
Compilation Techniques for Partitioned Global
Address Space Languages

Kathy Yelick

EECS Department, UC Berkeley
Computational Research Division, Lawrence Berkeley National Lab

Abstract. Partitioned global address space (PGAS) languages have
emerged as a viable alternative to message passing programming mod-
els for large-scale parallel machines and clusters. They also offer an al-
ternative to shared memory programming models (such as threads and
OpenMP) and the possibility of a single programming model that will
work well across a wide range of shared and distributed memory plat-
forms. Although the major source of parallelism in these languages is
managed by the application programmer, rather than being automati-
cally discovered by a compiler, there are many opportunities for program
analysis to detect programming errors and for performance optimizations
from the compiler and runtime system. The three most mature PGAS
languages (UPC, CAF and Titanium) offer a statically partitioned global
address space with a static SPMD control model, while languages emerg-
ing from the DARPA HPCS program are more dynamic.

In this talk I will describe some of the analysis and optimizations
techniques used in the Berkeley UPC and Titanium compilers, both of
which source-to-source translators based on a common runtime system.
Both compilers are publicly released and run on most serial, parallel, and
cluster platforms. Building on the strong typing of the underlying Java
language, the Titanium compiler includes several forms of type-based
analyses for both error detection and to enable code transformations.
The Berkeley UPC compiler extends the Open64 analysis framework on
which it is built to handle the language features of UPC. Both compilers
perform communication optimizations to overlap, aggregate, and sched-
ule communication, as well as pointer localization, and other optimiza-
tions on parallelism constructs in the language. The HPCS languages
can use some of the implementation techniques of the older PGAS lan-
guages, but offer new opportunities for expressiveness and suggest new
open questions related to compiler and runtime support, especially as
machines scale towards a petaflop.

G. Almási, C. Caşcaval, and P. Wu (Eds.): LCPC 2006, LNCS 4382, p. 1, 2007.
c© Springer-Verlag Berlin Heidelberg 2007


