
An Effective Heuristic for Simple Offset
Assignment with Variable Coalescing

Hassan Salamy and J. Ramanujam

Department of Electrical and Computer Engineering
and Center for Computation and Technology

Louisiana State University, Baton Rouge, LA 70803, USA
{hsalam1,jxr}@ece.lsu.edu

Abstract. In many Digital Signal Processors (DSPs) with limited mem-
ory, programs are loaded in the ROM and thus it is very important to
optimize the size of the code to reduce the memory requirement. Many
DSP processors include address generation units (AGUs) that can per-
form address arithmetic (auto-increment and auto-decrement) in paral-
lel to instruction execution, and without the need for extra instructions.
Much research has been conducted to optimize the layout of the vari-
ables in memory to get the most benefit from auto-increment and auto-
decrement. The simple offset assignment (SOA) problem concerns the
layout of variables for machines with one address register and the gen-
eral offset assignment (GOA) deals with multiple address registers. Both
these problems assume that each variable needs to be allocated for the
entire duration of a program. Both SOA and GOA are NP-complete. In
this paper, we present a heuristic for SOA that considers coalescing two
or more non-interfering variables into the same memory location. SOA
with variable coalescing is intended to decrease the cost of address arith-
metic instructions as well as to decrease the memory requirement for
variables by maximizing the number of variables mapped to the same
memory slot. Results on several benchmarks show the significant im-
provement of our solution compared to other heuristics. In addition, we
have adapted simulated annealing to further improve the solution from
our heuristic.

1 Introduction

Embedded processors are found in many electronic devices such as telephones,
cameras, and calculators. Due to the tight constraints on the design of embedded
systems, memory is usually limited. In contrast, the memory requirement for the
execution of digital signal processing and video processing codes on an embedded
system is significant. Moreover, since the program code resides in the on-chip
ROM, the size of the code directly translates into silicon. So code minimization
becomes a substantial goal in order to optimize the amount of memory needed.

Many Digital Signal Processors (DSPs) such as the TI C2x/C5x, Motorola
56xxx, Analog Devices 210x and ST D950 have address generation units (AGUs)
[5]. The AGU is responsible for calculating the effective address. A typical AGU

2 Hassan Salamy and J. Ramanujam

consists of an address register file and a modify register file as shown in Figure 1.
The architectures of such DSPs support only indirect memory addressing. Since
the base-plus-offset addressing mode is not supported, an extra instruction is
needed, in general, to add (subtract) an offset to (from) the current address in
the address register to compute the new address. However, such architectures
support auto-increment and auto-decrement of the address register. When there
is a need to add an offset of 1 or subtract an offset of 1 from the current address,
this can be done in parallel with the same LOAD/STORE instruction using
auto-increment or auto-decrement; and this does not require an extra address
arithmetic instruction in the code. Exploiting this characteristic will lead to
code compaction and thus less memory used since the length of the code in DSP
directly translates into required silicon area. One method for minimizing the
instructions needed for address computation is to perform offset assignment
of the variables. Offset assignment refers to the problem of placing the variables
in the memory to maximally utilize auto-increment/decrement and thus reduce
code size.

Modify
Register File

Address
Register File

Effective Address

AR pointer
Immediate

Constant c

r =1

MR pointer q

+/-

Fig. 1. A typical Address Generation Unit (AGU) contains a modify register file, ad-
dress register file and ALU

Simple offset assignment (SOA) refers to the case where there is only one
address register (AR), whereas general offset assignment (GOA) refers to the case
where there are multiple address registers [12]. In both SOA and GOA considered
in this paper, the value of auto-increment/decrement is 1; SOA and GOA are
NP-complete [12]. Several researchers have studied the offset assignment problem
and have proposed different heuristics.

In this paper, we present an effective heuristic for the simple offset assign-
ment problem with variable coalescing. Coalescing allows two or more variables
to share the same memory location provided that their live ranges do not over-

An Effective Heuristic for Simple Offset Assignment 3

lap. Based on the live ranges of all the variables, an interference graph (IG) is
constructed in which an edge (a, b) indicates that variables a and b interfere and
thus they can not be mapped into the same memory location. Variable coalescing
improves the results by decreasing the number of address arithmetic instructions
needed as well as the memory requirement for storing the variables.

