Skip to main content

Tackling Large State Spaces in Performance Modelling

  • Chapter

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 4486))

Abstract

Stochastic performance models provide a powerful way of capturing and analysing the behaviour of complex concurrent systems. Traditionally, performance measures for these models are derived by generating and then analysing a (semi-)Markov chain corresponding to the model’s behaviour at the state-transition level. However, and especially when analysing industrial-scale systems, workstation memory and compute power is often overwhelmed by the sheer number of states.

This chapter explores an array of techniques for analysing stochastic performance models with large state spaces. We concentrate on explicit techniques suitable for unstructured state spaces and show how memory and run time requirements can be reduced using a combination of probabilistic algorithms, disk-based solution techniques and communication-efficient parallelism based on hypergraph-partitioning. We apply these methods to different kinds of performance analysis, including steady-state and passage-time analysis, and demonstrate them on case study examples.

Based on work carried out in collaboration with Nicholas J. Dingle, Peter G. Harrison and Aleksandar Trifunovic.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yang, J., Sar, C., Engler, D.: eXplode: a Lightweight, General System for Finding Serious Storage System Errors. In: Proc. 7th Symposium on Operating System Design and Implementation, Seattle, WA, November 2006, pp. 131–146 (2006)

    Google Scholar 

  2. Bause, F., Kritzinger, P.S.: Stochastic Petri Nets – An Introduction to the Theory. Vieweg, Wiesbaden (1995)

    Google Scholar 

  3. Grassman, W.: Means and variances of time averages in Markovian environments. European Journal of Operational Research 31(1), 132–139 (1987)

    Article  MathSciNet  Google Scholar 

  4. Reibman, A., Trivedi, K.S.: Numerical transient analysis of Markov models. Computers and Operations Research 15(1), 19–36 (1988)

    Article  MATH  Google Scholar 

  5. Bolch, G., Greiner, S., Meer, H., Trivedi, K.: Queueing Networks and Markov Chains. Wiley, Chichester (Aug. 1998)

    MATH  Google Scholar 

  6. Melamed, B., Yadin, M.: Randomization procedures in the computation of cumulative-time distributions over discrete state Markov processes. Operations Research 32(4), 926–944 (1984)

    MathSciNet  MATH  Google Scholar 

  7. Miner, A.S.: Computing response time distributions using stochastic Petri nets and matrix diagrams. In: Proceedings of the 10th International Workshop on Petri Nets and Performance Models (PNPM’03), Urbana-Champaign, IL, September 2nd–5th 2003, pp. 10–19 (2003)

    Google Scholar 

  8. Muppala, J., Trivedi, K.: Numerical transient analysis of finite Markovian queueing systems. In: Bhat, U., Basawa, I. (eds.) Queueing and Related Models, pp. 262–284. Oxford University Press, Oxford (1992)

    Google Scholar 

  9. Ajmone-Marsan, M., Conte, G., Balbo, G.: A class of Generalised Stochastic Petri Nets for the performance evaluation of multiprocessor systems. ACM Transactions on Computer Systems 2, 93–122 (1984)

    Article  Google Scholar 

  10. Knottenbelt, W.: Parallel Performance Analysis of Large Markov Models. PhD thesis, Imperial College London (February 2000)

    Google Scholar 

  11. Bradley, J.T., Dingle, N.J., Harrison, P.G., Knottenbelt, W.J.: Distributed computation of passage time quantiles and transient state distributions in large semi-Markov models. In: PMEO’03, Performance Modelling, Evaluation and Optimization of Parallel and Distributed Systems, Nice, April 2003, p. 281. IEEE Computer Society Press, Los Alamitos (2003)

    Google Scholar 

  12. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs (1985)

    MATH  Google Scholar 

  13. Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs (1989)

    MATH  Google Scholar 

  14. Hillston, J.: A Compositional Approach to Performance Modelling. PhD thesis, University of Edinburgh (1994)

    Google Scholar 

  15. Rettelbach, M., Siegle, M.: Compositional minimal semantics for the stochastic process algebra TIPP. In: Proceedings of the 2nd Workshop on Process Algebras and Performance Modelling, Regensberg/Erlangen, July 1994. Arbeitsberichte des IMMD, pp. 31–50. Universität Erlangen-Nürnberg (1994)

    Google Scholar 

  16. Hermanns, H., Rettelbach, M.: Syntax, Semantics, Equivalences and Axioms for MTIPP. In: Proceedings of the 2nd Workshop on Process Algebras and Performance Modelling, Regensberg/Erlangen, July 1994. Arbeitsberichte des IMMD, Universität Erlangen-Nürnberg (1994)

