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Abstract. Multiple modalities present potential difficulti€er kernel-based
pattern recognition in consequence of the lackntdrimodal kernel measures.
This is particularly apparent when training setstfe differing modalities are
disjoint. Thus, while it is always possible to safer the problem at the classi-
fier fusion level, it is conceptually preferableapproach the matter from a ker-
nel-based perspective. By interpreting the aggreghtisjoint training sets as
an entire data set with missing inter-modality nueasents to be filled in by
appropriately chosen substitutes, we arrive at\e&elnkernel-based technique,
the neutral-point method. On further theoretical analysis, it transpireattthe
method is, in structural terms, a kernel-basedagnaf the well-known sum
rule combination scheme. We therefore expect thhadeto exhibit similar er-
ror-canceling behavior, and thus constitute a rblamsl conservative strategy
for the treatment of kernel-based multi-modal data.

1 Introduction

In data analysis and, in particular, pattern re@@mn it is common practice to
employ the term “modality” when speaking about &céfic kind of mathematical
computer-perceptible object representation. In seohthe measured modality, the
hypothetical set of “all” real-world object®Q is represented by the output of the
respective sensox(w) OX in the form of signals, images, or, in relativedye simple

cases, in the form of one-dimensional numericablfes.

The essence of the training problem in supervisdtgnm recognition is extrapolation of
the information contained in the finite trainingtsef the accessible objects

Q= (X,Y)={ x(w,)0X, y(0,)0Y ={L,...,m}, (*J,-DQD} onto the entire scale of the re-

This work is supported by the Russian FoundatiorBiasic Research, Grants 05-01-00679,
06-01-08042, 06-07-89249, and INTAS Grant 04-77#734



Lecture Notes in Computer Science?2

spective object representatioin(xl(u)),...,xn (oo)) X, x..xX, - Y. The intention of

increasing the generalization performance of tisaltimg recognition rule has led to
the concept of multimodal systems, which combingesa object representation mo-

dalities{ x (0OX;,i=1,...n} into a unified recognition procedurx (w),...,x, @)):
X x.xX -Y.

In the overview of multimodal biometrics given ijwo principle levels of com-
bining modalities are distinguished: tiignal level, when, prior to training the classi-

fier §(w), a unified representation of objects is formm((do)=¢(>g(w),i =1,...,n) to
combine all the particular modalitie@(w)=§/(x(w)), and theclassifier level, when
what is to be combined are the cIassifié/(&))=y[§/i ()g (o)), i =1,...,n], each trained
individually by a single modality.

Until recently, most attention had been paid inlitezature to principles of classi-
fier fusion [2,3], because it was assumed that ¢oimgp modalities of different char-
acter (real numbers and labels, for example) isstraightforward. However, recent

achievements in the methodology of kernel fusiqgb,Bl7,8] have cleared the way for
combining any number of modalities at the signetle

The aim of this paper is to consider relationstipsveen the two approaches to
multimodal machine learning, kernel fusion and sifeer fusion, under the specific
assumption that the problem to be solved is thdivofclass pattern recognition, and
that, in addition, the kernel-based approach idiegpvithin each modality.

Before closely scrutinizing the relationship betwdernel and classifier fusion,
we consider the specificity of a single modalitesific kernel-based classifier. As
applied to the kernel-based approach, the prin@plelassifier fusion implies com-
bining several recognition rules inferred from migglaspecific data. In this paper, on
the basis of the kernel fusion methodology considen [8], we propose a unified
view on the seemingly different principles of comihp modalities at the signal and
classifier level by, respectively, kernel and diféessfusion.

2 Themodality-specific kernel-based classifier

A two-argument symmetric functiok; (X, % )'= K, (x ,X") defined in the output scale of
a particular sensoK; ={ X (w), w1 Q} is said to be kernel function ii; if it forms posi-
tive semidefinite matrice{Ki ()g(u)j),x(oq));j,l :1,...kJ for all finite subsets of
this set [9]. Any kerneK; (x,x )" embeds the scale of the respective se§ointo a
hypothetical linear space with inner produﬁ; 0X,, in which the null element
@ OX, and linear operations¢+x"'X, xX, -~ X, and ax:RxX, ~ X, are de-
fined in a special way. The role of the inner prads played by the kernel function
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K.(x,x) [10] which will be linear with respect to its argents
Ki(a'x*a %, X =a K (&, x )+ o K(Xx).

Thus, in terms of a single modality, a training ﬁﬂ:{wj, jzl,...,Ni} is com-
pletely represented by the kernel matrix and cladiges of objectsy; = y(w,) = £1:

Q7= {K, =[K(x (@)% (@), © 0 007, y@),0,00(} (1)

In addition, it is required to uphold the abilitp tcompute the kernel values
Ki(% (@)% () for any new real-world objeawQ and all the objectso, 0Q;
represented in the training set.