The remainder of the paper is organized as follows. Section 2 presents related
work in this area. Section 3 presents our algorithm for simple offset assignment
with variable coalescing. Section 4 gives an example that shows how our algo-
rithm works. Section 5 presents the simulated annealing algorithm to further
improve the results. Section 6 summarizes the results. Finally Section 7 presents
our conclusions.

2 Related Work

The problem of simple offset assignment was first discussed by Bartley [2]. Then
Liao et al. [12] showed that the SOA problem is NP-complete and that it is equiv-
alent to the Maximum Weight Path Cover (MWPC) problem. They proposed
heuristics for both SOA and GOA. Given an access sequence of the variables,
the access graph has a node for each variable with an edge of weight w between
nodes a and b meaning that variables a and b appear consecutively w times in the
access sequence.In this greedy heuristic, edges are selected in decreasing order
of their weights provided that choosing an edge does not introduce a cycle and
it does not result in a node of degree more than two. Finally, the access graph
considering only the selected edges will determine the placement of the variables
in the memory. One possible result of applying Liao’s heuristic to the access
sequence in Figure 2(a) is shown in Figure 2(c), where the bold edges are the
selected edges and the final offset assignment is [ebacd]. The cost of a solution
is the sum of the weights of all unselected edges (i.e., non-bold edges). For the
example in Figure 2(a), the cost is 1 which represents the non-bold edge that
refers to the one address arithmetic operation needed to go from a to e in the
access sequence since variables a and e are mapped to non-consecutive memory
locations.

Leupers and Marwedel [9] extended Liao’s work by proposing a tie-break
heuristic for the SOA problem. Liao et al. did not state what happens if two
edges have equal weight. Leupers and Marwedel used the following tie-break
function: if two edges have the same weight, they pick the edge with the smaller
value of the tie-break function T2(a, b) defined for an edge (a, b) as in equation
5.

Atri et al. [1] solved the SOA problem using an incremental approach. They
tried to overcome some of the problems with Liao’s algorithm, mainly in the
case of equal weight edges as well as the greedy approach of always selecting
the maximum weight edges. Starting with an initial offset assignment (which
could be the result of any SOA heuristic), their incremental-SOA tries to explore
more points in the solution space by considering the effect of selecting currently
unselected edges.

4 Hassan Salamy and J. Ramanujam

Leupers [7] compared several algorithms for simple offset assignment. Ottoni
et al. [13] studied the simple offset assignment problem with variable coalescing
(CSOA). Their algorithm uses liveness information to construct the interference
graph. In the interference graph, the nodes represent variables and an edge be-
tween two variables means that they interfere and thus they can not be coalesced.
The authors used the SOA heuristic proposed by Liao et al. [12] enhanced with
the tie− break in [9], with the difference that at each step the algorithm chooses
between (i) coalescing two variables; and (ii) selecting the edge with the maxi-
mum weight as in Liao’s algorithm. Their algorithm finds the pair of nodes that
can be coalesced with maximum csave where csave represents the actual saving
from coalescing this pair of nodes. At the same time, it finds the edge with the
maximum weight w that can be selected using Liao’s algorithm. If there are
candidates for both coalescing and selection, then it will use coalescing if csave
is larger than w, otherwise use selection.

a b

c d

e

a b

c d

e

2

1

1
1

1

2

1

1

1 1

 (a)The access sequence: d c a e b a b

(c)

(b) dc a be

Fig. 2. (a) Access sequence. (b) Access graph corresponding to the access sequence.
(c) Offset assignment where bold edges represent the selected edges and the cost of
such assignment is 1.

In [21], the authors studied the cases of SOA with variable coalescing at the
same time as [13]. Their coalescing algorithm first separates values into atomic
units called webs by applying variable renaming. Their proposed heuristic starts
by applying pre-iteration coalescing rules. Then the algorithm picks the two
variables (i.e., nodes) with maximum saving for coalescing provided that they
respect the validity conditions. If the saving is positive, then the two nodes are
coalesced. Liao’s SOA will then be applied to the new access graph. This process
will continue as long as there are two variables that can be coalesced. Several

An Effective Heuristic for Simple Offset Assignment 5

others [10], [15], [16], [17], [19], [20] have addressed problems related to offset
assignment.

