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Abstract. Multiple modalities present potential difficulties for kernel-based 
pattern recognition in consequence of the lack of inter-modal kernel measures. 
This is particularly apparent when training sets for the differing modalities  are 
disjoint.  Thus, while it is always possible to consider the problem at the classi-
fier fusion level, it is conceptually preferable to approach the matter from a ker-
nel-based perspective. By interpreting the aggregate of disjoint training sets as 
an entire data set with missing inter-modality measurements to be filled in by 
appropriately chosen substitutes, we arrive at a novel kernel-based technique, 
the neutral-point method. On further theoretical analysis, it transpires that the 
method is, in structural terms, a kernel-based analog of the well-known sum 
rule combination scheme. We therefore expect the method to exhibit similar er-
ror-canceling behavior, and thus constitute a robust and conservative strategy 
for the treatment of kernel-based multi-modal data.  

1 Introduction  

In data analysis and, in particular, pattern recognition, it is common practice to 
employ the term “modality” when speaking about a specific kind of mathematical 
computer-perceptible object representation. In terms of the measured modality, the 
hypothetical set of “all” real-world objects ω∈Ω  is represented by the output of the 
respective sensor ( )x ω ∈X  in the form of signals, images, or, in relatively rare simple 

cases, in the form of one-dimensional numerical features.  

The essence of the training problem in supervised pattern recognition is extrapolation of 
the information contained in the finite training set of the accessible objects 

∗Ω = { }( , ) ( ) , ( ) {1,..., },j j jX Y x y m ∗= ω ∈ ω ∈ = ω ∈ΩX Y  onto the entire scale of the re-
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spective object representation ( )1 1ˆ ( ),..., ( ) : ...n ny x xω ω × × →X X Y . The intention of 

increasing the generalization performance of the resulting recognition rule has led to 
the concept of multimodal systems, which combine several object representation mo-
dalities { }( ) , 1,...,i ix i nω ∈ =X  into a unified recognition procedure ( )1ˆ ( ),..., ( ) :ny x xω ω  

1 ... n× × →X X Y .  

In the overview of multimodal biometrics given in [1]two principle levels of com-
bining modalities are distinguished: the signal level, when, prior to training the classi-
fier ˆ( )y ω , a unified representation of objects is formed ( )( ) ( ), 1,...,ix x i nω =ϕ ω =  to 

combine all the particular modalities ( )ˆ ˆ( ) ( )y y xω = ω , and the classifier level, when 

what is to be combined are the classifiers ( )ˆ ˆ( ) ( ) , 1,...,i iy y x i nω = γ ω =   , each trained 

individually by a single modality.  

Until recently, most attention had been paid in the literature to principles of classi-
fier fusion [2,3], because it was assumed that combining modalities of different char-
acter (real numbers and labels, for example) is not straightforward. However, recent 
achievements in the methodology of kernel fusion [4,5,6,7,8] have cleared the way for 
combining any number of modalities at the signal level.  

The aim of this paper is to consider relationships between the two approaches to 
multimodal machine learning, kernel fusion and classifier fusion, under the specific 
assumption that the problem to be solved is that of two-class pattern recognition, and 
that, in addition, the kernel-based approach is applied within each modality.  

Before closely scrutinizing the relationship between kernel and classifier fusion, 
we consider the specificity of a single modality-specific kernel-based classifier. As 
applied to the kernel-based approach, the principle of classifier fusion implies com-
bining several recognition rules inferred from modality-specific data. In this paper, on 
the basis of the kernel fusion methodology considered in [8], we propose a unified 
view on the seemingly different principles of combining modalities at the signal and 
classifier level by, respectively, kernel and classifier fusion.  