A commonly adopted kernel-based approach to thectags pattern recognition
problem is widely known under the name of Suppattdr Machine (SVM) [9]. The
main concept of this approach is that of the optidiscriminant hyperplane in the

linear spaceX; produced by the respective kerngl(x (w)) =K, (9,,% (w))+h 20.

In our terms, the discriminant hyperplane is defibg a hypothetical element of this

linear spaced, DXi and by the thresholt OR . The SVM training criterion follows

from the idea of maximizing the margin betweengbants of two classes §§i :
K, (si,si)+czwjmigaj ~ min(9, 0%, bR, 5,0R),
y,[K(9%@))+b]21-3,,5, 2 0,0, 0Q.

where C >0 is sufficiently large coefficient. The dual formtbis criterion is a quad-

ratic programming problem with respect to the ngatiee Lagrange multipliers
A; 20 for the inequality constraints:

zijQP)\j _(]/Z)ZmJ-DQPZ(qDQP[yJM Ki()g ((,oj PE@ ))j|)\j)\| . max
X ot =0, 0=A, £C/ 2.0, 007,

@)

®3)

The direction vector of the optimal discriminanipkyplane is the linear combination
of the training-set objects with coefficients definby the Lagrange multipliers found

as the solution of this problewﬁ =Zwmgyj)§iijj . It must be kept in mind that the
j {

training-set objects occur in this linear combioatias elements of the hypothetical
linear spacefii OX, in accordance with the specific linear operatipnsduced by

the kernelK, (x',x )"
The objectsw, DQiD whose Lagrange multipliers are positive in thaeisoh of the
dual problem)A\i'j >0 make the subset of support objects in the fuihing set:
0, ={w 004, >0 0P, @

Only the support objects will form the directioncter of the optimal discriminant
hyperplane
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fi (% (w))=z EEe! Ki (éi’)ﬁ (00))"'5 20= 9 (% (@)==1, éizzwj[@i yj;\i,jwj , (5)

and only the kernel matrix at the support objecis affect the recognition rule in-
ferred from the training set of the respective ntibgla

f(X(09) = 2y, Vb (% (@)% (@) R 20,

oo s 2 2 6

b= _(Zj;wjmf)i)\i,j qu[@i Y(@)A;, K ()Q (0,),% (W ))/Zj;wj[f)i)\i,j ) ©
So, the result of training within the bounds ofiregke modality is completely rep-

resented by the subset of support objects anddsigve values of Lagrange multipli-
ers at them (4).

We introduce here a new notion, which will be eggbcimportant for the com-
parison of kernel fusion and classifier fusiona Ifiew object maps into a point strictly

at the discriminant hyperplang ()g (co)) =0 (6), it cannot be attributed to any one of

the two classes. All these point will be said tonkeeatral points produced by the train-
ing set and denoted them by special synippl It is obvious that there exists a con-
tinuum of neutral points for each modal&m in the respective spa&'g:

)’Z‘p,iDX qu,i ={>§D§§i:Ki(’§i’>ﬁ)+5=0}' t;l:_Ki(éi’Xip,i)' (7

@i

3 Kernd fusion: Combining modalities at the signal level from a
full training set by kernel fusion

Let, at least, one kernel be defined in the oumale of each of several sensors
K (x,x), x,x0X,, i =1...,n. The union of all the modality-specific trainingts

Q= Ui”IIQF (1) will be called the unified training set. Weaditsay the unified train-
ing set Q" is full if each objectw, 0Q" is represented by all the modality-specific
signals x(w,) = (>§ ())OX, i =1,...,n) , i.e., all the kernel-specific training sets coin-
cide QI'=...=Q".

A full training set Q" allows for immediate combination of several maiitsi by

kernel fusion. All the known kernel fusion techréguare based on the idea of con-
structing an appropriate combined kernel (inner dpob) K(x,x',

x=(xl,...,xn)D§§, in the Cartesian product :§§l><...><§§n ={x:(>g DXi Ji=1..n }
of the linear space&i OX, defined by the respective kernels. The sum ofritiil
kernels K (x',x =)

a kernel in X. From this point of view, any choice of a point

inlei (%,%) will retain all the properties of inner producg.j be
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?=(9, DXi ,i=1,..nYIX and real numbebOR yields a discriminant hyperplane with
direction vectoin the Cartesian product

f(x(w))=f(>q(w),i:1, N)=K(@x@)+b=>"K/(9 x 0)+b2C (g
and produces, thereby, a kernel fusion technique.