3 CSOA: Offset assignment with variable coalescing

In simple offset assignment (SOA), each memory location or slot is assigned only
one variable. Simple offset assignment with variable coalescing (CSOA) refers to
the case where more than one variable can be mapped into the same memory
location. Variable coalescing is intended to decrease the memory requirement by
further decreasing the number of address arithmetic instructions as well as by
decreasing the memory requirements for storing the variables. Two variables can
be coalesced if their live ranges do not overlap at any time which means that at
any time, those two variables are not needed to be simultaneously live.

In CSOA, an interference graph (IG) is constructed by examining the live
ranges of all the variables. Each node in the graph represents a variable, and an
edge between two nodes means they interfere and thus they cannot be coalesced.
Two variables can be coalesced if they meet all the following conditions:

– the two variables do not interfere;
– after coalescing, no node in the access graph has more than two selected

edges incident at it; (and)
– the resulting access graph is still acyclic considering only the selected edges.

So instead of always selecting an edge as in SOA, CSOA can either select an
edge or coalesce two variables that meet the three conditions listed above.

Our algorithm presented in Figure 3 integrates both selection and coalesc-
ing options in a way to minimize the total cost, which is represented by the
number of address arithmetic instructions, as well as to decrease the memory re-
quirement for storing the variables in memory. The algorithm takes as an input,
the interference graph (IG) and the access sequence, and outputs the mapping
of the variables to memory locations possibly with coalescing. From the access
sequence, it constructs the access graph (AG) which captures the frequency of
consecutive occurrence of any two variables in the access sequence. Then it sorts
the edges whose end-point vertices interfere in decreasing order of their weights
as a guide for selection. Since one of the purposes of the heuristic is to decrease
the memory requirement for storing the variables, an edge (a, b) such that (a, b) /∈
IG will not be considered for selection. Such an edge will be a candidate for co-
alescing which means that fewer edges will be considered for selection and thus
more variables will probably be coalesced. Note that the selection of an edge
may prevent variable coalescing opportunities in the future. So only those edges
whose endpoints interfere will be considered as candidates for selection in each
iteration of the algorithm.

Any two variables that do not interfere are considered as candidates for coa-
lescing. In each iteration, all pairs of variables that meet the three conditions for
variable coalescing (mentioned earlier) are candidates for coalescing. We define

6 Hassan Salamy and J. Ramanujam

the following values:

Gain(a, b) =
Actual Gain(a, b)
Possible Loss(a, b)

(1)

Actual Gain(a, b) = W (a, b)

+
∑

x∈Adj(a)∩Adj(b)
(b,x)∈Selected Edge

(a,x)/∈Selected Edges

W (a, x)

+
∑

y∈Adj(a)∩Adj(b)
(b,y)/∈Selected Edges

(a,y)∈Selected Edges

W (b, y) (2)

Possible Loss(a, b) = 1 +
∑

(a,x)/∈IG,(b,x)∈IG
(b,x)/∈Selected Edges

(a, x)

+
∑

(b,y)/∈IG,(a,y)∈IG
(a,y)/∈Selected Edges

(b, y) (3)

A Gain value for each of these candidate pairs is calculated that captures
the benefit of coalescing as well as the possible loss of future opportunities for
coalescing. The value Gain(a, b) is defined as the actual saving that results from
coalescing variables a and b divided by the possible loss of future coalescing
opportunities due to coalescing a and b. When variables a and b are coalesced,
all edges incident at a and b of the form (a, x) and (b, x) will be merged, and
if edge (a, b) exists, it will be deleted. When edges (a, x) and (b, x) are merged
into edge (ab, x), if at least one of the edges was already selected, then (ab, x)
is also considered to be selected. The value Gain(a, b) is defined as shown in
Equation 1 and the value Actual Gain(a, b) is defined in Equation 2. The value
Actual Gain(a, b) is basically the sum of the weights of the edges incident at a
or b that were not selected before and became selected after being merged with
a selected edge plus the weight of the edge (a, b).