2 The modality-specific kernel-based classifier  

A two-argument symmetric function ( , ) ( , )i i i i i iK x x K x x′ ′ ′ ′ ′ ′=  defined in the output scale of 

a particular sensor { }( ),i ix= ω ω∈ΩX  is said to be kernel function in iX  if it forms posi-

tive semidefinite matrices ( )( ), ( ) ; , 1,...,i i j i lK x x j l k ω ω =   for all finite subsets of 

this set [9]. Any kernel ( , )i i iK x x′ ′ ′ embeds the scale of the respective sensor iX  into a 

hypothetical linear space with inner product i i⊇ɶX X , in which the null element 

i iφ ∈ ɶX  and linear operations :i i i i ix x′ ′ ′+ × →ɶ ɶ ɶ
X X X  and :i i ixα × →ɶ ɶ

R X X  are de-

fined in a special way. The role of the inner product is played by the kernel function 
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( , )i i iK x x′ ′ ′ [10] which will be linear with respect to its arguments 

( , ) ( , ) ( , )i i i i i i iK x x x K x x K x x′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′α + α = α + α .  

Thus, in terms of a single modality, a training set { }, 1,...,i j ij N∗Ω = ω =  is com-

pletely represented by the kernel matrix and class-indices of objects ( ) 1j jy y= ω = ± :  

 ( ){ }( ), ( ) , , , ( ), .i i i i j i l j l i j j iK x x y∗ ∗ ∗ Ω ⇒ = ω ω ω ω ∈Ω ω ω ∈Ω K   (1) 

In addition, it is required to uphold the ability to compute the kernel values 

( )( ), ( )i i i jK x xω ω  for any new real-world object ω∈Ω  and all the objects j i
∗ω ∈Ω  

represented in the training set.  

A commonly adopted kernel-based approach to the two-class pattern recognition 
problem is widely known under the name of Support Vector Machine (SVM) [9]. The 
main concept of this approach is that of the optimal discriminant hyperplane in the 

linear space i
ɶ
X  produced by the respective kernel ( ) ( )ˆ ( ) , ( ) 0i i i i i iy x K x b >ω = ϑ ω + < . 

In our terms, the discriminant hyperplane is defined by a hypothetical element of this 

linear space i iϑ ∈ ɶX  and by the threshold ib ∈R . The SVM training criterion follows 

from the idea of maximizing the margin between the points of two classes in i
ɶ
X :  

 
( )

( )
( , ) min , , ,

, ( ) 1 , 0, .

i i i j i i j

j i i j j j j i

j i
K C b

y K x b ∗

∗ω ∈Ω
 ϑ ϑ + δ → ϑ ∈ ∈ δ ∈


ϑ ω + ≥ − δ δ ≥ ω ∈Ω   

∑ ɶX R R

  (2) 

where 0C >  is sufficiently large coefficient. The dual form of this criterion is a quad-
ratic programming problem with respect to the nonnegative Lagrange multipliers 

0jλ ≥  for the inequality constraints:  

 
( )(1 2) ( ), ( ) max,

0, 0 2, .

j j l i i j i l j l

j j j j i

j i j i il

j i

y y K x x

y C ∗

∗ ∗ ∗

∗

ω ∈Ω ω ∈Ω ω ∈Ω

ω ∈Ω

 λ − ω ω λ λ →  


λ = ≤ λ ≤ ω ∈Ω


∑ ∑ ∑

∑
  (3) 

The direction vector of the optimal discriminant hyperplane is the linear combination 
of the training-set objects with coefficients defined by the Lagrange multipliers found 

as the solution of this problem ,
ˆ ˆ

i j i j j
j i

y∗ω ∈Ωϑ = λ ω∑ . It must be kept in mind that the 

training-set objects occur in this linear combination as elements of the hypothetical 

linear space i i⊇ɶX X  in accordance with the specific linear operations produced by 

the kernel ( , )i i iK x x′ ′ ′.  

The objects j i
∗ω ∈Ω  whose Lagrange multipliers are positive in the solution of the 

dual problem ,
ˆ 0i jλ >  make the subset of support objects in the full training set:  

 { },
ˆˆ : 0i j i i j i

∗ ∗Ω = ω ∈Ω λ > ⊆ Ω .  (4) 

Only the support objects will form the direction vector of the optimal discriminant 
hyperplane  
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( ) ( ) ( )ˆ:
ˆ ˆˆ ˆ( ) , ( ) 0 ( ) 1i i i i i i i i

j ijf x K x b y xω ∈Ω
>ω = ϑ ω + ⇒ ω =±<∑ , ,ˆ

ˆ ˆ
i j i j j

j i
yω ∈Ωϑ = λ ω∑ ,  (5) 

and only the kernel matrix at the support objects will affect the recognition rule in-
ferred from the training set of the respective modality:  

