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Abstract. Stochastic fluid models have been applied to model and eval-
uate the performance of many important real systems. The automatic
analysis tools to support of fluid models are still not as improved as
the ones for discrete state Markov models, but there is a wide range of
models which can be effectively described and analyzed with fluid mod-
els. Also the model support of hybrid models from various performance
evaluation tools improves continuously.
The aim of this work is to summarize the basic concepts and the potential
use of Markov fluid models. The factors which determine the limits of
solvability of fluid models are also discussed. Practical guidelines can be
extracted from these factors to determine the applicability of fluid models
in practical modeling examples. The work is supported by an example
where Fluid Models, derived from an higher level modeling language
(Fluid Stochastic Petri Nets), have been exploited to study the transfer
time distribution in Peer-to-Peer file sharing applications.

1 Motivations

1.1 Problems with discrete state models

Even if the conventional performance evaluation techniques are well suited to
describe a wide range of real systems, things are not always as easy as they
seem. The modeler usually faces several problems when trying to describe a
system with a particular formalism, and sometimes these problems make the
models extremely hard to handle. Some examples are:

– State space explosion. One of the weakest points in performance evalua-
tion is that the complexity of the solution of discrete state models generally
grows exponentially with the complexity of the model behavior. Many anal-
ysis techniques for most of the formalisms require the generation and the
visit of all the possible states that the system may reach. This set of states
is called the state space of the model, and for many applications it must be
stored in the central memory. Since it grows exponentially with the com-
plexity of the model, the size of this set may reach very quickly the storage
capacity of the machine. In many situations this problem prevents a well
defined model from being solved.
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– Inaccurate results. A model is always a simplification of realty. Some sim-
plifications are motivated by the fact that they cut out some parameters
of the model that do not influence the required solutions. Some others are
required in order to produce a system that can be analyzed with the tools
that a modeler has. These simplifications may not be adequate sometimes
and can lead to incorrect or inaccurate results. Many of these simplifica-
tions involve the characterization of some stochastic process by a Poisson
process and the probability distribution of the time between two events by
an exponential distribution.

– Granularity and sizes. In many situations the user must deal with a huge
number of small elements. Let us consider for example a production line that
produces bolts and screws. Thousands of parts will be produced in a very
short time. A model that wishes to capture the number of parts produced,
must deal with this big number which usually makes the state space explode
even faster. Similar problems arise in today’s communication systems which
deals with a high number of very small data packets.

– Modeling power limitations. Sometimes a model depends on some phys-
ical quantity such as temperature or power consumption. Those are contin-
uous quantities and they cannot be emulated correctly by discrete states.
In these cases, the modeling power of a discrete state model specification
language may not be adequate to describe the system.

1.2 Possible solutions

In order to overcome the mentioned limitations, new modeling techniques have
been developed. In this paper, we will examine how the previous problems can be
attacked using Hybrid continuous / discrete techniques. Continuous and hybrid
models can in some circumstances solve the above mentioned problems, or give
better results than conventional discrete state techniques in terms of computa-
tional complexity or accuracy of results. For example, hybrid models may solve
the problems in the following way:

– State space explosion: Usually hybrid models are analyzed by splitting the
discrete state space into a discrete part, that takes into account the possible
states that the system may reach (by considering only the discrete compo-
nents of the system) and a continuous part. Usually, when solving a hybrid
model, only the discrete part of the state space must be memorized explic-
itly, while the continuous part is expressed as a set of functions or predicates.
This greatly reduces the number of states that must be memorized and in
some cases may solve the state space explosion problem.

– Inaccurate results: When the inaccuracy of a result is caused by the Poisson
arrival or the exponential service time distribution, continuous models can
be used to overcome this problem. Continuous components can be used to
explicitly model the time since an action has been enabled, and can thus be
used to model non-Markovian processes and complex memory properties.



– Granularity and sizes: When the modeling problems are caused by a variable
that has a very small granularity, this variable may be approximated by
a continuous quantity. Even if in the real system the variable is actually
discrete, usually its continuous approximation can lead to very good results,
especially if the changes in the real quantity happens at a constant rate. For
example modeling the number of packets contained in a queue of an ATM
router or the number of bytes allocated in the central memory of a PC can
produce good results .

– Modeling power limitations: If the system under study depends on a physi-
cal continuous quantity that must be modeled explicitly to capture its real
behavior, then hybrid models seem to be the natural solution. For example
the instantaneous fuel consumption of a turbine in a power plant can be
modeled explicitly by a continuous variable.

2 Formalisms

Continuous quantities have been introduced in performance models in many
flavors. Many high-level and low-level performance evaluation formalisms have
been developed to deal with continuous quantities. In this work we will consider:

– Reward Models (RM),
– Fluid Models (FM), and
– Fluid Stochastic Petri Nets (FSPN).

2.1 Reward Models

A Reward Model is a Markov chain in which each state has associated a pos-
itive quantity called Reward Rate. A continuous variable, takes into account all
the Reward accumulated over a time interval. This quantity grows proportionally
with the time spent in a state and with the corresponding reward rate. One of
the key aspect of reward models, is that the accumulated reward is unbounded.

The Markov Chain that governs the reward accumulation is called the under-
laying Markov Chain, and is described by a generator matrix Q, whose element
qij defines the transition from state i to state j, as in any other Markov Chain:

qij = lim
∆t→0

P{S(t + ∆t) = j|S(t) = i}
∆t

, for i 6= j

qij = −
∑

k 6=i

qik, for i = j,

where S(t) is the state of the underlaying Markov chain at time t.
The reward rate of the state i is denoted by ri, ri ≥ 0. This quantity describes

the rate at which the accumulated reward grows when the underlaying Markov
chain is in state i. Reward rates are collected in a diagonal matrix, R, whose
elements Rij are such that:

Rij = 0, for i 6= j,
Rij = ri, for i = j.



We denote with X(t) the total reward accumulated until time t, and we set
X(0) = 0. If we know the evolution of the underlaying Markov chain (that is
S(t)), then we can compute X(t) as follows:

X(t) =
∫ t

0

rS(u) du.

The fact that the reward rates are always positive, and that the accumulated
reward is unbounded, greatly simplifies the analytical description of the systems.
Many efficient techniques exists in the literature to analyze Reward Models [26,
10, 21, 23, 25].

2.2 Fluid Models

Fluid Models are an extension of Reward Models. Various definition of fluid
models exists, and they will be fully addressed in section 3. Here we will put just
a general presentation of the main formalism. As RMs, FMs are characterized
by an underlaying Markov Chain, defined by matrix Q, and a reward matrix
R. The main difference with respect to RM, is that in FM the rate associated
to each state (called in this case flow rate or drift) can be positive, negative or
zero. Usually, the accumulated reward is called Fluid Level, since the continuous
value of the reward can be used to represent the level of fluid contained in a
reservoir. The second main difference between FMs and RMs, is that in a FM
the fluid level has at least a lower bound at zero, and may also have an upper
bound at a fixed positive value.

Even if the differences between FMs and RMs seem to be negligible at first
sight, FMs are much more complex to be analyzed. The presence of bound-
aries and negative rates, imposes the introduction of boundary conditions in the
equations that describe the evolution of the system. These conditions reduce the
applicability of analytical results, and makes the solution much more complex.
However, from a modeling point of view, the introduction of negative rates and
bounds allows the characterization of a larger set of interesting systems, which
could not be analyzed by simple RMs. FMs can be used to approximate large
buffers with continuous quantities, making thus the formalism well suited to
analyze high speed communication and production systems.

2.3 Fluid Stochastic Petri Nets

A Fluid Stochastic Petri Net (FSPN) is an extension of an ordinary Stochas-
tic Petri Net, capable of incorporating continuous quantities. Other similar ex-
tensions with minor differences are: Continuous Petri Nets and Hybrid Petri Nets
[5]. In this work we will not consider such formalisms, and we will present only
the basic formalism, intended for stochastic analysis. Several extensions have
been considered to allow the description of more complex model, which however
can only be solved using simulation [9].

Formally, a FSPN is a tuple 〈P, T ,A, B, F,W,R, M0〉, where:



– P is the set of places, partitioned into a set of discrete places Pd ={
p1, . . . , p|Pd|

}
and a set of continuous places Pc =

{
c1, . . . , c|Pc|

}
(with

Pd ∩ Pc = ∅ and Pd ∪ Pc = P). The discrete places may contain tokens
(the number of tokens in a discrete place is a natural number), while the
marking of a continuous place is a non negative real number that we call
the fluid level. In the graphical representation, a discrete place is drawn as
a single circle while a continuous place is signified by two concentric circles.
The complete state (marking) of a FSPN is described by a pair of vectors
M = (m,x), where the vector m, of dimension |Pd| is the marking of the
discrete part of the FSPN and the vector x, of dimension |Pc|, represents
the fluid levels in the continuous places (with xl ≥ 0 for any cl ∈ Pc). We
use S to denote the partly discrete and partly continuous state space. In the
following we denote by Sd and Sc the discrete and the continuous component
of the state space respectively. The marking M = (m, x) evolves in time.
We can imagine the marking M at time τ as the stochastic marking process
M(τ) = {(m(τ), x(τ)), τ ≥ 0}.

– T is the set of transitions partitioned into a set of stochastically timed
transitions Te and a set of immediate transitions Ti (with Te ∩ Ti = ∅ and
Te ∪ Ti = T ). A timed transition Tj ∈ Te is drawn as a rectangle and has an
instantaneous firing rate associated with it. An immediate transition th ∈ Ti

is signified by a thin bar and has constant zero firing time.
– A is the set of arcs partitioned into three subsets: Ad, Ah and Ac. The

subset Ad contains the discrete arcs which can be seen as a function3 Ad :
((Pd × T ) ∪ (T × Pd)) → IN . The arcs Ad are drawn as single arrows. The
subset Ah contains the inhibitor arcs, Ah : (Pd × T ) → IN . These arcs are
drawn with a small circle at the end. The definitions of •tj , t•j , and ◦tj
involve only discrete places and are the same as for the standard GSPNs.
The subset Ac define the continuous arcs. These arcs are drawn as double
arrows to suggest a pipe. Ac is a subset of (Pc × Te) ∪ (Te × Pc), i.e., a
continuous arc can connect a fluid place to a timed transition or it can
connect a timed transition to a fluid place.

– The function B : Pc → IR+ ∪ {∞} describes the fluid upper boundaries on
each continuous place. This boundary has no effect when it is set to infinity.
From this if follows that ∀M = (m,x) ∈ S and cl ∈ Pc, 0 ≤ xl ≤ B(cl).
Each fluid place has an implicit lower boundary at level 0.

– The firing rate function F is defined for timed transitions Te so that
F : Te × S → IR+. Therefore, a timed transition Tj enabled at time
τ in a discrete marking m(τ) with fluid level x(τ), may fire with rate
F (Tj ,m(τ), x(τ)), that is:

lim
∆τ→0

Pr{Tj fires in (τ, τ +∆τ)|M(τ)=(m(τ), x(τ))}=F (Tj , m, x)∆τ

We also use as a short hand notation F (Tj ,M), where M = (m,x)).
– The weight function W is defined for immediate transitions Ti such that

W : Ti × Sd → IR+. Note that the firing rates for timed transitions may
be dependent both on the discrete and the continuous part of the marking,

3 Note that when the arcs are defined as a function we use uppercase symbols.



while the weights for immediate transitions may only be dependent on the
discrete part.

– The function R : Ac × S → IR+ ∪ {0} is called the flow rate function and
describes the marking dependent flow of fluid across the input and output
continuous arcs connecting timed transitions and continuous places.

– The initial state of the FSPN is denoted by the pair M0 = (m0, x0).

Figure 1 visually represents the discrete primitives of a FSPN (that are identical
to their GSPN counterparts), and Figure 2 shows the continuous primitives of
the formalism.
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Fig. 1. Discrete primitives
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Fig. 2. Continuous primitives

The role of the previous sets and functions will be clarified by providing the
enabling and firing rules.
Let us denote by mi the i-th component of the vector m, i.e., the number
of tokens in place pi when the discrete marking is m. We say that a transition
tj ∈ T (no matter whether tj is an immediate or timed transition) has concession



in marking M = (m, x) iff ∀pi ∈ •tj , mi ≥ Ad(pi, tj) and ∀pi ∈ ◦tj , mi < Ah(pi, tj).

If an immediate transition has concession in M = (m,x), it is said to be enabled
and the marking is vanishing. Otherwise, the marking is tangible and any timed
transition with concession is enabled in it. Note that the previous definition is
exactly the one of standard GSPNs [4], i.e., the concession and the enabling
conditions depend only on the discrete part of the FSPN. Let E(M) denote the
set of enabled transitions in marking M = (m, x), we have that E(M) = E(M ′),
for any marking M ′ = (m, x′).

The stochastic evolution of the discrete part of the FSPN in a tangible mark-
ing is governed by a race [3]. In a vanishing marking, instead, the weights are
used to decide which transition should fire according to the standard rules for
GSPNs [4]. Let us see how enabled transitions may influence the continuous part
of the marking. Each continuous arc that connects a fluid place cl ∈ Pc to an
enabled timed transition Tj ∈ Te (resp. an enabled transition Tj to a fluid place
cl), causes a “change” in the fluid level of place cl. Let M(τ) be the marking
process, i.e., M(τ) = Mi if at time τ the marking of the FSPN is Mi = (mi, xi).
Thus, when the FSPN marking is M(τ) fluid can leave place cl ∈ Pc along the
arc (cl, Tj) ∈ Ac at rate R((cl, Tj),M(τ)) and can enter the continuous place cl

at rate R((Tj , cl),M(τ)) for each (timed) transition Tj enabled in M(τ). The
potential rate of change of fluid level for the continuous place cl in marking
M(τ) is:

rp
l (M(τ)) =

X

Tj∈E(M(τ))

R((Tj , cl),M(τ))−R((cl, Tj),M(τ)).

We require that for every discrete marking m and continuous arc (cl, Tj) (resp.
(Tj , cl)),that the rate R((cl, Tj), (x,m)) (resp. R((Tj , cl), (x, m))) be a piecewise
continuous function of x.

Now let Xl(τ) be the fluid level at time τ in a continuous place cl ∈ Pc. The
fluid level in each continuous place cl can never become negative or exceed the
bound B(cl), so the (actual) rate of change over time, τ , when the marking is
M(τ), is

rl(M(τ))=
dXl(τ)

dτ
=

8
>>>>>>>><
>>>>>>>>:

rp
l (M(τ)) if Xl(τ) = 0 and rp

l (M(τ)) ≥ 0

rp
l (M(τ)) if Xl(τ) = B(cl) and rp

l (M(τ)) < 0

0 if Xl(τ) = 0 and rl(M(τ)) < 0

0 if Xl(τ) = B(cl) and rp
l (M(τ)) > 0

rp
l (M(τ)) if 0<Xl(τ)<B(cl) and rp

l (M(τ−))rp
l (M(τ+)) ≥ 0

0 if 0<Xl(τ)<B(cl) and rp
l (M(τ−))rp

l (M(τ+))<0.

(1)

The first two cases of the previous equation concern situations when Xl(τ) =
0 (resp. Xl(τ) = B(cl)) and the potential rate is rp

l (M(τ)) ≥ 0 (resp.
rp
l (M(τ)) < 0). In both cases the actual rate is equal to the potential rate.

The third and the fourth cases prevent the fluid level from overcoming the lower
and the upper boundaries. The last two cases require a deeper explanation (a
reference for a complete discussion of these aspects is [11]). As it has been as-
sumed in [18], the flow rate function R(·, ·) is a piecewise continuous function of
the continuous part of the marking. The meaning of the last case is that a sign



change (from + to −) in rp
l (M(τ)) will “trap” Xl(τ) in a state in which it will

be constant. With this assumption, the analysis of the stochastic process M(τ)
is simplified (see [11] for a discussion on this type of situation). The fifth case,
which is the most common one, accounts for the fact that there is no sign change
from + to − in rp

l (M(τ)) and hence the actual rate is equal to the potential
rate.

Fluid Stochastic Petri Nets are analyzed by transforming them into equiva-
lent Fluid Models. If the FSPN has a single fluid place, then standard FM can
be applied. If the FSPN has more than one fluid place, then special FM with
multiple continuous variables must be used.

We will begin by describing how to compute the infinitesimal generator Q of
the equivalent FM. Since fluid arcs arcs do not change the enabling condition of
a transition, standard analysis techniques can be applied to the discrete marking
process m(τ) [4]. These techniques split the discrete state space into two disjoint
subsets; called respectively, the tangible marking set and the vanishing marking
set. Since the process spends no time in vanishing markings, they can be removed
and their effect can be included in the transitions between tangible markings.
From this point on, we will consider only tangible markings. In GSPNs, the un-
derlying stochastic process is a CTMC, whose infinitesimal generator is a matrix
Q. Each entry qij represents the rate of transition from a tangible state mi to
a tangible state mj , that is:

qij =
X

Tk∈E(mi) | mi
Tk→mj

F (Tk, mi),

where E(mi) represents the set of enabled transitions in marking mi, and
mi

Tk→ mj means that the firing of transition Tk changes the discrete state
of the system from mi to mj .
In the FSPN model defined in [18], the firing rate of each timed transition can
be made dependent on the continuous component of the state. With this ex-
tension, the infinitesimal generator matrix must be also dependent on the fluid
component of the state, that is Q(x) = {qij} where:

qij(x) =
X

Tk∈E(mi) | mi
Tk→mj

F (Tk, mi, x).

The summation considers the transition rates of all the transitions Tk that bring
the net from state mi to mj . In the standard equations that describe a CTMC,
the terms on the diagonal of the infinitesimal generator account for the proba-
bility of exiting from a state. In this case, we simply define:

qii(x, ∅) = −
∑

j 6=i

qij(x). (2)

Matrix Q(x) is equivalent to the infinitesimal generator of a CTMC, in the
sense that each row sum of

X

s∈2Pc

Q(x, s), is equal to zero. In other words:

Q(x)1 = 0

where 1 (respectively 0) is a column vector with all the |Sd| components equal
to 1 (resp. 0).



If we have only a single fluid place cl, the fluid rate matrix R(x), of the
underlaying fluid model, can be simply computed by defining r(i, x) = rl(M),
where M = (mi, x). Then R(x) = diag(r(i, x)) becomes the diagonal matrix
whose components account for the actual flow rate out of the fluid place.

No boundary conditions are needed, since they are included in the definition
of the potential flow rate (Equation (1)). Dirac’s delta functions in the solution,
represent cases where there is a non zero probability of finding the system in a
particular marking (both discrete and continuous).

In [16] a new kind of fluid primitive, called Flush-out arcs has been added to
the FSPN formalism.

flush-out
arc

Fig. 3. Flushout arcs

Flush-out (See Figure 3 arcs are special arcs that connect fluid places to
timed transition (but not timed transition to fluid places). They are drawn using
thick lines. When a transition fires, the places connected with a flush-out arc are
emptied in zero time.