    Google Scholar 

  17. Buchholz, P.: Markovian Process Algebra: composition and equivalence. In: Proceedings of the 2nd Workshop on Process Algebras and Performance Modelling, Regensberg/Erlangen, July 1994. Arbeitsberichte des IMMD, Universität Erlangen-Nürnberg (1994)

    Google Scholar 

  18. Bernardo, M., Donatiello, L., Gorrieri, R.: Modelling and analyzing concurrent systems with MPA. In: Proceedings of the 2nd Workshop on Process Algebras and Performance Modelling, Regensberg/Erlangen, July 1994. Arbeitsberichte des IMMD, pp. 89–106. Universität Erlangen-Nürnberg (1994)

    Google Scholar 

  19. Hermanns, H., Herzog, U., Hillston, J.: Stochastic process algebras—A formal approach to performance modelling. Tutorial, Department of Computer Science, University of Edinburgh, Edinburgh, UK (1996)

    Google Scholar 

  20. Strulo, B.: Process Algebra for Discrete Event Simulation. PhD thesis, Imperial College, London (October 1993)

    Google Scholar 

  21. Harrison, P.G., Strulo, B.: SPADES - a process algebra for discrete event simulation. Journal of Logic and Computation 10(1), 3–42 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Bradley, J.T.: Semi-Markov PEPA: Modelling with generally distributed actions. International Journal of Simulation 6(3–4), 43–51 (2005)

    Google Scholar 

  23. Bravetti, M., Bernardo, M., Gorrieri, R.: Towards performance evaluation with general distributions in process algebras. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 405–422. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  24. Bravetti, M., Gorrieri, R.: Interactive generalized semi-Markov processes. In: Hillston, J., Silva, M. (eds.) Process Algebra and Performance Modelling Workshop, September 1999, pp. 83–98. Centro Politécnico Superior de la Universidad de Zaragoza, Prensas Universitarias de Zaragoza, Zaragoza (1999)

    Google Scholar 

  25. Hillston, J., Ribaudo, M.: Stochastic process algebras: a new approach to performance modelling. In: Bagchi, K., Zobrist, G. (eds.) Modelling and Simulation of Advanced Computer Systems, pp. 235–256. Gordon Breach, New York (1998)

    Google Scholar 

  26. Bryant, R.: Graph-based algorithms for Boolean function manipulation. IEEE Transactions on Computers 35, 677–691 (1986)

    Article  MATH  Google Scholar 

  27. Ciardo, G., Miner, A.S.: A data structure for the efficient Kronecker solution of GSPNs. In: Proceedings of the 8th International Conference on Petri Nets and Performance Models (PNPM’99), Zaragoza, Spain, September 1999, pp. 22–31. IEEE Computer Society Press, Los Alamitos (1999)

    Google Scholar 

  28. Miner, A.S., Parker, D.: Symbolic Representations and Analysis of Large Probabilistic Systems. In: Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P., Siegle, M. (eds.) Validation of Stochastic Systems. LNCS, vol. 2925, pp. 296–338. Springer, Heidelberg (2004)

    Google Scholar 

  29. Buchholz, P., Kemper, P.: Kronecker Based Matrix Representations for Large Markov Models. In: Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P., Siegle, M. (eds.) Validation of Stochastic Systems. LNCS, vol. 2925, pp. 256–295. Springer, Heidelberg (2004)

    Google Scholar 

  30. Rabin, M.O.: Probabilistic algorithm for testing primality. Journal of Number Theory 12, 128–138 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kuntz, M., Lampka, K.: Probabilistic Methods in State Space Analysis. In: Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P., Siegle, M. (eds.) Validation of Stochastic Systems. LNCS, vol. 2925, pp. 339–383. Springer, Heidelberg (2004)

    Google Scholar 

  32. Holzmann, G.J.: Design and Validation of Computer Protocols. Prentice-Hall, Englewood Cliffs (1991)

    Google Scholar 

  33. Holzmann, G.J.: An analysis of bitstate hashing. In: Proceedings of IFIP/PSTV95: Conference on Protocol Specification, Testing and Verification, Warsaw, Poland, June 1995, Chapman & Hall, Boca Raton (1995)

    Google Scholar 

  34. Bloom, B.: Space/time trade-offs in hash coding with allowable errors. Communications of the ACM 13, 422–426 (1970)

    Article  MATH  Google Scholar 

  35. Wolper, P., Leroy, D.: Reliable hashing without collision detection. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 59–70. Springer, Heidelberg (1993)

