Skip to main content

Deriving the Kernel from Training Data

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4472))

Abstract

In this paper we propose a strategy for constructing data–driven kernels, automatically determined by the training examples. Basically, their associated Reproducing Kernel Hilbert Spaces arise from finite sets of linearly independent functions, that can be interpreted as weak classifiers or regressors, learned from training material. When working in the Tikhonov regularization framework, the unique free parameter to be optimized is the regularizer, representing a trade-off between empirical error and smoothness of the solution. A generalization error bound based on Rademacher complexity is provided, yielding the potential for controlling overfitting.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lanckriet, G., et al.: Learning the Kernel Matrix with Semidefinite Programming. JMLR 5, 27–72 (2004)

    Google Scholar 

  2. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  3. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  4. Aronszajn, N.: Theory of Reproducing Kernels. Trans. AMS 686, 337–404 (1950)

    Article  MathSciNet  Google Scholar 

  5. Micchelli, C.A., Pontil, M.: Learning the Kernel Function via Regularization. JMLR 6, 1099–1125 (2005)

    MathSciNet  Google Scholar 

  6. Ong, C.S., Smola, A.J., Williamson, R.C.: Learning the Kernel with Hyperkernels. JMLR 6, 1043–1071 (2005)

    MathSciNet  Google Scholar 

  7. Rakotomamonjy, A., Canu, S.: Frames, Reproducing Kernels, Regularization and Learning. JMLR 6, 1485–1515 (2005)

    MathSciNet  Google Scholar 

  8. Merler, M., Jurman, G.: Terminated Ramp – Support Vector Machines: a nonparametric data dependent kernel. Neur. Net. 19(10), 1597–1611 (2006)

    Article  MATH  Google Scholar 

  9. Amari, S., Wu, S.: Improving support vector machine classifiers by modifying kernel functions. Neur. Net. 12(6), 783–789 (1999)

    Article  Google Scholar 

  10. Evgeniou, T., Pontil, M., Poggio, T.: Regularization Networks and Support Vector Machines. Adv. Comp. Math. 13, 1–50 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  11. Cucker, F., Smale, S.: On the Mathematical Fundations of Learning. Bull. AMS 39(1), 1–49 (2001)

    Article  MathSciNet  Google Scholar 

  12. Rifkin, R.: Everything old is new again: a fresh look at historical approaches in Machine Learning. PhD thesis, MIT (2002)

    Google Scholar 

  13. Hastie, T.J., Buja, A., Tibshirani, R.: Penalized Discriminant Analysis. Ann. Stat. 23, 73–102 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  14. Bartlett, P.L., Mendelson, S.: Rademacher and Gaussian Complexities: Risk Bounds and Structural Results. JMLR 3, 463–482 (2002)

    Article  MathSciNet  Google Scholar 

  15. Guyon, I., et al.: Gene Selection for Cancer Classification using Support Vector Machines. Mach. Lear. 46(1/3), 389–422 (2002)

    Article  MATH  Google Scholar 

  16. Barla, A., et al.: Proteome profiling without selection bias. In: Proc. CBMS 2006, pp. 941–946. IEEE Computer Society Press, Los Alamitos (2006)

    Google Scholar 

  17. Furlanello, C., et al.: Entropy-based gene ranking without selection bias for the predictive classification of microarray data. BMC Bioinf. 4, 54 (2003)

    Article  Google Scholar 

  18. Jurman, G., et al.: Algebraic stability indicators for ranked lists in molecular diagnostics. Submitted (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Michal Haindl Josef Kittler Fabio Roli

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Merler, S., Jurman, G., Furlanello, C. (2007). Deriving the Kernel from Training Data. In: Haindl, M., Kittler, J., Roli, F. (eds) Multiple Classifier Systems. MCS 2007. Lecture Notes in Computer Science, vol 4472. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72523-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72523-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72481-0

  • Online ISBN: 978-3-540-72523-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics