b)(true), (c,d)(true)) = min (a,c) (29a) 
C(true,false) = (c,d) (false) = d (29b) 
C(false,true) = (a,b) (false) = b (29c) 
C(false,false) = max((a,b)(false), (c,d)(false) = max (b,d) (29d) 

 
which leads to 

 
AND ((a,b),(c,d)) = (min (a,c), max (b,d)),  (30) 

 
which is, of course, the same result as the one obtained in section 4. 



7   Conclusion 

We have defined adaptations for the compositional rule of inference and Zadeh's 
extension principle, which have effect in case of non-normal fuzzy sets. We have 
demonstrated the usefulness of the adaptations by means of two applications. Firstly, 
we have shown that we obtain the expected results for the standard Boolean 
operations on fuzzy Booleans. Secondly, we have shown that we obtain a don't-care 
value in approximate reasoning. Of course, from these two applications it cannot 
(yet) be concluded that our adaptations should replace the standard CRI and 
extension principle. Therefore, it is interesting to examine our adaptations in other 
applications where non-normal fuzzy sets are used. 
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