 
( ) ( )

( )( )
,

, , ,

ˆ:

ˆ ˆ ˆ: : :

ˆ ˆˆ( ) ( ), ( ) 0,

ˆ ˆ ˆ ˆ( ) ( ), ( ) .

i i j i j i i j i i

i i j l i l i i j i l i j

j i

j i i j il

j

j l j

f x y K x x b

b y K x x

ω ∈Ω

ω ∈Ω ω ∈Ω ω ∈Ω

>ω = λ ω ω + <

= − λ ω λ ω ω λ

∑
∑ ∑ ∑   (6) 

So, the result of training within the bounds of a single modality is completely rep-
resented by the subset of support objects and the positive values of Lagrange multipli-
ers at them (4).  

We introduce here a new notion, which will be especially important for the com-
parison of kernel fusion and classifier fusion. If a new object maps into a point strictly 
at the discriminant hyperplane ( )ˆ ( ) 0i iy x ω =  (6), it cannot be attributed to any one of 

the two classes. All these point will be said to be neutral points produced by the train-
ing set and denoted them by special symbol,

ˆ
ixφ . It is obvious that there exists a con-

tinuum of neutral points for each modality ,iφ
ɶX  in the respective spacei

ɶX :  

 , ,
ˆ

i ixφ φ∈ ɶX ,  { },
ˆˆ: ( , ) 0i i i i i i ix K x bφ = ∈ ϑ + =ɶ ɶX X ,  ,

ˆ ˆ( , )i i i ib K xφ= − ϑ .  (7) 

3 Kernel fusion: Combining modalities at the signal level from a 
full training set by kernel fusion  

Let, at least, one kernel be defined in the output scale of each of several sensors 
( , )i i iK x x′ ′ ′, ,i i ix x′ ′ ′∈X , 1,...,i n= . The union of all the modality-specific training sets 

1

n

ii=
∗ ∗Ω = Ω∪  (1) will be called the unified training set. We shall say the unified train-

ing set ∗Ω  is full if each object j
∗ω ∈Ω  is represented by all the modality-specific 

signals ( )( ) ( ) , 1,...,j i j ix i nω = ω ∈ =Xx , i.e., all the kernel-specific training sets coin-

cide 1 ... n
∗ ∗Ω = = Ω .  

A full training set ∗Ω  allows for immediate combination of several modalities by 
kernel fusion. All the known kernel fusion techniques are based on the idea of con-
structing an appropriate combined kernel (inner product) ( , )K ′ ′ ′x x , 

1( ,..., )nx x= ∈ ɶXx , in the Cartesian product { }1 ... ( , 1,..., )n i ix i n= × × = = ∈ =ɶ ɶ ɶ ɶ
X X X Xx  

of the linear spaces i i⊇ɶX X  defined by the respective kernels. The sum of the initial 

kernels 
1

( , ) ( , )
n

i i ii
K K x x

=
′ ′ ′ ′ ′ ′=∑x x  will retain all the properties of inner product, i.e., be 

a kernel in ɶX . From this point of view, any choice of a point 
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( , 1,..., )i i i n= ϑ ∈ = ∈ɶ ɶX Xϑϑϑϑ  and real number b∈R  yields a discriminant hyperplane with 

direction vector in the Cartesian product ɶX   

 ( ) ( ) ( ) ( )
1

ˆ ˆ( ) ( ), 1,..., , ( ) , ( ) 0
n

i i i ii
f f x i n K b K x b

=
>ω = ω = = ω + = ϑ ω + <∑x xϑϑϑϑ ,  (8) 

and produces, thereby, a kernel fusion technique.  

It is apparent that if the norm ( , )i i iK ϑ ϑ  of a component of the direction vector 

i iϑ ∈ ɶX  is small in its linear space, the respective kernel ( , )i i iK x x′ ′ ′ will little affect the 

recognition rule (8).  