Despite their simplicity, Flush-out Arcs can be exploited to obtain many
interesting effects, like dropping the content of the transmission buffer. The
underlaying stochastic model is no longer a standard Fluid Model, but it can
be analyzed similarly using appropriate boundary conditions. It has been shown
in [16] that FSPNs with flush-out arcs can be used to simulate Non-Markovian
Stochastic Petri Nets [13].

3 Analytical Description of Fluid Models

3.1 Introduction to fluid models

Since the behaviour of the considered class of fluid models contain random el-
ements they belong to the large family of stochastic processes. Stochastic pro-
cesses can be viewed as a set of random variables, which are ordered according
to a parameter. In typical engineering applications the parameter represents the
time and it takes value either from the natural numbers, 0, 1, 2, . . ., or from the
set of non-negative real numbers. The former case is referred to as discrete time
stochastic process and the later as continuous time stochastic process.

Also in typical engineering applications the random variables has the same
support set. The characteristics of this support set is the other main feature of
the stochastic process. We distinguish the following cases:

– discrete support set, e.g., the number of customers in a queue,



– continuous support set, e.g., the unfinished work in a queue,
– hybrid (continuous and discrete) support set, e.g., the unfinished work and

the number of customers.

General continuous and hybrid valued stochastic processes are hard to ana-
lyze but, there are special cases which allow the application of simple analysis
methods. Focusing on the hybrid valued case the simplest processes are obtained
when the continuous part of the model is determined by its discrete part through
a very simple function, which is the case with reward models and fluid models.

In both cases a simple function of a discrete state stochastic process governs
the evolution of the continuous variable. E.g., the continuous value is increasing
or decreasing at a given rate while the discrete value is constant (see Figure 4).
In case of reward models this evolution is non-decreasing and unbounded, while
in case of fluid models the evolution of the continuous variable is bounded.
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Fig. 4. Evolution of the continuous variable in reward and fluid models.

Definition 1. Markov property: A stochastic process is said to enjoy the Markov
property at time t, when the future evolution of the process is independent of its
past and depend only on the value of the random variable at time t.

Those stochastic processes which enjoy the Markov property at all time are
referred to as Markov processes. Continuous time Markov chains, Markov reward
models, Markov fluid models are examples of Markov processes. In this chapter
we focus on these Markovian cases.

3.2 Classification of fluid models

The following features of fluid models are used for classification:

– Buffer size:
It is commonly assumed that the minimal buffer level is 0. This way the



size of the buffer determines the maximal buffer content. The two main
cases are finite buffer and infinite buffer. In case of an infinite buffer the
continuous quantity is only lower bounded at zero and in case of a finite
buffer the continuous quantity is lower bounded at zero and upper bounded
at B (Figure 5).
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Fig. 5. Infinite and finite buffer fluid models

– Evolution of the continuous variable:
The evolution of the continuous variable depends on the value of the
discrete variable, but this dependence can be of two kinds. The case when
the continuous variable deterministically increases/decreases as long as the
discrete variable is constant, is referred to first order fluid model (Figure
6). The case when the increment of the continuous variable during a period
when the discrete variable is constant is a normal distributed random
quantity is referred to second order fluid model (Figure 6).
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Fig. 6. First and second order fluid models



Second order fluid models can be interpreted as the limiting process of a
two dimensional random walk according to Figure 7, where the horizontal
dimension represents the discrete variable and the vertical dimension repre-
sents the buffer level.
In this model the probabilities of the vertical state transitions determine the
mean fluid increase for each value of the discrete variable. It can be seen
that the fluid level can increase and also decrease in each column.
Reducing the time step and the granularity of the fluid level of this model
to zero results in the second order fluid flow model.

CTMC state

Fluid

level

Fig. 7. Interpretation of second order fluid models

– Effect of the buffer content on the discrete variable:
With this respect there are two main cases. The evolution of the discrete
variable can be independent of or can depend on the instantaneous value
of the fluid variable. In case of a Markov fluid model, the first means that
the discrete part of the model is an “independent” CTMC which modulates
the fluid accumulation. In the later case there is a mutual dependence of
the continuous and the discrete part of the model and it is not possible to
analyze the discrete variable in isolation. The first case is also referred to as
space inhomogeneous model, since the generator matrix of the discrete
variable is constant, i.e., independent of the fluid level, while the second
case is also referred to as fluid level dependent model.

– Behaviour of the second order model at the boundaries:
In case of first order fluid models the model behaviour is quite well defined
when the fluid level reaches a boundary. When the fluid level reaches the
lower boundary (empty buffer) the system must be in a state with a negative
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Fig. 9. Second order fluid models with reflecting and absorbing boundary behaviour

fluid rate. After reaching the lower boundary (in a state with a negative
fluid rate), the buffer remains empty as long as a transition to a state with
positive fluid rate takes place. The system behaviour at the upper boundary
(if any) is similar.

The behaviour of second order fluid models is more complex at the bound-
aries. In this case we might assume a deterministic and a stochastic behaviour
depending on the behaviour of the modeled system.
The deterministic boundary behaviour of second order models is more or less
identical with the described boundary behaviour of the first order model.
The only difference is that the fluid level can become zero also in states
with non-negative drift and positive variance. This case is referred to as
absorbing boundary, since the fluid level gets identical with the boundary
for a positive amount of time (Figure 9).
The stochastic boundary behaviour of second order models is similar to the
general evolution of these models between the boundaries, where the fluid
level alternates randomly all over the time and does not remain constant for
a non-zero time period with positive probability. In this case, the fluid level
process is reflected as soon as it reaches a boundary, and this way it always
remain between the boundaries with probability 1. This case is referred to
as reflecting boundary, since the fluid level gets reflected at the boundary
(Figure 9).
These boundary behaviours can be interpreted using the same random walk
approximation as we used for the interpretation of the second order fluid
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Fig. 10. Interpretation of the boundary behaviour

model. Those states exhibit absorbing boundary behaviour, where there is
no vertical state transition out of a boundary state, i.e., the discrete variable
must change its value to leave the given boundary state. (Figure 10). In
contrast, those states exhibit reflecting behaviour, where there is a vertical
transition out of the boundary state, i.e., the fluid level is alternating all
over the time.

3.3 Transient behaviour of the fluid level process

In this section we study the transient behaviour of the fluid level process accord-
ing to a simple to more complex approach. The simplest case is the transient
analysis of first order, infinite buffer, homogeneous Markov fluid models. Later
on we extend this model with finite buffer, second order fluid accumulation and
fluid level dependency.

First order, infinite buffer, homogeneous Markov fluid models During
an infinitesimally short period of time, (t, t + ∆), while the continuous variable
is i, or equivalently we also say that the (discrete part of the) system is in state
i, (S(τ) = i, ∀τ ∈ (t, t + ∆)), the fluid level (X(t)) increases at rate ri when
X(t) > 0:

X(t + ∆)−X(t) = ri∆

that is
d

dt
X(t) = ri if S(t) = i,X(t) > 0.

When X(t) = 0 the fluid level can not decrease:

d

dt
X(t) = max(ri, 0) if S(t) = i,X(t) = 0.



That is
d

dt
X(t) =

{
rS(t) if X(t) > 0,

max(rS(t), 0) if X(t) = 0,

where rS(t) denotes the fluid rate in the actual discrete state of the process.

First order, finite buffer, homogeneous Markov fluid models When
X(t) = B the fluid level can not increase:

d

dt
X(t) = min(ri, 0), if S(t) = i,X(t) = B.

That is

d

dt
X(t) =





rS(t), if X(t) > 0,
max(rS(t), 0), if X(t) = 0,
min(rS(t), 0), if X(t) = B.

Second order, infinite buffer, homogeneous Markov fluid models with
reflecting barrier During a sojourn in the discrete state i (S(t) = i) in the
sufficiently small (t, t+∆) interval the distribution of the fluid increment (X(t+
∆)−X(t)) is normal distributed with mean ri∆ and variance σ2

i ∆:

X(t + ∆)−X(t) = N (ri∆,σ2
i ∆), if S(u) = i, u ∈ (t, t + ∆), X(t) > 0,

where N (ri∆,σ2
i ∆) denotes a normal distributed random variable with mean

ri∆ and variance σ2
i ∆.

If at X(t) = 0 the fluid process is reflected immediately in state i, it means
that the time spent at the boundary has a 0 measure, and so the probability of
staying at the boundary is

Pr(X(t) = 0, S(t) = i) = 0.

Second order, infinite buffer, homogeneous Markov fluid models with
absorbing barrier Between the boundaries the evolution of the process is the
same as before.

When the fluid level decreases to zero in an absorbing barrier state, i, the
fluid process gets stopped and the fluid level remains zero for a positive amount
of time. Due to this behaviour

Pr(X(t) = 0, S(t) = i) > 0.

On the other hand, due to the absorbing property of the boundary the probability
that the fluid level is close to the boundary in an absorbing state is very low,

lim
∆→0

Pr(0 < X(t) < ∆, S(t) = i)
∆

= 0.



Inhomogeneous (fluid level dependent), first order, infinite buffer
Markov fluid models The evolution of the fluid level differs due to the fluid
level dependency of the fluid rate ri(x), where x is the fluid level. This way the
fluid level changes as:

d

dt
X(t) =

{
rS(t)(X(t)), if X(t) > 0,

max(rS(t)(X(t)), 0), if X(t) = 0 .

The evolution of the discrete part also depends on the fluid level. The detailed
discussion of this dependence is delayed to the next subsection.

3.4 Transient description of fluid models

The aim of this section is to derive partial differential equations representing the
evolution of Markov fluid models in time. To this end we introduce the following
notations:

– πi(t) = Pr(S(t) = i) – state probability,
– ui(t) = Pr(X(t) = B, S(t) = i) – buffer full probability,
– `i(t) = Pr(X(t) = 0, S(t) = i) – buffer empty probability,

– pi(t, x) = lim
∆→0

1
∆

Pr(x < X(t) < x + ∆,S(t) = i) – fluid density.

Based on these notations the total probability law for time t gives

πi(t) = `i(t) + ui(t) +
∫

x

pi(t, x)dx. (3)

In the simplest considered case the evolution of the discrete variable is inde-
pendent of the fluid level, hence the discrete part of the model is a continuous
time Markov chains (CTMC).

Continuous time Markov chains We start with the transient behaviour of
CTMCs and based on that we extend the analysis to the various fluid models.
The transient behaviour of CTMCs is characterized by the transition rates that
are determined by the transition probabilities as follows

lim
∆→0

Pr(S(t + ∆) = j|S(t) = i)
∆

= qij . (4)

The commonly applied forward argument to analyze Markovian stochastic
processes is based on the analysis of the short term behaviour of the process.
We can say that a CTMC which is in state i at time t can do 3 different things
in the (t, t + ∆) interval:

– no state transition:
The process can remain in state i during the whole period with probability
1 −∑

j,j 6=i qij∆ + σ(∆), where qij∆ is the probability of a state transition
from state i to j in the (t, t+∆) interval and σ(∆) is a small error term that



quickly vanishes as ∆ tends to zero, i.e., lim∆→0 σ(∆)/∆ = 0. Introducing
the notation, qii = −∑

j,j 6=i qij , we can write the probability of no state
transition in the (t, t + ∆) interval as 1 + qii∆ + σ(∆). Note that qii is
negative.

– one state transition:
The process can have a state transition from i to j during the (t, t + ∆)
interval with probability qij∆ + σ(∆).

– more than one state transitions:
The probability of having more than one state transitions in a short interval
is quickly vanishes as ∆ tends to zero, it is σ(∆).

Based on these three options we can evaluate the probability of being in state
i at time t+∆ (πi(t+∆)) as a function of the probability of being in the various
states at time t (πj(t)):

πi(t + ∆) =
(

1 + qii∆ + σ(∆)
)

πi(t)+
∑

j,j 6=i

(
qji∆ + σ(∆)

)
πj(t)+

σ(∆).

A σ(∆) function multiplied with a bounded function (0 ≤ πi(t) ≤ 1) remains to
be a σ(∆) function as well as the finite sum of such functions. Using this we can
rearrange the expression to

πi(t + ∆)− πi(t) = qii∆πi(t) +
∑

j,j 6=i

qji∆πj(t) + σ(∆) =
∑

j

qji∆πj(t) + σ(∆).

Dividing both sizes by ∆ and making the ∆ → 0 limit we have

πi(t + ∆)− πi(t)
∆

=
∑

j

qjiπj(t) +
σ(∆)

∆

and
dπi(t)

dt
=

∑

j

πj(t)qji . (5)

(5) is the differential equation describing the transient behaviour of CTMCs. We
apply the same forward approach to evaluate the transient behaviour of Markov
fluid models.

First order, infinite buffer, homogeneous Markov fluid models We per-
form the same analysis for the fluid density using these 3 possible events during
the (t, t + ∆) interval. For simplicity we neglect the unnecessary σ(∆) terms.

If S(t + ∆) = i, then during the (t, t + ∆) interval the CTMC

– stays in i and increases the fluid level with ri∆ with probability 1 + qii∆,



– moves from k to i and changes the fluid level with O(∆) with probability
qki∆, where O(∆) is a function which vanishes as ∆ tends to zero, i.e.,
lim∆→0O(∆) = 0 (in this particular case the change of the fluid level is
between ri∆ and rj∆),

– has more than 1 state transition with probability σ(∆).

Considering these three cases we can express the fluid density at time t + ∆
as a function of the fluid density at time t:

pi(t + ∆,x) = (1 + qii∆) pi(t, x− ri∆)+∑

k∈S,k 6=i

qki∆ pk(t, x−O(∆))+

σ(∆) .

Rearranging the terms, dividing both sides by ∆ and making the ∆ → 0
limit gives

pi(t + ∆,x)− pi(t, x− ri∆) =∑

k∈S
qki∆ pk(t, x−O(∆)) + σ(∆) ,

pi(t + ∆,x)− pi(t, x)
∆

+ ri
pi(t, x)− pi(t, x− ri∆)

ri∆
=

∑

k∈S
qki pk(t, x−O(∆)) +

σ(∆)
∆

,

∂

∂t
pi(t, x) + ri

∂

∂x
pi(t, x) =

∑

k∈S
qki pk(t, x) . (6)

(6) is the basic partial differential equation describing the transient behaviour
of Markov fluid models. Indeed this equation describes the process behaviour
during the period while the fluid level is between the boundaries.

The model behaviour at the boundaries can be obtained by the same forward
argument. If ri > 0, than the fluid level increases in state i, which means that
the buffer cannot be empty in state i, i.e., `i(t) = Pr(X(t) = 0, S(t) = i) = 0.

If ri ≤ 0, we can consider the same 3 cases for the (t, t + ∆) interval:

– If there is no state transition the fluid level is zero at t + ∆ if it was zero at
t or if it was between 0 and −ri∆ at t.

– If there is one state transition in the interval, the fluid level was zero at t or
if it was between 0 and O(∆) (between −ri∆ and −rk∆) at t.

– The case of having more than one state transitions in the interval, is treated
in the same way as before.



`i(t + ∆) =

(1 + qii∆)

(
`i(t) +

∫ −ri∆

0

pi(t, x)dx

︸ ︷︷ ︸
∗

)
+

∑

k∈S,k 6=i

qki∆

(
`k(t) +

∫ O(∆)

0

pk(t, x)dx

︸ ︷︷ ︸
O(∆)

)
+

σ(∆) .

When x ≤ −ri∆, then using the first elements of the Taylor series of pi(t, x),
we have

pi(t, x) = pi(t, 0) + xp′i(t, 0) + σ(∆) ,

and substituting it into the previous expression we obtain

∗ =
∫ −ri∆

0

pi(t, x)dx

=
∫ −ri∆

0

pi(t, 0)dx +
∫ −ri∆

0

xp′i(t, 0)dx +
∫ −ri∆

0

σ(∆)dx

= −ri∆ pi(t, 0) +
(−ri∆)2

2
p′i(t, 0)

︸ ︷︷ ︸
σ(∆)

+ (−ri∆) σ(∆)︸ ︷︷ ︸
σ(∆)

.

From which we can calculate the differential equation for the empty buffer prob-
ability using the same steps as before:

`i(t + ∆) = (1 + qii∆)
(
`i(t) −ri∆pi(t, 0) + σ(∆)

)
+

∑

k∈S,k 6=i

qki∆ (`k(t) +O(∆)) + σ(∆) ,

`i(t + ∆)− `i(t) = qii∆ `i(t)− ri∆pi(t, 0)+

∑

k∈S,k 6=i

qki∆ (`k(t) +O(∆)) + σ(∆) ,

`i(t + ∆)− `i(t)
∆

=

− ri pi(t, 0) +
∑

k∈S
qki (`k(t) +O(∆)) +

σ(∆)
∆

,



d

dt
`i(t) = −ri pi(t, 0) +

∑

k∈S
qki `k(t) . (7)

Having these expressions we can conclude the transient description of first
order, infinite buffer, homogeneous Markov fluid models. The fluid density is
governed by (6) while the empty buffer probability is `i(t) = 0 if ri > 0 and (7)
if ri ≤ 0. There is no simple symbolic solution to this set of differential equations.
When the initial condition of the fluid model is known, it can be solved using
numerical techniques. The solution has to fulfill the following equations:

∫ ∞

0

pi(t, x)dx + `i(t) = πi(t) . (8)

πi(t) = πi(0)eQt, (9)

where (8) is the special form of (3) for infinite buffer model and (9) is the solution
of (5).

First order, finite buffer , homogeneous behaviour The presence of an
upper boundary at B does not change the transient description a lot. It leaves
the behaviour at the lower boundary, (7), unchanged, it reduces the validity of
(6) to 0 < x < B and it introduces a differential equation, very similar to (7) for
the upper boundary. That is, ui(t) = 0 if ri < 0 and

d

dt
ui(t) = ri pi(t, B) +

∑

k∈S
qki uk(t), (10)

if ri ≥ 0. (10) is obtained in the same way as (7).

Second order , infinite buffer, homogeneous behaviour. The case of sec-
ond order Markov fluid model can be analyzed using the same method based on
the short term behaviour of the Markov model. We derive the fluid density at
time t + ∆ based on the fluid density at time t:

– If there is no state transition in the (t, t + ∆) interval we need to evaluate a
convolution with respect to the pdf of the normal distributed amount of fluid
accumulated over the (t, t+∆) interval, fN (∆ri,∆σ2

i )(u). For simplicity we set
the limits of this integration to −∞ and ∞. It is to avoid the introduction
of additional vanishing error terms.

– The analysis of the case with one state transition is also simplified. A con-
volution with finally vanishing terms should be taken into consideration in
a more detailed analysis. The analysis of the term without state transition
indicates how the term with one state transition vanishes, but we do not
detail this point here.



pi(t + ∆,x) = (1 + qii∆)
∫ ∞

−∞
pi(t, x− u)fN (∆ri,∆σ2

i )(u)du

︸ ︷︷ ︸
∗∗

+

∑

k∈S,k 6=i

qki∆ pk(t, x−O(∆))+

σ(∆)

To obtain the under braced term we use the Taylor expansion again, but now
with 3 terms:

pi(t, x− u) = pi(t, x)− up′i(t, x) +
u2

2
p′′i (t, x) +O(u)3.