It is apparent that if the norm of a component of the direction vector

9, OX, is small in its linear space, the respective Kegx', x )’ will little affect the
recognition rule (8).

The straightforward application of the SVM trainipginciple to the Cartesian
product of the particular linear spac&s= §§1><...><§§n [9], namely, finding the opti-

mal discriminant hyperplane iX with respect to the full training s&"”, results in
the training criterion

YLKi,9)+CY 08~ min(9, 0K, bR, 8, (TR)

Yi [Z 2 .(19.%((0 ))+b]>1—61, 3,20, w oQv.

This optimization problem leads to the dual quadrptogramming problem of the
analogous structure as the usual SVM dual prob8m (

o ~W2)T g o o Y% T (6 @)% @ ))AA,  max
ijmmyj)\j =0, 0<A, <C/2, 0, 0Q%.

©)

(10)

The Lagrange multipliers obtained for the set gffsrt objects
a={w,00%A, >0 00" (11)
yield the optimal recognition rule:

f‘(x(w))=“( (@, % @) =X, 0 YA DK (% @)X @) +520
2
(ZwJDQ JZquy)\Z-l '(&(w))ﬁ((’q)/ZmDQ J) (1)

This is the simplest but not the only possible wadiykernel fusion. The quasi-
statistical approach to the signal-level modalitynbination considered in [8] covers
the main kernel fusion principles known at present.

With the objective function in (9) aszi'll(]/ri)Ki ®.9)+CY. o ~
B ]

mm(s OX,,r,
criterion displays a tendency to suppressing thght® at the “redundant” kernels
. - 0 along with emphasizing; >0 the kernels which are “adequate” to the
trainer’s data, and, so, results in soft extractbm relatively small number of most
adequate kernels without full suppression of theexst Due to this property, this

training technique is called in [8] the Relevaneenkel Machine (RKM).

rOR,bOR, 3, DR) under additional constrainﬂ inzlri =1, the training
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It 3" JK(9,.9,)+CY. , g8, ~ min(9,0X, bR, 5,(R) is taken as the ob-
B ]
jective function in (9), the training technique es#k a subset of support kernels
fD{l,...,n} with positive norms of the direction vecto(rKi (éi ,éi)>0,in) in con-

trast to the others which get completely suppres(d;@@éi ,1§i)=0,in) [8]. Because

only the support kernell’ participate in the recognition rule, this is ackiof Sup-
port Kernel Machine (SKM) first considered in [5].

All of these approaches to kernel fusion technicaresclosely related to the prob-
lem of studying the relationship between kernel aladsifier fusion as alternative
strategies for combining pattern recognition mdiksi at, respectively, signal and

classifier level. However, in this paper we restdar consideration only to the sim-
plest kernel fusion technique (9).

4 Theneutral point method of combining modalities from digjoint
training sets

It is common practice that particular modalitiee amployed by different expert
groups, which hence derive their training sets fpreehelently of each other. If it is so,
the training setQ ={w,, j =1,...N} will consist of disjoint subset&"= Ua,

i=1
QiDﬂQ,D=D , such that the output signals of only one modaiggcific sensor

()g (o), W, DQF) are captured within the bounds of each of them.

With respect to this notation, the kernel fusioitecion (9) may be put in the fol-
lowing equivalent form:

(K 0,:9)+CY e, ) - min(9,0X, bR, 3, (R),
[yJ(Ki(ai X)X (5% (@) +b)21-5, 3,2 O,ijQiﬂ i=t.n B

Here, in each group of constraints at the traim’egobject{wj DQF,i =1,...,n} , for
any value of the abstract variabfs 0X;, only one of n summands is defined,
namely, K; (8,,% (w,)), whereas the other summanéts(9,,x (w;)) are not, be-
cause the sensor signalw;) are unknown forl #i due to the assumption that the

particular training sets are disjoint.

We hence propose a new method of combining moesliti supervised kernel-
based pattern recognition in the case when theitigasets for different modalities are
disjoint. The idea consists in treating the probl@®) as that of learning with incom-
plete data and filling-up the unknown actual valoéshe sensor signals correspond-

ing to other modalitie % (@) | | #i by one common value being the arbitrary neu-
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tral point >A<¢,i DXW (7) of theli th linear space. After this substitution, the pewbl
(13) takes the following form:

Zin:l( K @, ’s‘)+CijEDiD6J) - mil"(ﬁi DX bR, 8, DR) ,

(K8 X @) £ K (81,51 ) +b)21-8,,8, 200007 | i = 1. (1)

Theorem. The solution of the optimization problem (13)the totality of the op-

timal direction elements in the linear spaces ofegalized feature éi Dfii (5) found
as the solutions of the training problems (2) iretefently for each modality
1 =1...n along with the common threshold value equal &ésthm of optimal thresh-

olds for all modalitie:b=Y""0 (6).