The value Possible Loss(a, b) is defined in Equation 3 as the sum of the
edges (a, x) such that (a, x) /∈IG, (b, x) is not selected, and (b, x) ∈ IG plus the
sum of the edges (b, y) such that (b, y)/∈IG, (a, y) is not selected, and (a, y) ∈IG.
As depicted in equation 3, Possible Loss(a, b) considers only vertices that are
neighbors to a or b. Although other definitions of the loss can be used, we found
that our definition captures the possible effect of coalescing on solutions that can
be constructed. Even though coalescing involves vertices and not edges, using
the number of edges as the essence for the loss in Equation 3 leads to better
results. The rationale behind this is that an edge whose corresponding vertices
interfere will probably end up as a selected edge and thus it may prevent some
coalescing opportunities and as a result it may degrade the quality of the final
solution.

It is worth noting that although our heuristic integrates both selection and
coalescing, it gives priority to coalescing, which can be clearly deduced from the

An Effective Heuristic for Simple Offset Assignment 7

definition of loss. We believe this is one of the main reasons for our improvements
in terms of the cost as well as the memory requirement for storing the variables.
We divide the value Actual Gain(a, b) with the value Possible Loss(a, b) to
account for the number of edges whose corresponding variables were interference-
free and now interfere as a result from coalescing a and b. The reason behind
this is that coalescing two variables with large Possible Loss value may prevent
some future coalescing opportunities and thus may prevent achieving smaller
cost compared to coalescing two variables with smaller Possible Loss value.

Among all the pairs that are candidates for coalescing, our algorithm picks
the pair with the maximum Gain. If the algorithm is able to find a pair for
coalescing as well as an edge for selection, then it will coalesce if the Actual Gain
from coalescing is greater than or equal to the weight of the edge considered for
selection; otherwise, it will select the edge. One way our heuristic attempts to
maximize the number of variables mapped to each memory location is to allow
the coalescing of pairs of variables with zero Gain value (if possible) after no
more variables with positive Gain can be coalesced.

Coalescing variables without a good guide may prevent possible improve-
ments over the standard SOA solution. Consider the example in Figure 4. Fig-
ure 4(b) shows Liao’s greedy solution. The cost of this offset assignment is 4.
Figure 4(c) shows the solution using the algorithm in [13] whose cost is also
4. Although there is potential for improvement through variable coalescing, the
algorithm in [13] fails to capture the improvement over Liao’s solution. This is
because the algorithm in [13] first chooses to coalesce vertices b and e since they
have the maximum csave. However, this choice will prevent any future coalesc-
ing opportunities. Our algorithm alleviates this shortcoming by calculating the
Possible Loss(b, e) = 5 and thus Gain(b, e) = 3/5. So our algorithm first picks
a and b for coalescing since Gain(a, b) = 1; edge (b, e) will not be considered
for selection since b and e do not interfere. The cost of the final solution of our
algorithm is zero, as shown in Figure 4(d). For selection, we used two tie−break
functions T1 and T2 defined below,

T1(a, b) = degree(a) + degree(b) (4)

T2(a, b) =
∑

x∈Adj(a)

W (a, x) +
∑

y∈Adj(b)
W (b, y) (5)

where T1(a, b) is the sum of the degree of a and degree of b in the access graph.
T2(a, b) is the Leupers tie− break function defined as the sum of the weights of
the edges that are incident at a plus the sum of the weights of the edges that are
incident at b. If two edges that are candidates for selection have the same weight
then we try to tie break using the function T1; if T1 cannot break the tie, we
use T2. An edge with smaller T1 or T2 will win the tie. If two pairs of variables
(a, b) and (c, d) that are candidates for coalescing are such that Gain(a, b)=
Gain(c, d), then we first try to break the tie using T0 which is the Actual Gain
such that we choose the pair with the bigger Actual Gain. If both candidate
pairs have the same actual gain, then we tie break using T1 followed by T2, if
needed.

8 Hassan Salamy and J. Ramanujam

———————————————————————————————-
Coalescence SOA Algorithm
Input: the Access sequence.

the Interference graph IG.
Output: Offset assignment.

Build the access graph (AG) from the access sequence.
L = list of edges (x,y) such that (x,y) ∈ IG in decreasing order of their weights using
T1 then T2 for tie break.
Coalesce = false.
Select = false.
Do

Find a pair of nodes (a,b) for coalescing that satisfy:
1. (a, b) /∈ IG.
2. AG will still be acyclic after a and b are coalesced considering

selected edges.
3. No node will end up with degree > 2 considering selected edges.
4. (a,b) has max Gain where Gain is calculated as in equation (1).

where T0, T1, and T2 are the three tie break functions used in that order.
If such a pair of nodes is found, then Coalesce = true.