Based on this expansion we have:

∗∗ = pi(t, x)
∫ ∞

−∞
fN (∆ri,∆σ2

i )(u)du

︸ ︷︷ ︸
1

−p′i(t, x)
∫ ∞

−∞
ufN (∆ri,∆σ2

i )(u)du

︸ ︷︷ ︸
∆ri

+

p′′i (t, x)
∫ ∞

−∞

u2

2
fN (∆ri,∆σ2

i )(u)du

︸ ︷︷ ︸
∆2r2

i +∆σ2
i /2=∆σ2

i /2+σ(∆)

+
∫ ∞

−∞
O(u)3fN (∆ri,∆σ2

i )(u)du

︸ ︷︷ ︸
O(∆)2=σ(∆)

.

Back substituting this results and performing the same steps as before we
obtain

pi(t + ∆,x) = (1 + qii∆)
(
pi(t, x)− p′i(t, x)∆ri + p′′i (t, x)∆σ2

i /2
)

+∑

k∈S,k 6=i

qki∆ pk(t, x−O(∆)) + σ(∆) ,

pi(t + ∆,x)− pi(t, x) = qii∆pi(t, x)− p′i(t, x)∆ri + p′′i (t, x)∆σ2
i /2+∑

k∈S,k 6=i

qki∆ pk(t, x−O(∆)) + σ(∆) ,

∂

∂t
pi(t, x) +

∂

∂x
pi(t, x)ri − ∂2

∂x2
pi(t, x)

σ2
i

2
=

∑

k∈S
qki pk(t, x). (11)

(11) also justifies the name of this fluid models. In this case not only the
first derivative of the fluid density, but also the second one appear in the partial
differential equation describing the transient behaviour of the model.

Boundary condition with reflecting barrier The boundary condition of
second order Markov fluid models depends on the type of the boundary. In case
of reflecting barriers the probability of empty buffer is zero, `i(t) = 0 and the



initial value of the fluid density can be computed based on (3) using (11) and
(5).

Since the buffer is infinite buffer and `i(t) = 0, we have
∫ ∞

0

pi(t, x)dx = πi(t) .

Taking the derivatives of both side with respect to t results
∫ ∞

x=0

∂

∂t
pi(t, x) dx =

∂

∂t
πi(t)

Substituting (11) into the left and (5) into the right hand side we have
∫ ∞

x=0

−∂pi(t, x)
∂x

ri +
∂2pi(t, x)

∂x2

σ2
i

2
+

∑

k∈S
qki pk(t, x)dx =

∑

k∈S
qkiπi(t),

from which we obtain the boundary condition as

−ri

[
pi(t, x)

]∞

x=0︸ ︷︷ ︸
−pi(t,0)

+
σ2

i

2

[
p′i(t, x)

]∞

x=0︸ ︷︷ ︸
−p′i(t,0)

+
∑

k∈S
qki

∫ ∞

x=0

pk(t, x)dx

︸ ︷︷ ︸
πi(t)

=
∑

k∈S
qkiπi(t) ,

ripi(t, 0)− σ2
i

2
p′i(t, 0) = 0 (12)

Fluid level dependent model behaviour Up to now we considered fluid
models where between the boundaries the fluid level does not effect the evolution
of the system. It is not always the case in practice and the presented analytical
description of fluid models allows to integrate fluid level dependence into the
transient description in a simple way.

As a consequence we assumed that the transition rate of the discrete part of
the process, qij , the mean and the variance of the fluid changing rate, ri and σi,
respectively, are independent of the current fluid level. When these quantities
depend on the fluid level we have the following model behaviour.

lim
∆→0

Pr(S(t + ∆) = j|S(t) = i,X(t))
∆

= qij(X(t)) .

When the first order model stays in state i during the (t, t+∆) interval and the
fluid level is between the boundaries

X(t + ∆)−X(t) = ri(X(t))∆ + σ(∆),

and when the second order model does the same

X(t + ∆)−X(t) = N (ri(X(t))∆,σ2
i (X(t))∆) + σ(∆).



Formally it is easy to incorporate fluid level dependency into all previous
equations by making the transition rates of the discrete part, the mean and the
variance of the fluid changing rate depend on the fluid level, i.e., qij(x), ri(x)
and σi(x), respectively. This ways, e. g., (6) becomes

∂

∂t
pi(t, x) + ri(x)

∂

∂x
pi(t, x) =

∑

k∈S
qki(x) pk(t, x) ,

and the associated boundary equation, (7) becomes, if ri(0) < 0 (and ri(x) is
continuous):

d

dt
`i(t) = − ri(0) pi(t, 0) +

∑

k∈S
qki(0) `k(t).

General case We summarize the results by providing the most general equation
and present the ways to simplify it in case of special fluid models.

First of all we compose vector equations out of the set of scalar equations
presented before. Let p(t, x) = {pi(t, x)}, `(t) = {`i(t)} and u(t) = {ui(t)}
be the row vectors of fluid densities, empty buffer probabilities and buffer full
probabilities respectively, further more let Q(x) = {qij(x)}, R(x) = Diag〈ri(x)〉
and S(x) = Diag〈σ2

i (x)
2 〉 be the generator matrix of the discrete variable, the

diagonal matrix of the mean fluid rates and the diagonal matrix of the variance
parameter of the fluid process.

The most general equations are obtained with second order , finite buffer ,
fluid level dependent fluid models, where we do not define the boundary be-
haviour yet:

∂p(t, x)
∂t

+
∂p(t, x)

∂x
R(x) − ∂2p(t, x)

∂x2
S(x) = p(t, x) Q(x) ,

p(t, 0) R(0) − p′(t, 0) S(0) = `(t) Q(0) ,

−p(t, B) R(B) + p′(t, B) S(B) = u(t) Q(B) ,

(13)

These general equations simplify as follows, according to the boundary be-
haviour of the model:

– if σi = 0 and ri(x) is positive and continuous around zero then `i(t) = 0, if
σi = 0 and ri(x) is negative and continuous around B then ui(t) = 0.

– if σi >0 and the lower boundary is reflecting in state i then `i(t) = 0, if
σi >0 and the upper boundary is reflecting in state i then ui(t) = 0.

– if σi >0 and the lower boundary is absorbing in state i then pi(t, 0)=0, if
σi >0 and the upper boundary is absorbing in state i then pi(t, B)=0.

The special cases of this general case are:



– the first order model: green parts vanish ,

– the infinite buffer model: blue equation vanishes ,

– the fluid level independent model: Q(x), R(x), S(x) become Q, R, S .

Normalizing condition: In case of transient analysis the set of differential
equations is accompanied with an initial condition that defines the normalization
of the model. Indeed the initial condition should fulfill the normalizing condition

∫ B

0

p(0, x) dx1I + `(0)1I + u(0)1I = 1.

The set of differential equations we presented in this section preserves the prob-
ability, which means that if the initial condition satisfies the normalizing condi-
tion, then for all t > 0 the following normalizing condition holds

∫ B

0

p(t, x) dx1I + `(t)1I + u(t)1I = 1.

3.5 Stationary description of fluid models

The presented transient description of fluid models describes also the time limit-
ing behaviour of these models, but as it is common with several other stochastic
models, the direct stationary analysis is more efficient when only the station-
ary behaviour is of interest. The general approach to obtain the stationary de-
scription of fluid models is to make the t goes to infinity limit in the transient
equations.

Two main questions has to be considered during this transition. If the tran-
sient functions tend to stationary values, and if this value is unique, i.e., inde-
pendent of the initial condition in the sense that it converges to the same limit
starting from any valid initial condition.

The typical behaviour of the above differential equations is that the solution
either converges to a finite value or diverges, but does not exhibit strange be-
haviours like cyclic alternation, etc. Finite buffer models usually converge. To
decide if an infinite buffer model converges to a proper stationary distribution
we need the stability property.

Definition 2. A fluid model is said to be stable, if for ∀x ∈ R+, ∀i ∈ S the time
to empty the buffer

TE
i (x) = min

t>0
(X(t) = 0|X(0) = x, S(0) = i)

has a finite mean (i.e., E(TE
i (x)) < ∞).



Stable infinite buffer models usually converge. It is easy to decide if a model
is stable in case of fluid level independent Markov fluid models. The condition
of stability is ∑

i∈S
πiri < 0,

where πi is the stationary distribution of the discrete part of the model. The
stability of fluid level dependent Markov fluid models is more complex to decide.
It requires the solution of the differential equations describing the stationary
behaviour of the process.

To decide if the stationary behaviour is unique we need the ergodic property.

Definition 3. A fluid model is said to be ergodic, if for ∀x, y ∈ R+,∀i, j ∈ S
the transition time

Ti,j(x, y) = min
t>0

(X(t) = y, S(t) = j|X(0) = x, S(0) = i)

has a finite mean (i.e., E(T ) < ∞).

The stationary behaviour of ergodic fluid models is independent of the initial
condition.

Stationary equations Assuming the following limits exists, describe a proper
distribution and independent of the initial condition we present the stationary
equations obtained from the transient ones.

– πi = lim
t→∞

Pr(S(t) = i) – state probability,

– ui = lim
t→∞

Pr(X(t) = B, S(t) = i) – buffer full probability,

– `i = lim
t→∞

Pr(X(t) = 0, S(t) = i) – buffer empty probability,

– pi(x) = lim
t→∞

lim
∆→0

1/∆ Pr(x < X(t) < x + ∆,S(t) = i) – fluid density,

– Fi(x) = lim
t→∞

Pr(X(t) < x, S(t) = i) – fluid distribution.

The stationary counterpart of (13) can be obtained by making the t goes to
infinity limit on both sides of the equations:

p′(x) R(x) − p′′(x) S(x) = p(x) Q(x) ,

p(0) R(0) − p′(0) S(0) = ` Q(0) ,

−p(B) R(B) + p′(B) S(B) = u Q(B) ,

(14)

where the fluid rate and the boundary conditions determine the following vari-
ables:

– if σi = 0 and ri(x) is positive and continuous around zero then `i = 0, if
σi = 0 and ri(x) is negative and continuous around B then ui = 0,



transient statioanry

differential equations [8] [14]
spectral decomposition + [20, 1, 7, 6]

randomization [28] [30, 29]
transform domain [27] +

Markov regenerative [2] +
matrix exponent + [15]

Table 1. Solution methods for Markov fluid models

– if σi >0 and the lower boundary is reflecting in state i then `i = 0, if σi >0
and the upper boundary is reflecting in state i then ui = 0,

– if σi >0 and the lower boundary is absorbing in state i then pi(0) = 0, if
σi >0 and the upper boundary is absorbing in state i then pi(B)=0.

Normalizing condition: In case when the stationary solution is computed
based on (14), we cannot utilize the information about the initial condition of
the model, but the solution must fulfill the normalizing condition:

∫ B

0

p(x) dx1I + `1I + u1I = 1.

4 Solution methods

There are several different ways to evaluate Markov fluid models. They differ
in their applied analysis approach, provided results and applicability. It is pos-
sible to obtain symbolic solution for rather small models (Markov fluid models
with less than 5 discrete states), but for larger models the application of nu-
merical methods is feasible only. Table 1 presents a summary of some potential
approaches and classifies some research papers according to their applied ap-
proaches. In this section we summarize some analysis approaches, but we do not
intend to provide a complete view.

Table 1 indicates that all of the mentioned solution methods are applicable
to both, the transient and the stationary analysis, but in a different way. In case
of transient analysis we have a set of partial differential equations (13), a set
of boundary conditions, and a set of explicit initial conditions. Starting from
this initial condition it is possible to evaluate the model behaviour using a for-
ward analysis approach. In case of stationary analysis we have a set of ordinary
differential equations (14), a set of boundary conditions, and a normalizing con-
ditions. A difficulty of the stationary analysis with respect to the transient one
is that normalizing condition does not provide an explicit expression to start
the solution from. Apart of this the transient analysis is more complex than the
stationary one, since we have one variable (t) more in the transient case.

In the rest of this section we summarize the main ideas of some selected
solution methods.



4.1 Transient solution methods

Numerical solution of differential equations Chen et al. proposed a dis-
cretization based numerical technique to evaluate the transient behaviour of
fluid models [8]. The main strength of their approach is that that all mentioned
model behaviour can be analyzed with it. Indeed this is the only approach for
the transient analysis of fluid level dependent models. The proposed approach
starts from the initial condition, and computes (approximates) the evolution of
the fluid distribution step-by-step in ∆ long time intervals at some fluid levels
based on the differential equations and the boundary condition.

Randomization Randomization is an effective numerical analysis approach
that is widely used for the transient analysis of CTMCs, i.e., for the numerical
solution of (5). It is numerically stable procedure where the convex combination
of probabilities (non-negative numbers less or equal to one) are computed. The
procedure is based on a symbolic solution of (5). Sericola extended this technique
to the transient analysis of first order, infinite buffer, fluid level independent
Markov fluid models [28]. Indeed he provided a symbolic solution of (6) in the
following form:

F c
i (t, x) =

∞∑
n=0

e−λt (λt)n

n!

n∑

k=0

(
n
k

)
xk

j (1− xj)n−kb
(j)
i (n, k),

where F c
i (t, x) = Pr(X(t) > x, S(t) = i), xj =

x−r+
j−1t

rjt−r+
j−1t

if x ∈ [r+
j−1t, rjt), and

b
(j)
i (n, k) is defined by initial value and a simple recursion.

The main properties of this randomization based solution method are as
follows:

– the expression with the given recursive formulas is a solution of the differ-
ential equation,

– the initial value of b
(j)
i (n, k) is set to fulfill the boundary condition,

– due to the fact that 0 ≤ xj ≤ 1 we have the same numerical stability
properties as for the transient analysis of CTMCs:
convex combination of non-negative numbers are computed, and hence the
floating point errors has a limited effect and it does not cause problems like
“ringing” (change of sign),

– the initial fluid level must be X(0) = 0 (extension to X(0) > 0 and to finite
buffer is not available).

Markov regenerative approach Ahn and Ramaswami recommended to di-
vide the transient analysis of first order, infinite buffer, fluid level independent
Markov fluid models into periods according to the busy/idle state of the buffer
[2]. When Ti is the beginning of the ith busy (non-empty) period of the fluid
buffer then the (S(ti), Ti) pairs form a Markov renewal sequence. The analysis of
a busy and an idle cycle, i.e., a (Ti−1, Ti) interval, is divided into two parts. The



idle period is easier to analyze. Its length is phase type distributer. The analysis
of the busy period is more complex, but Ahn and Ramaswami recognized the
similarities between fluid and queueing models and provided a solution method
based on Matrix analytic technique.

Transform domain description Ren and Kobayashi proposed a solution tech-
nique based on the Laplace transform domain description first order, infinite
buffer, fluid level independent Markov fluid models [27]. The Laplace transform
of (6) is

p∗∗(s, v) = ( p∗(0, v)︸ ︷︷ ︸
initial condition

+ p∗(s, 0)︸ ︷︷ ︸
unknown

R)(sI + vR−Q)−1.

where p∗∗(s, v) must be analytical. Since p∗(0, v) is known from the initial con-
dition p∗(s, 0) is set to eliminates the roots of det(sI + vR−Q).

This approach provides a closed form solution also for the case of initially
non-empty buffer (X(0) > 0), but its applicability is limited to small models
(less than 5 discrete states) since it is based on complex symbolic functional
analysis.

4.2 Stationary solution methods

Spectral decomposition One of the first papers on the application of Markov
fluid models for modeling of telecommunication systems [7] already applied the
spectral decomposition method for the solution of the obtained model. Later on
Kulkarni presented a survey on spectral decomposition based analysis of first
order, infinite and finite buffer, fluid level independent Markov fluid models [20].

To present these results we need the following notations. The set of discrete
states are partitioned as follows:

– S+: i ∈ S+ iff σi > 0 – second order states,
– S0: i ∈ S0 iff ri = 0 and σi = 0, – zero states,
– S0+: i ∈ S0+ iff ri > 0 and σi = 0, – positive first order states,
– S0−: i ∈ S0− iff ri < 0 and σi = 0, – negative first order states,
– S∗ = S0−⋃S0+, – first order states.

The general form of the solution of the differential equation p′(x)R = p(x)Q
is

p(x) = eλxφ,

where φ is a row vector. Substituting this solution into the differential equation
we get the characteristic equation:

φ(λR−Q) = 0,

whose solutions are obtained at

det(λR−Q) = 0.



The characteristic equation has |S0+| + |S0−| solutions, with |S0+| negative
eigenvalues, 1 zero eigenvalue, and |S0−| − 1 positive eigenvalues. Having these
eigenvalues and eigenvectors the solution is

p(x) =
|S0+|+|S0−|∑

j=1

aje
λjxφj ,

and the aj coefficients are set to fulfill the boundary and normalizing conditions.
In the infinite buffer case these conditions are:

– p(0) R = ` Q ,
– `i = 0 if ri > 0, and
–

∫∞
0

pi(x)dx + `i = πi.

From which aj = 0 for λj > 0 and the aj coefficients for λj < 0 are obtained
from the solution of the linear system of equations determined by the conditions
of infinite buffer.
In the finite buffer case these conditions are:

– p(0) R = ` Q , p(B) R = u Q ,
– `i = 0 if ri > 0, ui = 0 if ri < 0, and
–

∫∞
0

pi(x)dx + `i + ui = πi.

From which all aj coefficients are obtained from the linear system of equations
determined by the conditions of infinite buffer.
The result on the sign of the eigenvalues has the following consequences:

– If |S0−| > 1 and the buffer is infinite then there is at least one positive
eigenvalue, which needs to be excluded from the solution (if the fluid model
is stable). The exclusion of the positive eigenvalue makes the spectral de-
composition necessary.

– If |S0−| = 1 and the buffer is infinite, then all eigenvalues are non-positive
and there is no need to exclude any eigenvalue from the solution.

– If the buffer is finite all eigenvalues plays role in the solution, i.e., there is
no need for special treatment of the positive eigenvalues.

Matrix exponent An algebraic approach was proposed by Gribaudo and Ger-
man to solve the set of equations given for first order, finite buffer, fluid level
independent Markov fluid models [15]. Assuming that |S0| = 0 and S = S∗ they
introduced v = ` + u, Q−, Q+, where q−ij = qij if i ∈ S− and otherwise q−ij = 0.
With these notations the set of equations becomes:

∂p(x)
∂x

R = p(x)Q −→ p(B) = p(0) eQR−1B = p(0) Φ,

p(0)R = vQ− −→ p(0) = vQ−R−1,

−p(B)R = vQ+ −→ v(Q−R−1ΦR + Q+) = 0 ,



where the equation in the box is linear for the unknown element of vector v. The
normalizing condition of this equation is

`1I + u1I + p(0)
∫ B

0

eQR−1xdx

︸ ︷︷ ︸
Ψ

1I = v(I + Q−R−1Ψ)1I = 1 .

Relation of spectral decomposition and matrix exponent: With some
rearrangement of the spectral solution we can show that the above presented
2 solutions are identical. Suppose that |S0| = 0 and S = S∗ the characteristic

equation is φ(λI−QR−1) = 0, and the spectral solution is p(x) =
|S|∑

j=1

aje
λjxφj ,

where λj and φj are the eigenvalues and the left eigenvector of matrix QR−1.

Introducing vector a = {aj} and matrix B =




φ1

φ2

...
φ|S∗|


 , the spectral solution

can be rewritten as

p(x) =
|S|∑

j=1

aje
λjxφj = a Diag〈eλix〉 B

= a B︸︷︷︸ B−1 Diag〈eλix〉 B︸ ︷︷ ︸
= p(0) eQR−1x,

which is the matrix exponential form used in [15].

Spectral decomposition of second order models The spectral decomposi-
tion based analysis of second order, infinite and finite buffer, fluid level indepen-
dent Markov fluid models is presented by Karandikar and Kulkarni in [19]. In this

case the differential equation has the form p′(x) R − p′′(x) S = p(x) Q . The
general form of the solution if this equation is the same as in the first order case,
p(x) = eλxφ, but back substituting this solution we a different characteristic
equation:

φ(λR− λ2S−Q) = 0.

This characteristic equation has 2|S+|+|S∗| solutions, with |S+|+|S0+| negative
eigenvalues, 1 zero eigenvalue, and |S+|+|S0−|−1 positive eigenvalues. The final
form of the solution is

p(x) =
2|S+|+|S∗|∑

j=1

aje
λjxφj ,

and the aj coefficients are set to fulfill the boundary and normalizing conditions.



A transformation of the quadratic equation to a linear one To avoid
handling quadratic equations several authors recommended to transform the
system into a linear one with enlarged size, e.g., [6]. In case of second order,
infinite and infinite buffer, fluid level independent models with |S0| = |S∗| = 0
and S = S+, this transformation is based on the following representation of the
differential equation

d

dx
p(x) R − d

dx
p′(x) S = p(x) Q ,

d

dx
p(x) I = p′(x) I .

This equations form a vector equation of double size

d

dx
p(x) p′(x)

R I
−S 0

= p(x) p′(x)
Q 0
0 I

.

Introducing p̂(x) = p(x) p′(x) , R̂ =
R I
−S 0

, and Q̂ =
Q 0
0 I

, we obtain a first

order differential equation

d

dx
p̂(x) R̂ = p̂(x) Q̂ ,

whose solution is
p̂(B) = p̂(0) eQ̂R̂−1B .

Randomization One of the simplest stationary solution methods is based on
randomization. It is applicable for first order, infinite [30] or finite [29] buffer,
fluid level independent Markov fluid models. A symbolic solution of the differ-
ential equation is

Fi(x) =
∞∑

n=0

e−λt/r (λt/r)n

n!
bi(n)

where r = min(ri|ri > 0) and bi(n) is defined by simple recursion such that the
boundary conditions are fulfilled. Similar to other randomization based methods
the numerical procedure computes convex combination of non-negative numbers,
which ensures nice numerical properties.

The main limitation of these randomization based methods is that |S0−|must
be 1. Extension to the |S0−| > 1 case is not known.

Numerical solution of differential equations Unfortunately non of the
above stationary analysis methods is applicable with fluid level dependent mod-
els. The only approach that is applicable for fluid level dependent cases is based
on the numerical solution of the

M′(x) R(x) − M′′(x) S(x) = M(x) Q(x) (15)



differential equation with initial condition M(0) = I, as it is proposed by Grib-
audo et al. in [14].

The solution is composed by the following steps:

– Numerically solve the matrix function M(x) based on the differential equa-
tion (15)

– calculate the unknowns (p(0), p(B), `, u) based on the boundary conditions,
the normalizing condition and

p(B) = p(0) M(B)

The major limitation of this approach is that it limited to finite buffer models.

5 Application

Fluid Models and FSPNs have been successfully used in the literature to study
several interesting systems. Here we present how Fluid Stochastic Petri Nets
have been used in [22] to compute the transfer time distribution of resource in
a Peer-to-Peer file sharing application.

File transfer using Peer-to-Peer file sharing applications is usually divided
into two steps: resource search and resource download. Depending on the file
size and its popularity, either of the two phases can become the bottleneck. In
this section we describe both the location and download phases of a generic Peer-
to-Peer file sharing application using a fluid model. We propose a model that
allows the computation of the transfer time distribution, and that it is capable of
considering some advanced characteristic such as parallel downloads and on-off
peer behavior. These features, although quite common in the real applications,
have not been considered in previous models proposed in the literature. Model
parameters reflect network, application, resource and user characteristics, and
can be tuned to analyze a large number of different real implementations.

Peer-to-Peer Model The proposed fluid model for the estimation of the
transfer time distribution in P2P file sharing applications will be described using
the Fluid Stochastic Petri Net (FSPN) formalism [18, 17]. Table 2 reports the
other notations derived from the reference.

Table 2. Model Notations

Notation Description Range
B Set of bandwidths {14.4, 28.8, 33.6, 56, 64

128, DSL, Cable, T1, T3}
N Number of peers holding the resource IN
SB Server bandwidth B
CB Tagged client bandwidth B
S Resource size IN

K(b) Max. number of concurrent peers B → IN
LT Average number of requests of uploads IN
W Bandwidth dependent weight B → [0, 1]

L(b) LT as function of the peer bandwidth LT ∗W (b)



The FSPN basic Model The basic model [12] computes the transfer time dis-
tribution of a resource of size S downloaded by a client with a bandwidth CB,
from a server with bandwidth SB. It neglects both the search and the queueing
phase, and download interruptions. That model is defined by means of a FSPN.
The main assumption in the basic model, is that the session time of concurrent
peers is described by an Hyperexponetnial distribution (with parameters α, µ1

and µ2), and that the interarrival time of concurrent downloaders is approx-
imated by an exponential distribution (whose parameter L(cb) is bandwidth
dependent). The maximum number of concurrent downloads from a server is
limited by a bandwidth dependent parameter K(sb). Moreover, the server band-
width is equally shared among the concurrent downloaders. For a discussion on
the validity of these assumptions, please refer to [12].

Using these assumptions, the available bandwidth at the client can be com-
puted as a function of the number of concurrent peers. In particular, if we call
Ij the total number of concurrent peers in a discrete state of FSPN model, then
the available bandwidth is equal to:

f(Ij) = min
(

sb

Ij + 1
, cb

)
. (16)

The FSPN model is analyzed by solving the system of partial derivative
differential equations that describes its underlaying stochastic process. From the
solution to these equations the probability density π̄(τ, x) of the fluid level at
a given time instant τ can be directly computed. π̄(τ, x) corresponds to the
probability density that the number of bytes downloaded at time τ is equal to
x. By integrating this quantity, the probability distribution that a file of size s
can be downloaded in less than t can be computed:

Ft(t|s) =
∫ ∞

s

π̄(τ, x)dx

∣∣∣∣
τ=t

. (17)

Modeling the search time, queueing time and peer unavailability
Search time is conditioned by many factors such as the popularity of the

resource, protocol characteristics, the participation level of the user and the
number of neighbor peers. After the searching phase the client selects peers
from which get the resource. Queueing time is the time spent before a selected
server serves the client request. It also depends on many factors, as the number
of concurrent downloads allowed, the bandwidth of the server and the number
of concurrent clients, the protocol, and the participation level of clients.

Creating a detailed model to consider all these aspects would be too complex.
Instead we simplify the model by considering the aggregate search plus queuing
time perceived by a client. That is, we suppose that we could compute the distri-
bution QS(τ) of the time required from the start of the search to the start of the
actual download of a resource. This seems to be a quite strong assumption, but
we will prove, at the end of this section, that despite its simplicity, the proposed
model is able to get most of the qualitative features that characterize parallel
download in peer to peer applications.



Figure 11 represents the extension of the model proposed [12]. The arrival
of a new concurrent download is modelled by transition request arrival. The ses-
sion length distribution is modelled by the sub-net composed by places CHOICE,
STAGE 1, STAGE 2, END SERVICE and transitions choose 1, choose 2, termi-
nate service, service 1, service 2. Their parameters are directly mapped to the
parameters of the distributions outlined in Section 5. The maximum number of
concurrent downloads is determined by the initial marking of place AVAILABLE,
and is set according to parameter K(sb). The amount of byte transferred is
modelled by fluid place TRANSFERRED and fluid transition transfer. The value
of parameter Ij corresponds to the sum of the marking of places STAGE 1 and
STAGE 2. The search and queueing phases are represented by the generic firing
time transition TON, with distribution φon.

Due to the active/non-active peer dynamics the server may become unavail-
able and then its service is stopped. When failures occur, the client starts a new
search of the same resource, and then it continues the download (likely from
another peer), after experiencing a new queueing time. The failure of server is
represented in the model by generic firing time transition TOFF, with firing time
distribution φoff .

Place SandQ represents the search and queueing phases, and place TRANS
the resource transfer phase.

As reported in [12], special care should be used to compute the initial distri-
bution of the number of concurrent peers at the server. In this case, the initial
state of the places representing the concurrent peers at the server, should be
determined at the time when the actual transfer starts, i.e. at the firing of tran-
sition TON. When transition TON fires, it should set the number of tokens in
places AVAILABLE, STAGE 1 and STAGE 2 according to the initial distribution,
determined following the technique proposed in [12]. The setting of the initial
state is achieved by an appropriate set of immediate transitions, weighted accord-
ing to the initial state distribution. In order to simplify Figure 11, this sub-net
has been removed and has been represented by the gray arrow labeled with Set
Initial state. Similarly, when the server experience a failure, all the places of the
sub-model representing its state must be emptied. This also can be achieved by
an appropriate set of immediate transition, which has been represented in Figure
11 by the gray arrow labeled with Clear state.

In this model, the popularity of the resource is considered when determining
the rate of transition TON. A very popular resource will have a shorter search
and queueing time, since will be available from more peers. A rare resource will
instead have a very high searching and queueing time.