    Google Scholar 

  36. Stern, U., Dill, D.L.: Improved probabilistic verification by hash compaction. In: Camurati, P.E., Eveking, H. (eds.) CHARME 1995. LNCS, vol. 987, pp. 206–224. Springer, Heidelberg (1995)

    Google Scholar 

  37. Knottenbelt, W.J., Harrison, P.G., Mestern, M.S., Kritzinger, P.S.: A probabilistic dynamic technique for the distributed generation of very large state spaces. Performance Evaluation 39, 127–148 (2000)

    Article  MATH  Google Scholar 

  38. Raynal, M.: Distributed Algorithms and Protocols. John Wiley and Sons, Chichester (1988)

    MATH  Google Scholar 

  39. Dijkstra, E., Feijen, W., Gasteren, A.: Derivation of a termination detection algorithm for distributed computations. Information Processing letters 16, 217–219 (1983)

    Article  MathSciNet  Google Scholar 

  40. Stewart, W.: Introduction to the Numerical Solution of Markov Chains. Princeton University Press, Princeton (1994)

    MATH  Google Scholar 

  41. Weiss, R.: A theoretical overview of Krylov subspace methods. Applied Numerical Mathematics (Special Issue on Iterative Methods for Linear Equations) 19, 207–233 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  42. Sonneveld, P.: CGS, a fast Lanczos-type solver for nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing 10, 36–52 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  43. Vorst, H.: Bi-CGSTAB: A fast and smoothly converging variant of BiCG for the solution of nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing 13, 631–644 (1992)

    Article  MATH  Google Scholar 

  44. Freund, R.: A transpose-free quasi-minimal residual algorithm for non-Hermitian linear systems. SIAM Journal on Scientific Computing 14, 470–482 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  45. Deavours, D.D., Sanders, W.H.: An efficient disk-based tool for solving very large Markov models. In: Marie, R., Plateau, B., Calzarossa, M.C., Rubino, G.J. (eds.) Computer Performance Evaluation Modelling Techniques and Tools. LNCS, vol. 1245, pp. 58–71. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  46. Deavours, D.D., Sanders, W.H.: An efficient disk-based tool for solving large Markov models. Performance Evaluation 33(1), 67–84 (1998)

    Article  Google Scholar 

  47. Kwiatkowska, M., Mehmood, R.: Out-of-core solution of large linear systems of equations arising from stochastic modelling. In: Hermanns, H., Segala, R. (eds.) PROBMIV 2002, PAPM-PROBMIV 2002, and PAPM 2002. LNCS, vol. 2399, pp. 135–151. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  48. Mehmood, R.: Serial disk-based analysis of large stochastic models. In: Baier, C., Haverkort, B., Hermanns, H., Katoen, J.-P., Siegle, M. (eds.) Validation of Stochastic Systems. LNCS, vol. 2925, pp. 230–255. Springer, Heidelberg (2004)

    Google Scholar 

  49. Knottenbelt, W.J., Harrison, P.G.: Distributed disk-based solution techniques for large Markov models. In: NSMC’99, Proceedings of the 3rd Intl. Conference on the Numerical Solution of Markov Chains, Zaragoza, September 1999, pp. 58–75 (1999)

    Google Scholar 

  50. Bell, A., Haverkort, B.: Serial and parallel out-of-core solution of linear systems arising from Generalised Stochastic Petri Nets. In: Proc. High Performance Computing Symposium (HPC 2001), pp. 242–247 (2001)

    Google Scholar 

  51. Catalyürek, U., Aykanat, C.: Hypergraph-partitioning-based decomposition for parallel sparse-matrix vector multiplication. IEEE Transactions on Parallel and Distributed Systems 10, 673–693 (1999)

    Article  Google Scholar 

  52. Karypis, G., Kumar, V.: hMETIS: A Hypergraph Partitioning Package, Version 1.5.3. University of Minnesota (November 1998)

    Google Scholar 

  53. Trifunovic, A., Knottenbelt, W.J.: Parkway 2.0: A Parallel Multilevel Hypergraph Partitioning Tool. In: Aykanat, C., Dayar, T., Körpeoğlu, İ. (eds.) ISCIS 2004. LNCS, vol. 3280, pp. 789–800. Springer, Heidelberg (2004)

    Google Scholar 

  54. Harrison, P.G.: Laplace transform inversion and passage-time distributions in Markov processes. Journal of Applied Probability 27(1), 74–87 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  55. Abate, J., Whitt, W.: The Fourier-series method for inverting transforms of probability distributions. Queueing Systems 10(1), 5–88 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  56. Harrison, P.G., Knottenbelt, W.J.: Passage time distributions in large Markov chains. In: Proceedings of ACM SIGMETRICS 2002, Marina Del Rey, California, June 2002, pp. 77–85. ACM Press, New York (2002)