The straightforward application of the SVM training principle to the Cartesian 

product of the particular linear spaces 1 ... n= × ×ɶ ɶ ɶ
X X X  [9], namely, finding the opti-

mal discriminant hyperplane in ɶX  with respect to the full training set ∗Ω , results in 
the training criterion  

 
( )

( )
1

1

( , ) min , , ,

, ( ) 1 , 0, .

n

i i i j i i ji

n

j i i i j j j ji

j
K C b

y K x b

=

=
∗

∗ω ∈Ω
 ϑ ϑ + δ → ϑ ∈ ∈ δ ∈


 ϑ ω + ≥ − δ δ ≥ ω ∈Ω  

∑ ∑

∑

ɶX R R

  (9) 

This optimization problem leads to the dual quadratic programming problem of the 
analogous structure as the usual SVM dual problem (3):  

 
( )( )1

(1 2) ( ), ( ) max,

0, 0 2, .

n

j j l i i j i l j li

j j j j

jl l

j

y y K x x

y C

=

∗

∗ ∗ ∗

∗

ω ∈Ω ω ∈Ω ω ∈Ω

ω ∈Ω

 λ − ω ω λ λ →



λ = ≤ λ ≤ ω ∈Ω


∑ ∑ ∑ ∑

∑
  (10) 

The Lagrange multipliers obtained for the set of support objects  

 { }ˆˆ : 0j j
∗ ∗Ω = ω ∈Ω λ > ⊆ Ω   (11) 

yield the optimal recognition rule:  

 

( ) ( ) ( )
( )( )

1 1

1

ˆ

ˆ ˆ ˆ

ˆ ˆˆˆ( ) ( ),..., ( ) ( ), ( ) 0,

ˆ ˆ ˆ ˆ( ), ( ) .

n

n j j i i j ii

n

j l l i i j i l ji

j

j jl

f y x x y K x x b

b y K x x

=

=

ω ∈Ω

ω ∈Ω ω ∈Ω ω ∈Ω

>ω = ω ω = λ ω ω + <

= − λ λ ω ω λ

∑ ∑

∑ ∑ ∑ ∑

x

  (12) 

This is the simplest but not the only possible way of kernel fusion. The quasi-
statistical approach to the signal-level modality combination considered in [8] covers 
the main kernel fusion principles known at present.  

With the objective function in (9) as 
1
(1 ) ( , )

n

i i i i ji j
r K C

= ∗ω ∈Ωϑ ϑ + δ →∑ ∑  

( )min , , ,i i i jr bϑ ∈ ∈ ∈ δ ∈ɶX R R R  under additional constraint 
1

1
n

ii
r

=
=∏ , the training 

criterion displays a tendency to suppressing the weights at the “redundant” kernels 
ˆ 0ir →  along with emphasizing ̂ 0ir ≫  the kernels which are “adequate” to the 

trainer’s data, and, so, results in soft extraction of a relatively small number of most 
adequate kernels without full suppression of the others. Due to this property, this 
training technique is called in [8] the Relevance kernel Machine (RKM).  
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If 
1

( , )
n

i i i ji j
K C

= ∗ω ∈Ωϑ ϑ + δ →∑ ∑ ( )min , ,i i jbϑ ∈ ∈ δ ∈ɶX R R  is taken as the ob-

jective function in (9), the training technique selects a subset of support kernels 

{ }ˆ 1,...,I n⊆  with positive norms of the direction vectors ( )ˆ ˆ ˆ( , ) 0,i i iK i Iϑ ϑ > ∈  in con-

trast to the others which get completely suppressed ( )ˆ ˆ ˆ( , ) 0,i i iK i Iϑ ϑ = ∉  [8]. Because 

only the support kernels ˆi I∈  participate in the recognition rule, this is a kind of Sup-

port Kernel Machine (SKM) first considered in [5].  

All of these approaches to kernel fusion techniques are closely related to the prob-
lem of studying the relationship between kernel and classifier fusion as alternative 
strategies for combining pattern recognition modalities at, respectively, signal and 
classifier level. However, in this paper we restrict our consideration only to the sim-
plest kernel fusion technique (9).  

4 The neutral point method of combining modalities from disjoint 
training sets  

It is common practice that particular modalities are employed by different expert 
groups, which hence derive their training sets independently of each other. If it is so, 

the training set { }, 1,...,j j N∗Ω = ω =  will consist of disjoint subsets 
1

n

ii=
∗ ∗Ω = Ω∪ , 

i l
∗ ∗Ω Ω = ∅∩ , such that the output signals of only one modality-specific sensor 

( )( ),i j j ix ∗ω ω ∈Ω  are captured within the bounds of each of them.  

With respect to this notation, the kernel fusion criterion (9) may be put in the fol-
lowing equivalent form:  

 
( ) ( )

( ) ( )( )
1

1,

( , ) min , , ,

, ( ) , ( ) 1 , 0, , 1,..., .

n

i i i j i i ji

n

j i i i j l l l j j j j i

j i

l l i

K C b

y K x K x b i n

=

∗
= ≠

∗ω ∈Ω
 ϑ ϑ + δ → ϑ ∈ ∈ δ ∈


 ϑ ω + ϑ ω + ≥ −δ δ ≥ ω ∈Ω =  

∑ ∑

∑

ɶX R R

  (13) 

Here, in each group of constraints at the training-set objects { }, 1,...,j i i n∗ω ∈Ω = , for 

any value of the abstract variable i iϑ ∈X , only one of n  summands is defined, 

namely, ( ), ( )i i i jK xϑ ω , whereas the other summands ( ), ( )l l l jK xϑ ω  are not, be-

cause the sensor signals ( )l jx ω  are unknown for l i≠  due to the assumption that the 

particular training sets are disjoint.  

We hence propose a new method of combining modalities in supervised kernel-
based pattern recognition in the case when the training sets for different modalities are 
disjoint. The idea consists in treating the problem (13) as that of learning with incom-
plete data and filling-up the unknown actual values of the sensor signals correspond-

ing to other modalities ( )l jx ω , l i≠ , by one common value being the arbitrary neu-
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tral point , ,ˆ
i ixφ φ∈ ɶX  (7) of the i th linear space. After this substitution, the problem 

(13) takes the following form:  

 
( ) ( )

( ) ( )( )
1

,1,

( , ) min , , ,

ˆ, ( ) , 1 , 0, , 1,..., .

n

i i i j i i ji

n

j i i i j l l l j j j i

j i

l l i

K C b

y K x K x b i n

=

φ
∗

= ≠

∗ω ∈Ω
 ϑ ϑ + δ → ϑ ∈ ∈ δ ∈


 ϑ ω + ϑ + ≥ −δ δ ≥ ω ∈Ω =  

∑ ∑

∑

ɶX R R

 (14) 

Theorem. The solution of the optimization problem (13) is the totality of the op-

timal direction elements in the linear spaces of generalized features ̂i iϑ ∈ ɶX  (5) found 
as the solutions of the training problems (2) independently for each modality 

1,...,i n= , along with the common threshold value equal to the sum of optimal thresh-

olds for all modalities 1
ˆ ˆn

ii
b b

=
=∑  (6).  

Hence, replacement of the unknown actual values of sensor signals by the neutral 
points of the respective linear spaces leads to the discriminant function (5)  

 ( ) ( ) ( )
1 1 1

ˆ ˆ ˆˆ ˆ( ), 1,..., , ( ) , ( ) 0
n n n

i i i i i i i i ii i i
f x i n K x b K x b

= = =
 >ω = = ϑ ω + = ϑ ω + < ∑ ∑ ∑ .  (15) 

Here the expressions in brackets are nothing other than the discriminant functions 

built independently for each modality ( )ˆ ( )i if x ω , thus,  

 ( ) ( )
1

ˆ ˆ( ), 1,..., ( )
n

i i ii
f x i n f x

=
ω = = ω∑ .  (16) 

So, the approach to filling-in the missing values of sensor signals we have adopted 
leads to the indicated recognition rule which, in structural terms, is a technique for 
combining particular classifiers, namely, by summation of particular discriminant 
functions. The neutral point method should therefore exhibit the error-canceling prop-
erties associated with classifier combination and should hence be a robust and safe 
approach to kernel-based classification of disjoint data sets.  