Among the edges that belong to L pick the first edge (c,d) such that:
1. Selecting (c,d) will not result in a cyclic AG considering selected edges.
2. Selecting (c,d) will not result in a node with degree > 2 considering

selected edges.
If such an edge is found, then Select = true; remove (c,d) from L.

If (Coalesce && Select)
If (Actual Gain(a, b) = Weight(c, d))

Update access graph AG with (a, b) coalesced.
Update interference graph IG with (a, b) coalesced.
Update list L

Else
Select edge (c,d)

Else
if (Coalesce)

Update access graph AG with (a,b) coalesced
Update interference graph IG with (a,b) coalesced
Update list L

Else if (Select)
Select edge (c,d)

While (Coalesce || Select)
Return offset assignment
———————————————————————————————

Fig. 3. Our algorithm for Simple Offset Assignment with variable coalescing.

An Effective Heuristic for Simple Offset Assignment 9

c

f

a

b

c

d

e

f

 (a)

b

e

a

d

3

2 2

2 2

c

e,b f

a

d 2 2

a,b,c

e,d,f

3

2 2

 (b)

 (c) (d)

Fig. 4. (a) Interference Graph. (b) Liao’s SOA greedy solution where the cost = 4.
(c)The solution from the algorithm in [13] of cost 4 where it fails to capture the potential
improvements from coalescing. (d) The optimal solution from our algorithm with cost
= 0.

4 An Example

For the sake of clarity, consider the example in Figure 5 where Figure 5(a)
shows the interference graph (IG) and Figure 5(b) shows the original access
graph (AG). Figures 5(c)-(h) show how the access graph is updated when our
heuristic is applied to this example. Although not shown, whenever two nodes are
coalesced, the interference graph (IG) will be updated to reflect the coalescing of
the nodes as well as to update the interference edges accordingly. Table 1 shows
the step-by-step execution of our algorithm and the criteria used for choosing
the candidates for selection and for coalescing. Note that in Table 1 we do not
show coalescing candidates with zero Gain. Figure 5(i) shows the final solution
with zero cost. If we run the algorithm in [13] on the same example presented in
Figure 5, the cost of a possible final solution (which is shown in Figure 6) is 4.

5 Simulated Annealing

Since the offset assignment problem is NP complete, the heuristic presented in
Section 3 will very likely produce a suboptimal solution. So in order to further
improve the results, we used a simulated annealing approach. Simulated Anneal-
ing (SA) [3] is a global stochastic method that is used to generate approximate
solutions to very large combinatorial problems. The technique originates from
the theory of statistical mechanics, and is based on the analogy between the

10 Hassan Salamy and J. Ramanujam

a

d

(g)

2 2 2

(h)

g
b

c

d

e

f

b c

e f

a

d

g

3

2 2

1 1

a,b c

e f d

g

3

2 2

1 1

a,b c

e f

g

2

3

2 2

1 1

a,b c

e,d f

g

2

3

2

1 1

a,b c

e,d f

g

2

3

2

1 1

a,b c

e,d f

g

2

3

2

1 1

(a)
(b) (c)

(d)

a,b c

e,d,g f

2

3

3

(e) (f)

f

e,d

g

a,b

c

(i)

Fig. 5. (a) The Interference Graph. (b) Original Access Graph. (c)-(h) The access
graphs after each iteration of our algorithm. (i) The final offset assignment, which
incurs zero cost.

a c

e,b f

g,d

2

2

1 2

2

Fig. 6. One possible final solution for the example shown in Figure 5 using the algo-
rithm in [13]