Considering the parallel download from multiple sources
The model that represents parallel download from multiple servers can be

obtained by repeating H times the sub-models of Figure 11 representing the
server and the search-queueing state, where H corresponds to the maximum
number of parallel downloads. This is represented in Figure 12. Note that the H
sub-models representing the H servers, share the same resource download buffer,
modeled by fluid place TRANSFERRED. In this case, the rate at which the file
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Fig. 11. FSPN model representation of an unreliable server with search and queueing
phases.

is downloaded, is expressed as the minimum between the client bandwidth cb,
and the sum of the download rate from each server that is active in that time
instant, that is:

f(Ij) = min

(
H∑

k=1

I(#TRANSk = 1)
sbk

Ijk + 1
, cb

)
(18)

where I(#TRANSk) is an indicator function that returns 1 if the the number
of tokens in place TRANS of the submodel representing the k-th server is equal
to 1 (i.e. active download), zero otherwise. Ijk + 1 represents the sum of the
tokens in places STAGE 1 and STAGE 2 for each tangible (discrete) state mj of
the k-th server, i.e. the number of requests that interfere on that server with the
tagged client service.

Despite the symmetries, the sub-models are not independent, since they are
coupled by the fluid buffer TRANSFERRED. Moreover the relation that governs
the rate of the growth of the fluid place (Equation 18) is non-linear, due to the
presence of the min(·) function. This prevents to apply a solution technique that
analyzes each server separately, and combine them afterward.

Service parameters

µ1 0.001
µ2 0.1
α1 0.6
α2 0.4

Arrival rate

LT 0.01

Table 3. Model parameters used for experiments
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Fig. 12. FSPN model for multiple servers download.

Resource Size Average Bandwidth (Kbit/sec)
Session Time Session Time Session Time

1000 sec 20 sec. 10 sec.

512 KB 24.32 10.4 6.56
4 MB 59.68 14.08 7.84
10 MB 68.48 6.64 3.12

Table 4. Downloading bandwidth versus session duration and resource size

Experiments The proposed models, despite their simplifying assumptions,
can describe the qualitative behavior of real peer to peer systems. In both cases,
we present our analysis only for the case when all peers have the same band-
width connection (in particular, we consider 640 MB/s DSL technology). We
also approximate both search and queue time distribution and the server fail-
ure distribution with exponential distributions. For this reason, in the following
we will use parameters φon and φoff to indicate the rate of the corresponding
exponential distribution.

Extensive validation of results for our modeling technique shares the same
difficulty of previous works on analytical models for P2P systems. It is a difficult
task since existing measurement based studies have not focused on characteriz-
ing the duration of the transfer phase. Although it might be possible to validate
our model through detailed simulations of realistic P2P file sharing applications
it would have a prohibitive programming and computational cost. Nevertheless,
we performed simple validations by comparing model results in selected cases
where theoretical results are known or can be exactly computed. In particular,
we compared model results with the ideal case where there is no competition
for the server bandwidth and the transfer is only conditioned by the minimum
bandwidth between server and clients. In these cases we found a perfect agree-
ment between the model predictions and the theoretical results. It is a safety
check that allow us to know that at least in the deterministic case, without



concurrent operations, model result is identical to the expected one (that is the
ratio between the resource size and the minimum bandwidth among client and
server ones). Moreover, results presented in Table 5 are partially supported by
the measurement study presented in [24]. In particular, in [24] it is shown that
the average download speed is 30KB/sec that in the case of a 4MB resource
corresponds to an average transfer time of 133seconds. This average is compara-
ble with most of average values, referring to different number of sources, shown
in Table 5.

A first intuitive result (see Table 4) shows that the transfer time increases
with the increasing of unavailability rate. However, we must point out that this
effect heavily depends on the resource size. We thus perform an analysis with
respect to the resource size, in particular, we look at average bandwidth ex-
perienced during the file transfer as function of the failure rate. We keep the
searching-queueing rate constant to 0.01: this means that client wait a mean of
100 seconds to find a new connection. We vary the failure rate in order to get
server sessions of 10, 20, and 1000 seconds. The number of concurrent peers on
the server, K(sb)-1 (minus one takes into account the tagged client), is set to 3.
In this analysis we does not consider parallel downloads. FSPN model parame-
ters used in this experiment are reported in Table 3 while results are shown in
Table 4. The index we use to evaluate the performance is the average bandwidth
experienced to complete the transfer of the resource. It has been computed as
the ratio between the resource size and the average of the time transfer. It is
interesting to note that bigger resources suffer significantly from servers failure.
For instance, in the case of a 10 MBytes resource, the bandwidth falls down
when the failure rate is 0.05 and 0.1 (that is session time of 10 and 20 seconds).
Instead in the case of a 512 KByte resource, the penalty introduced by the fail-
ure of the server is less significative. This is due to fact that, on the average,
the resource can be completely transferred before the server fails, despite shorter
server session.

Most P2P file sharing applications (e.g., eDonkey, BitTorrent, etc.) allow
parallel downloads. The model presented in Figure 12 represents this feature.
Client peer downloads from multiple sources and gets better performance when
the number of source increases as shown in Fig. 13. This experiment refers to the
transfer of a 4 MByte file, with searching-queueing rate equal to 0.01 and failure
rate equal to 0.001, the number of concurrent peers on each server, K(sb) − 1
(minus one takes into account the tagged client), is set to 3. However, improve-
ments in performance are limited by the client download bandwidth; i.e. when
the total bandwidth provided by multiple servers exceeds the maximum client
download bandwidth, the speed at which the file is transferred remains constant,
despite the growth in the number of sources. This is shown in table 5, where the
mean and quantiles of the transfer time distribution related to a 4 MBytes re-
source are reported as function of the number of sources. In this case parameters
are: searching-queueing rate equal to 0.01 and failure rate equal to 0.001, the
number of concurrent peers on each server, K(sb) − 1, is set to 1. We can note
that the improvement in transfer performance become less significative as the



number of sources increases (since they saturate the client downloading band-
width). When sources become 9 the time required to transfer the file remains
constant. This insight may provide suggestions for the application design. E.g.,
let suppose that the application protocol is able to monitor the client bandwidth
status. If it detects that the client is the bottleneck, then it can avoid to add
new (parallel) sources. Their contribute, that should not be exploited in order to
improve tagged transfer performance, could be exploited to improve the system
service capacity for other peers.
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Number of Sources Tansfer Time (sec.)
Mean 50th quantile 90th quantile

3 178 170 240
4 148 140 200
5 131 130 170
6 119 120 160
7 110 110 148
8 104 100 130
9 104 100 130

Table 5. Transfer time as function of the number of sources

It is interesting to see how the benefit derived from the use of parallel down-
load depends on the size of the resource. Consider the case in which downloading
session does not suffer from the servers failures (i.e. the failure rate is very low).
We set searching-queueing rate much bigger than the failure one, respectively
0.1 and 0.001. The number of concurrent peers on each server, K(sb)− 1, is set
to 1. The study has been done for 512 KBytes, 4 and 10 MBytes resource sizes



and for a number of parallel downloads that grows from 1 up to 6, as shown In
Fig. 14. Small resources take less benefits from parallel downloading, since the
downloading time is shorter than the time required by the searching and queue-
ing phase to start a parallel download from another source. For bigger resources
instead, the downloading time is reduced significantly with the increases in the
number possible download source. These improvements are however limited by
the client bandwidth, as shown in the previous example. This can be seen for
for the 4 and the 10 MBytes cases, when the number of sources increase from 5
to 6.
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Distribution Tansfer Time (sec.)
Mean 90th quantile 95th quantile

Hypo-exponential 448 580 630
Exponential 376.31 575 660

Hyper-exponential 1 306.34 495 605
Hyper-exponential 2 297.35 440 510

Table 6. Modeling searching and queueing phases with different distributions.

In order to describe different system scenario we also approximate the search-
ing and queueing rate with different distributions. All previous results refer to the
exponential case. In addition we model the searching and queueing phases with
Hyper-exponential and Hypo-exponential distributions. Results are reported in
Table 6; Figure 15 refers to the transfer of a 4MB file with 3 parallel down-
loads and a session mean time of 15 minutes. In all cases the mean time spent
in the searching/queueing phase is 5 minutes. In the case ”Hyper-exponential
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Fig. 15. Transfer time distribution with different searching-queueing rate distributions

1” the mean time spent by the client is 10 minutes with a probability of 44%
and 1 minute with a probability of 56%. In this case faster searching/queueing
phases are favorite, indeed transfer time is shorter than in the case ”Expo-
nential”. Shorter searching/queueing phases are even more favorite in the case
”Hyper-exponential 2”: 3.45 minutes with probability 80%, and 10 minutes with
probability 20%. This setting results in faster transfers, as reported in Table 6.
The choice of the Hyper-exponential distribution can be useful for describing dif-
ferent scenario where shorter searching/queueing phases model popular resource
transfers and longer ones model rare resource transfers. The Hypo-exponential
distribution can be used to model rates when the approximation should be more
deterministic. In this case, the Hypo-exponential case corresponds to a 5 stages
Erlang distribution. Even if the goal of this work is not to compare different
approximations, it shows that the proposed model can be considered a flexible
tool for evaluating P2P applications performance.

6 Conclusions

Stochastic models with continuous variables (Reward models, Fluid models and
FSPNs) often allows proper modeling of real systems. Their analysis is a more
complex than the ones with only discrete variables, but feasible for a wide class
of models. The analytical description of Markov fluid models and a set of solution
techniques have been introduced. The presented application examples demon-
strate the potential use of fluid models in performance analysis.
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