An analogous technique of combining classifiers is known in the literature under the 
name of Sum Rule [2]. The distinction consists in that the known Sum Rule method is 
based on the assumption of the probabilistic output of the particular classifiers in the form 

of posterior class-membership probabilities ( )( ) ( )k
i ip x ω , ( )( )

1
( ) 1

m k
i ik

p x
=

ω =∑ . The 

combination principle consists in computing the unified posterior probabilities of 
classes by way of summing over the particular posterior probabilities: 

( )( ) ( ), 1,...,k
ip x i nω = = ( )( )

1
(1 ) ( )

n k
i ii

n p x
=

ω∑ . When there are only two classes 2m = , 

the posterior probabilities at the output of the i th classifier are completely determined 
by the posterior probability of one of the classes:  

 ( ) ( )
1

( ), 1,..., (1 2) ( )
n

i i ii
p x i n p x

=
ω = = ω∑ .   

The analogy between our classifier fusion rule (16) and the Sum Rule is immediately 
apparent.  
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5 Discussion 

At first inspection, it is hardly possible to encompass a generic way of combining 
modalities because of the vast variety of possible object representations. However, the 
kernel-fusion approach converts, in a natural way, different modalities into a unified 
mathematical language of inner products in linear spaces, which in fact makes such a 
comparison realistic. This is so even if the original modalities are not themselves vec-
tor or scalar quantities: the only scalar constraint is that of the kernel itself. This is 
hence particularly necessary in situations in which only relative distance measures are 
available, such as Genomics. 

Thus in the simplest case, the sensor signals might have the form of scalar numeri-
cal features, i.e. be real numbers. What we have customarily done when learning in a 
multidimensional linear space, which is the Cartesian product of several real-valued 
axes, is thus nothing other than combining several modalities via a form of kernel fu-
sion.  

However, any purely kernel-based fusion method exhibits difficulties when the dif-
ferences in modality are accompanied by differences in training set composition: in 
this case straightforward kernel-fusion will not suffice. This difficulty is also apparent 
for conventional classification: in fact it is clear that application of the classifier fusion 
principle is an inescapable necessity in the case of disjoint training subsets contained 
within disjoint modalities, since multiple decision confidences are the only quantities 
available for combining in a meaningful manner.  

We have hence, by making certain conservative assumptions about the 'missing' 
kernel values, derived a neutral point method for addressing the above difficulty in a 
Kernel-based context. However, it transpires that the neutral point method has itself 
the exact structural form of a classifier combination scheme (in fact the Sum Rule de-
cision scheme).  

At its purest level, though, the principle of combining modalities with disjoint 
training sets via classifier fusion is based on the assumption that the modalities are 
independent (that is, for decision problems in which the individual modalities cannot 
be straightforwardly taken to define a composite Cartesian product space in which 
classification can take place). The principle of kernel-fusion, on the other hand, is not 
attached to this assumption: the fact that it becomes equivalent to one particular com-
bination scheme under the neutral point assumption for missing data should not there-
fore be taken as significant for combination in general, but rather for the Sum Rule, 
specifically.  

The fact that the Sum Rule combination scheme also exhibits ideal error-canceling 
properties [2] is thus a significant bonus, and a considerable further reason for advo-
cating the neutral point method.  
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6 Conclusions  

We have set out to address the difficulties that multiple modalities and disjoint 
training sets represent for kernel-based pattern recognition due to their absence of 
intra-modal kernel information. Though possible to consider the problem at the classi-
fier fusion level, we have motivated our work on the basis of the conceptual prefer-
ability of addressing the issue from a purely kernel-specific perspective. Hence, by 
interpreting  the aggregate of disjoint training sets as complete data-sets with missing 
inter-modality measurements that can be substituted by appropriately-chosen values, 
we have arrived at a novel classification technique, which we have named the neutral-
point method. We proceeded to theoretically demonstrate that the neutral-point 
method is a kernel-based analog of the well-known sum rule combination scheme. It is 
thus capable of error-cancellation, and gives strong  backing for our assertion that the 
neutral-point choice of replacements for inter-modality measurements is a conserva-
tive and safe one.  
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