An Effective Heuristic for Simple Offset Assignment 11

Table 1. A step by step run of our algorithm on the example in Figure 5

Iteration Coalesce Candidate Selection Decision

vertices ActualGain PossibleLoss Gain edge Weight

a,b 2 2 1 Coalesce(a,b)
b,e 3 4 3/4 (b,c) 2 Tie-break T0

1 d,e 2 3 2/3 (g,f) 1
g,d 1 1 1
f,e 2 3 2/3

d,e 2 2 1 (ab,e) 3
2 g,d 1 1 1 (ab,c) 2 Select (ab,e)

f,e 2 2 1 (g,f) 1

d,e 2 2 1
3 g,d 1 1 1 (ab,c) 2 Coalesce (d,e)

f,e 2 2 1 (g,f) 1 Tie-break T0

c,e 2 3 2/3

(ab,c) 2 Select (ab,c)
4 ed,g 1 1 1 (ed,f) 2 Tie-break T1

(g,f) 1

5 ed,g 1 1 1 (ed,f) 2 Select (ed,f)
(g,f) 1

6 ed,g 2 1 2 (g,f) 1 Coalesce (ed,g)

annealing process of solids and the solution procedure for large combinatorial
optimization problems. The annealing algorithm begins with an initial feasible
configuration, and then a neighbor configuration is created by perturbing the
current solution. If the cost of the neighboring solution is less than that of the
current solution, the neighboring solution is accepted; otherwise, it is accepted
or rejected with some probability. The probability of accepting inferior solutions
is a function of a parameter, called the temperature T, and the change in cost
between the neighboring solution and the current solution. The temperature is
decreased during the optimization process, and the probability of accepting an
inferior solution decreases with the reduction of the temperature value. The set
of parameters controlling the initial temperature, stopping criterion, temper-
ature decrement between successive stages, and number of iterations for each
temperature is called the cooling schedule [3]. Typically, at the beginning of the
algorithm, the temperature T is large and an inferior solution has a high prob-
ability of being accepted. During this period, the algorithm. acts as a random
search to find a promising region in the solution space. As the optimization pro-
gresses, the temperature decreases and there is a lower probability of accepting
an inferior solution. The algorithm then behaves like a down hill algorithm for
finding the local optimum of the current region.

Since simulated annealing requires a significant amount of time in order to
converge to a good solution, we decided to use the final solution from our heuris-
tic as the initial solution for SA and then ran SA for a short period of time with

12 Hassan Salamy and J. Ramanujam

a low probability of accepting a bad solution. The neighbor function can perform
one of the following operations:

– Exchange the content of two memory locations.
– Move the content of one memory location.
– Uncoalesce a coalesced node into two or more nodes.
– Coalesce two memory locations.

6 Results

We implemented our techniques in the OffsetStone toolset [14] and we tested
our algorithms on the MediaBench benchmarks [4]. In Table 2, we compare our
results with four different techniques used to solve the SOA problem, mainly Le-
upers’ tie-break [9], incremental with Leupers’ tie-break INC-TB[9][7], Genetic
algorithm GA[8], and Ottoni’s CSOA [13]. We measure the percentage of the
number of address arithmetic instructions compared to Liao’s algorithm [12].
Our heuristic drastically reduces the cost of simple offset assignment when com-
pared to heuristics that do not allow variable coalescing since variable coalescing
increases the proximity between variables in memory, thus it reduces the number
of update instructions. Column 6 shows that our heuristic was able to outper-
form the CSOA heuristic [13] (results of which are shown in Column 5) in all
the cases except for one benchmark. This improvement is due to the guide used
in our choice between candidates for coalescing where we not only consider the
actual saving but also an estimate of the possible loss in future coalescing op-
portunities. Also the idea of just considering edges whose endpoints interfere for
selection increases the opportunity for coalescing nodes with maximum Gain as
defined in Equation 1. The ability to coalesce depends on the selected edges and
vice-versa. So an algorithm that can choose the right candidates for selection
and coalescing, at the right iteration and decide between them, should consider
the influence of such a decision on future solutions. This is accounted for in our
algorithm by defining the possible loss as a guide for the possible effect of coa-
lescing on future solutions. The three tie− break functions T0, T1, and T2 play
a role in achieving the clear improvements to the final solution. We do not show
the comparison to the technique in [21] since the authors reported an average
cost reduction of 33.3% when compared to [9] which is worse than the results
achieved in [13].

Our simulated annealing (SA) algorithm further improved the results by
searching the feasible region for better solutions starting from the final solution
of our heuristic. Results in Table 2 column 6 shows that the SA further improved
the results in all the cases in a short CPU time.

In Table 3, we show the reduction in memory slots needed to store the vari-
ables using our algorithm compared to that of using the algorithm presented
in [13]. Results show that our algorithm drastically reduces the memory re-
quirement by maximizing the number of variables that are assigned to the same
memory location and it outperforms the CSOA algorithm [13] in all the cases.

An Effective Heuristic for Simple Offset Assignment 13

The reason behind this reduction is that we defined the Gain from coalescing
in terms of possible loss in coalescing opportunities as well as due to the fact
that we did not consider the edges (a, b) such that (a, b) /∈ IG as candidates for
selection and this will result in more opportunities for coalescing. However, the
main reason for this improvement is that our heuristic allows zero Gain coalesc-
ing between nodes in the final AG. That is, we coalesce pairs of vertices (a, b)
(if possible) such that Gain(a, b) = 0. This zero Gain coalescing will not reduce
the cost in terms of the number of address arithmetic instructions but it will
contribute to maximizing the number of variables mapped to a memory loca-
tion. This explains the huge difference between the improvements in Table 2 and
Table 3. Although a heuristic designed just to decrease the memory requirement
for storing the variables can get better results than those in Table 3, it will be
detrimental to the quality of the final solution in terms of the number of address
arithmetic instructions. So our heuristic not only decreases the cost (which is
defined as the reduction in the number of address arithmetic instructions), but
also decreases the number of memory locations needed to store the variables.

Table 2. Comparison between different techniques for solving the SOA problem where
column 1 shows different benchmarks, column 2 shows the results by applying Liao’s +
Tie-break [9], column 3 shows the results of the GA in [8], column 4 shows the results
if the Tie-break [9] is combined with the incremental SOA in [1], and column 5 show
the results in the case of SOA with variable coalescing [13], column 6 shows our results
when applying our algorithm, column 7 shows the results using simulated annealing.

Benchmarks TB (%) GA(%) INC-TB(%) CSOA(%) Our algorithm SA
[9] [8] [9][7] [13] (%) (%)

adpcm 89.1 89.1 89.1 45.6 42.1 39.1

epic 96.8 96.6 96.6 50.2 47 44.9

g721 96.2 96.2 96.2 27.9 26.2 23.2

gsm 96.3 96.3 96.3 19.4 14.8 13.5

jpeg 96.9 96.7 96.7 32.2 31 29.1

mpeg2 97.3 97.1 97.2 34.3 31.2 29.9

pegwit 91.1 90.7 90.7 38.8 39.5 36.1

pgp 94.9 94.8 94.8 32.2 29.8 27.4

rasta 98.6 98.5 98.5 21.1 19.9 19.5

7 Conclusions

The problem of offset assignment has received a lot of attention from researchers
due to its great impact on code size reduction for DSPs. Reducing the code size
is beneficial in the case of DSPs since the code is directly transformed into
silicon area. Statistics show that codes for DSPs can have up to 50% address
arithmetic instructions [18]. So the main idea of the ongoing research in this field

14 Hassan Salamy and J. Ramanujam

Table 3. The number of memory slots needed using our algorithm to the algorithm
presented in [13].

Benchmarks #Variables #Memory slots #Memory slots
[13] our algorithm

adpcm 198 55 43

epic 4163 1125 767

g721 1152 289 199

gsm 4817 1048 433

jpeg 13690 4778 2555

mpeg2 8828 2815 1503

pegwit 4122 1454 910

pgp 9451 2989 1730

rasta 4040 1056 557

is to decrease the number of address arithmetic instructions and thus the code
size. The problem is studied as simple offset assignment (SOA) and as general
offset assignment (GOA), where different techniques and algorithms are used to
tackle these problems with different modifications such as the inclusion of the
modify-registers [9] as well as the case where the offset range is greater than
1. In this paper we presented a heuristic to solve the simple offset assignment
with variable coalescing that chooses between selection and coalescing in each
iteration by calculating the Actual Gain and Possible Loss for each pair of
coalescing candidates. Results show that our algorithm not only decreases the
number of address arithmetic instructions, but also drastically decreases the
memory requirement for storing the variables by maximizing the number of
variables that are mapped to the same memory slot. Simulated annealing further
improved the final solution from our heuristic.

Acknowledgments. We are indebted to Sam Midkiff for a careful reading of
this paper which has resulted in a significant improvement in the presentation
of the paper. In addition, we thank the referees for their comments.We are in-
debted to Sam Midkiff for a careful reading of this paper which has resulted in a
significant improvement in the presentation of the paper. In addition, we thank
the referees for their comments.

References

1. S. Atri, J. Ramanujam, and M. Kandemir. Improving Offset Assignment for Em-
bedded Processors. Languages and Compilers for High-Performance Computing,
S. Midkiff et al. (eds.), Lecture Notes in Computer Science, Springer, 2001.

2. D.H. Bartley. Optimizing Stack Frame Accesses for Processors with Restricted
Addressing Modes. Software-Practice and Experience, vol. 22, no. 2, pp. 102-111,
1992.

3. S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi. Optimization by Simulated
Annealing. Science, 220, 4598, 671-680, 1983.

An Effective Heuristic for Simple Offset Assignment 15

4. C. Lee, M. Potkonjak, and W. Mangione-Smith. Mediabench: A Tool for Evalu-
ating and Synthesizing Multimedia and Communications Systems. In Proc. IEEE
International Symposium on Microarchitecture, pp. 330-335, 1997.

5. R. Leupers. Code Generation for Embedded Processors. In Proc. International
System Synthesis Symposium, 2000.

6. R. Leupers. Code Optimization Techniques for Embedded Processors. Kluwer Aca-
demic Publishers, 2000.

7. R. Leupers. Offset Assignment Showdown: Evaluation of DSP Address Code Op-
timization Algorithms. 12th International Conference on Compiler Construction
(CC), Warsaw (Poland), Apr 2003, Springer Lecture Notes on Computer Science,
LNCS 2622.

8. R. Leupers, F. David. A Uniform Optimization Technique for Offset Assignment
Problems. 11th Int. System Synthesis Symposium (ISSS), 1998.

9. R. Leupers, P. Marwedel. Algorithms for Address Assignment in DSP Code Gen-
eration. Int. Conference on Computer-Aided Design (ICCAD), 1996.

10. B. Li, R. Gupta. Simple Offset Assignment in Presence of Subword Data. CASES,
ACM Press, 2003.

11. S. Liao. Code Generation and Optimization for Embedded Digital Signal Proces-
sors. Ph.D. Thesis, Dept. of Electrical Engineering and Computer Science, Mas-
sachusetts Institute of Technology, 1996.

12. S. Liao, S. Devadas, K. Keutzer, S. Tjiang, A. Wang. Storage Assignment to De-
crease Code Size. ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), 1995.

13. D. Ottoni, G. Ottoni, G. Araujo, R. Leupers. Improving Offset Assignment through
simultaneous Variable Coalescing. In Proceedings of the 7th International Work-
shop on Software and Compilers for Embedded Systems (SCOPES’03), in Springer
LNCS 2826, pp. 285-297, Vienna, Austria, September 2003.

14. OffsetStone. http://www.address-code-optimization.org.
15. G. Ottoni, S. Rigo, G. Araujo, S. Rajagopalan, and S. Malik. Optimal Live Range

Merge for Address Register Allocation in Embedded Programs. In Proc. 10th Inter-
national Conference on Compiler Construction, CC 2001, LNCS 2027, pp. 274-288.
Springer, April 2001.

16. A. Rao and S. Pande. Storage Assignment Optimizations to Generate Compact
and Efficient Code on Embedded DSPs. In SIGPLAN Conference on Programming
Language Design and Implementation, pages 128-138, 1999.

17. A. Sudarsanam, S. Liao, and S. Devadas. Analysis and Evaluation of Address
Arithmetic Capabilities in Custom DSP Architectures. In Design Automation Con-
ference, pp. 287-292, 1997.

18. S. Udayanarayanan, C. Chakrabarti: Address Code Generation for Digital Signal
Processors. 38th Design Automation Conference (DAC), 2001.

19. B. Wess and M. Gotschlich. Optimal DSP Memory Layout Generation as a
Quadratic Assignment Problem. In Int. Symp. on Circuits and Systems (ISCAS),
1997.

20. B. Wess, T. Zeitlhofer. Optimum Address pointer Assignment for Digital Signal
Processors. ICASSP, IEEE 2004.

21. X. Zhuang, C. Lau, and S. Pande. Storage Assignment Optimizations Through
Variable Coalescence for Embedded Processors. In Proceedings of the ACM SIG-
PLAN Conference on Language, Compiler, and Tool Support for Embedded Sys-
tems, pp. 220-231, 2003.