Hence, replacement of the unknown actual valuesep$or signals by the neutral
points of the respective linear spaces leads tdigeiminant function (5)

fA()ﬁ(w)-i =1'---’n) =Zin=1Ki (’§| % @))+Zin:16| =zin=J[Ki (é| % @j"’ﬁ}z C. (15)
Here the expressions in brackets are nothing dtier the discriminant functions

built independently for each modal f (% (), thus,
f(x(0,i=1..0)=2" f(x @), (16)

So, the approach to filling-in the missing valudssensor signals we have adopted
leads to the indicated recognition rule which, frugtural terms, is a technique for
combining particular classifiers, namely, by sumoratof particular discriminant
functions. The neutral point method should therefexhibit the error-canceling prop-
erties associated with classifier combination andukl hence be a robust and safe
approach to kernel-based classification of disjdata sets.

An analogous technique of combining classifierkniewn in the literature under the
name of Sum Rule [2]. The distinction consistshat tthe known Sum Rule method is
based on the assumption of the probabilistic outptite particular classifiers in the form

of posterior class-membership probabilitigs” (x () , Z:ll pY (% (w)=1. The
combination principle consists in computing thefiedi posterior probabilities of
classes by way of summing over the particular pmste probabilities:
P (% (@), i=1...n)= @/n)> " p® (x (). When there are only two classes= 2,
the posterior probabilities at the output of ihé classifier are completely determined
by the posterior probability of one of the classes:

P(x(@,i=1..n)= @2} p(x ©).
The analogy between our classifier fusion rule @®&J the Sum Rule is immediately
apparent.
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5 Discussion

At first inspection, it is hardly possible to enquass a generic way of combining
modalities because of the vast variety of possibject representations. However, the
kernel-fusion approach converts, in a natural veifferent modalities into a unified
mathematical language of inner products in lingeces, which in fact makes such a
comparison realistic. This is so even if the ordimodalities are not themselves vec-
tor or scalar quantities: the only scalar constrarthat of the kernel itself. This is
hence particularly necessary in situations in wianly relative distance measures are
available, such as Genomics.

Thus in the simplest case, the sensor signals rhime the form of scalar numeri-
cal features, i.e. be real numbers. What we hastomarily done when learning in a
multidimensional linear space, which is the Caaegbroduct of several real-valued
axes, is thus nothing other than combining severalalities via a form of kernel fu-
sion.

However, any purely kernel-based fusion methodhatehdifficulties when the dif-
ferences in modality are accompanied by differernnesaining set composition: in
this case straightforward kernel-fusion will noffme. This difficulty is also apparent
for conventional classification: in fact it is ctethat application of the classifier fusion
principle is an inescapable necessity in the césksmint training subsets contained
within disjoint modalities, since multiple decisiconfidences are the only quantities
available for combining in a meaningful manner.

We have hence, by making certain conservative gsoms about the 'missing'
kernel values, derived reutral point method for addressing the above difficulty in a
Kernel-based context. However, it transpires thatreutral point method haself
the exact structural form of a classifier combioatscheme (in fact the Sum Rule de-
cision scheme).

At its purest level, though, the principle of combg modalities with disjoint
training sets via classifier fusion is based on dssumption that the modalities are
independent (that is, for decision problems in which the indival modalities cannot
be straightforwardly taken to define a compositet€dan product space in which
classification can take place). The principle afred-fusion, on the other hand, is not
attached to this assumption: the fact that it bexoequivalent to one particular com-
bination scheme under the neutral point assumgtiomissing data should not there-
fore be taken as significant for combination in grah, but rather for the Sum Rule,
specifically.

The fact that the Sum Rule combination scheme atbbits ideal error-canceling
properties [2] is thus a significant bonus, andasiderable further reason for advo-
cating the neutral point method.
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6 Conclusions

We have set out to address the difficulties thattiple modalities and disjoint
training sets represent for kernel-based pattecogmtion due to their absence of
intra-modal kernel information. Though possiblectmsider the problem at the classi-
fier fusion level, we have motivated our work om thasis of the conceptual prefer-
ability of addressing the issue from a purely kespecific perspective. Hence, by
interpreting the aggregate of disjoint trainingssas complete data-sets with missing
inter-modality measurements that can be substithiedppropriately-chosen values,
we have arrived at a novel classification technjqugch we have named timeutral-
point method. We proceeded to theoretically demonstrate that ribetral-point
method is a kernel-based analog of the well-known sule combination scheme. It is
thus capable of error-cancellation, and gives stréwacking for our assertion that the
neutral-point choice of replacements for inter-mitganeasurements is a conserva-
tive and safe one.
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