    Chapter  Google Scholar 

  57. Abate, J., Whitt, W.: Numerical inversion of Laplace transforms of probability distributions. ORSA Journal on Computing 7(1), 36–43 (1995)

    MATH  Google Scholar 

  58. Abate, J., Choudhury, G.L., Whitt, W.: On the Laguerre method for numerically inverting Laplace transforms. INFORMS Journal on Computing 8(4), 413–427 (1996)

    Article  MATH  Google Scholar 

  59. Harrison, P.G., Knottenbelt, W.J.: Passage-time distributions in large Markov chains. In: Martonosi, M., de Souza e Silva, E.A. (eds.) Proceedings of ACM SIGMETRICS 2002, Marina Del Rey, USA, June 2002, pp. 77–85. ACM Press, New York (2002)

    Chapter  Google Scholar 

  60. Bradley, J.T., Dingle, N.J., Knottenbelt, W.J., Wilson, H.J.: Hypergraph-based parallel computation of passage time densities in large semi-Markov models. Journal of Linear Algebra and Applications 386, 311–334 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  61. Dingle, N.: Parallel Computation of Response Time Densities and Quantiles in Large Markov and Semi-Markov Models. PhD thesis, Imperial College London (October 2004)

    Google Scholar 

  62. Knottenbelt, W.: Generalised Markovian analysis of timed transition systems. Master’s thesis, University of Cape Town, Cape Town, South Africa (July 1996)

    Google Scholar 

  63. Gropp, W., Lusk, E., Skjellum, A.: Using MPI: Portable Parallel Programming with the Message Passing Interface. MIT Press, Cambridge (1994)

    Google Scholar 

  64. Woodside, C.M., Li, Y.: Performance Petri net analysis of communication protocol software by delay-equivalent aggregation. In: Proceedings of the 4th International Workshop on Petri nets and Performance Models (PNPM’91), Melbourne, Australia, 2–5 December 1991, pp. 64–73. IEEE Computer Society Press, Los Alamitos (1991)

    Chapter  Google Scholar 

  65. Gropp, W., Lusk, E., Skjellum, A.: Using MPI: Portable Parallel Programming with the Message Passing Interface. MIT Press, Cambridge (1994)

    Google Scholar 

  66. Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., Sunderam, V.: PVM Parallel Virtual Machine: A Users’ Guide and Tutorial for Networked Parallel Computing. MIT Press, Cambridge (1994)

    MATH  Google Scholar 

  67. Bradley, J.T., Dingle, N.J., Knottenbelt, W.J., Harrison, P.G.: Performance queries on semi-Markov stochastic Petri nets with an extended Continuous Stochastic Logic. In: Ciardo, G., Sanders, W. (eds.) PNPM’03, Proceedings of Petri Nets and Performance Models, University of Illinois at Urbana-Champaign, September 2003, pp. 62–71. IEEE Computer Society Press, Los Alamitos (2003)

    Chapter  Google Scholar 

  68. Clark, G., Gilmore, S., Hillston, J.: Specifying Performance Measures for PEPA. In: Katoen, J.-P. (ed.) AMAST-ARTS 1999, ARTS 1999, and AMAST-WS 1999. LNCS, vol. 1601, pp. 211–227. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  69. Julvez, J., Jimenez, E., Recalde, L., Silva, M.: On observability in timed continuous Petri net systems. In: QEST’04, Proceedings of 1st International Conference on the Quantitative Evaluation of Systems, Enschede, September 2004, pp. 60–69. IEEE Computer Society Press, Los Alamitos (2004)

    Chapter  Google Scholar 

  70. Hillston, J.: Fluid flow approximation of PEPA models. In: QEST’05, Proceedings of the 2nd International Conference on Quantitative Evaluation of Systems, Torino, September 2005, pp. 33–42. IEEE Computer Society Press, Los Alamitos (2005)

    Chapter  Google Scholar 

  71. Kurtz, T.G.: Solutions of ordinary differential equations as limits of pure jump Markov processes. Journal of Applied Probability 7, 49–58 (1970)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Marco Bernardo Jane Hillston

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Knottenbelt, W.J., Bradley, J.T. (2007). Tackling Large State Spaces in Performance Modelling. In: Bernardo, M., Hillston, J. (eds) Formal Methods for Performance Evaluation. SFM 2007. Lecture Notes in Computer Science, vol 4486. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72522-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72522-0_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72482-7

  • Online ISBN: 978-3-540-72522-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics