
G. Dong et al. (Eds.): APWeb/WAIM 2007, LNCS 4505, pp. 821–828, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Homomorphism Resolving of XPath Trees Based on
Automata*

Ming Fu and Yu Zhang1,2

1 Department of Computer Science & Technology,
University of Science & Technology of China, Hefei, 230027, China

2 Laboratory of Computer Science, Chinese Academy of Sciences, Beijing, 100080, China
brightfu@ustc.edu, yuzhang@ustc.edu.cn

Abstract. As a query language for navigating XML trees and selecting a set of
element nodes, XPath is ubiquitous in XML applications. One important issue
of XPath queries is containment checking, which is known as a co-NP
complete. The homomorphism relationship between two XPath trees, which is a
PTIME problem, is a sufficient but not necessary condition for the containment
relationship. We propose a new tree structure to depict XPath based on the level
of the tree node and adopt a method of sharing the prefixes of multi-trees to
construct incrementally the most effective automata, named XTHC (XPath
Trees Homomorphism Checker). XTHC takes an XPath tree and produces the
result of checking homomorphism relationship between an arbitrary tree in
multi-trees and the input tree, thereinto the input tree is transformed into events
which force the automata to run. Moreover, we consider and narrow the
discrepancy between homomorphism relationship and containment relationship
as possible as we can.

Keywords: XPath tree, containment, homomorphism, automata.

1 Introduction

XML has become the standard of exchanging a wide variety of data on Web and
elsewhere. XML is essentially a directed labeled tree. XPath[1] is a simple and
popular query language to navigate XML trees and extract information from them.

XPath expression p is said to contain another XPath expression q, denoted by
q ⊆ p, if and only if for any XML document D, if the resulting set of p returned by
querying on D contains the resulting set of q. Containment checking becomes one of
the most important issues in XPath queries. Query containment is crucial in many
contexts, such as query optimization and reformulation, information integration,
integrity checking, etc. However, [2] shows that containment in fragment XP{[],*,//} is
co-NP complete. The authors proposed a complete algorithm for containment, whose
complexity is EXPTIME. The authors also proposed a sound but incomplete PTIME

* This work is supported by the National Natural Science Foundation of China under Grant No.

60673126, and the Foundation of Laboratory of Computer Science, Chinese Academy of
Science under Grant No. SYSKF0502.

822 M. Fu and Y. Zhang

algorithm based on homomorphism. This algorithm may return false negatives
because the homomorphism relationship between two XPath trees is a sufficient but
not necessary condition for the containment relationship. In many practical situations
containment can be replaced by homomorphism.

The homomorphism algorithms proposed in [2][3] are mainly focused on how to
resolve the containment problem between two XPath expressions. In [3] the authors
proposed hidden-conditioned homomorphism to further narrow the discrepancy
between homomorphism and containment based on [2]. However, the homomorphism
relationship was considered in these works only between two XPath trees. In practice
we may need to verify the homomorphism relationship between an arbitrary tree in a
set of XPath trees and the input XPath tree, such as filtering redundant queries in a
large query set. It is inefficient to check one by one using the homomorphism
algorithm, because the same prefix and branch in multi-trees will cause redundant
computing. Although a method handling this was discussed in [4], it will return false
negatives for some XPath expressions which have containment relationship, such as
XPath expressions p = /a//*/b, q = /a/*//b etc.

In this paper, we propose an efficient method to check homomorphism from
multi-trees to a single XPath tree based on automata.We also narrow the discrepancy
between homomorphism and containment as possible as we can. Our major
contributions are: 1)We propose the fixed tree and alterable tree to describe the XPath
tree, and define homomorphism based on them. 2)We define XTHC machine, a kind
of indexed incremental automata with prefix-sharing of multi-trees, and our method
can give the optimal automata. 3)We propose an algorithm to check homomorphism
from multi-trees to a single tree based on XTHC machine. 4)The experiment results
demonstrate both the practicability and efficiency of our techniques.

The rest of this paper is organized as follows. Section 2 gives some basic notations
and definitions. Section 3 is the major part of our work, that is, how to construct
XTHC machine and how to use XTHC to resolve the homomorphism problem. The
last two sections present the experimental evaluation and conclusions, respectively.

2 Preliminaries

Each XPath expression has a corresponding XPath tree. The XPath tree given in [2]
uses each node test in the XPath expression as a node in the tree, and classifies its
edges into child-edge and descendant-edge according to the type of axes in the XPath
expression. This description is straightforward and easy to understand, however,
difficult to expand. If there is any backward axis (parent-axis or ancestor-axis) in the
XPath expression, this method is no longer applicable to describing the tree structure.

We now give a different description of XPath tree, in which the level information
between the adjacent two node tests is abstracted from the type of the axis between
the node tests, and recorded at the corresponding node in the XPath tree. Our work is
limited to XP{[],*,//} expression only.

Definition 1: For a given XP{[],*,//} expression q, we construct an XPath tree T. The
root of T is independent of q. Every node test n in q can be described by a non-root
node v. The relationship between v and its parental node v' is denoted by L(v)=[a, b],

 Homomorphism Resolving of XPath Trees Based on Automata 823

where a and b are the minimum and maximum numbers of levels between v and v'
respectively. The relationship between nodes in tree T is given as:

1) If n is a root node test, i.e. /n or //n, there exists an edge in T between the node v
in T that corresponds to n, and the root r, edge(r, v), where r is the parental node of v.
When /n, L(v)=[1, 1]; and L(v)=[1, ∞] when //n.

2) If n is not a root node test, there is an adjacent node test n' in q that satisfies n'/n,
n'[n], n'//n or n'[.//n], therefore, there exists an edge in T between v and v'
(corresponding to n and n' respectively), where v' is the parental node of v. When n'/n
or n'[n], L(v)=[1, 1]; and L(v)=[1, ∞] when n'//n or n'[.//n].

Definition 2: Given an XPath tree T, let NODES(T) be the set of nodes in T,
EDGES(T) be the set of edges in T, ROOT(T) be the root node of T. If there exists
v∈ NODES(T), and the outdegree of v is greater than 1, or the outdegree or the
indegree of v is 0, node v is then called key node of the XPath tree T. ∀ edge(x,y)∈
EDGES(T), where x,y∈NODES(T), and edge(x,y) implies x is the parental node of y.
If nid is the unique idtentifier of node y and ln is the label of node y, we then denote
node y by nid[a,b], where [a,b] equals to L(y).

Informally, key nodes in an XPath tree are branching nodes (nodes with outdegree
greater than 1), leaves, and root.

There are often some wildcard location steps without predicate used in an XPath
expression, which are represented as non-branching nodes ‘*’, such as the expression
/a/*//*/b. We can remove those wildcard nodes in the XPath tree for simplification,
but have to revise the L(v) value of some related non-wildcard node v which is the
descendent node of the removed wildcard node. Fig. 1(a) illustrates the two XPath
trees of the expression /a/*//*/b before and after removing non-branching wildcard
nodes, where L(b) is revised. In the following context, all XPath trees are those trees
from which the non-branching wildcard nodes are removed.

 (a) (b)

Fig. 1. (a)XPath Tree /a/*//*/b ; (b)XPath Tree /a/*/b[.//*/c]//d

Definition 3: Given an XPath tree T, let CNODES(T) be the set of alterable nodes,
FNODES(T) be the set of fixed nodes, NODES(T)={ROOT(T)} ∪ CNODES(T)
∪ FNODES(T). ∀ n ∈ NODES(T) and n ≠ ROOT(T), L(n) = [a,b]. If a=b, then
n∈FNODES(T); if b= ∞ , then n∈CNODES(T). When CNODES(T) is not empty, the
XPath tree T is an alterable tree, otherwise it is a fixed tree.

As an example, the XPath tree of the XPath expression /a/*/b[.//*/c]//d is shown in
Fig. 1(b). The set of level relationship between node x2 and its parental node is
L(x2)=[2,2]. From definition 3, node x2 is a fixed node. The set of level relationship

824 M. Fu and Y. Zhang

between node x3 and its parental node is L(x3)=[2, ∞], and node x3 is an alterable
node, so the corresponding XPath tree is an alterable tree.

Definition 4: Function h: NODES(p) → NODES(q) describes the homomorphism
relationship from XPath tree p to XPath tree q:
1)h(ROOT(p)) = ROOT(q);
2)For each x∈NODES(p), LABEL(x)='*' or
LABEL(x) = LABEL(h(x));
3)For each edge(x,y) ∈ EDGES(p), where

x,y∈NODES(p), L(x,y) ⊇ L(h(x),h(y));

Fig. 2 shows the homomorphism mapping h
from XPath tree p to XPath tree q based on
XPath expressions /a/*//b and /a[c]//*/*//b.

3 Homomorphism Resolution Based on XTHC Machine

3.1 Construction of Basic XTHC Machine

We will incrementally construct NFA with prefix-sharing on the set of XPath trees
P={p1,p2…pn}. Each node nid[a,b] in the XPath tree will be mapped to an automata
fragment in NFA, and such a fragment has a unique start state and a unique end state.
There are two cases while constructing the fragment from the node nid[a,b]:

1. When a=b, nid[a,b] is a fixed node, the constructed automata fragment is shown in
Fig.3(a). The states s-1 and s+a-1 are the start and end states of the fragment,
respectively. Since a represents the minimum number of levels between node
nid[a,b] and its parental node, starting from state s-1, we can construct in turn a-1
states along the arcs labeled ‘*’, which are called extended states; we then
construct state s+a-1 along the arc labeled ln from state s+a-2. Obviously there
exist extended states in the automata fragment based on nid[a,b] when a>1.

 (a) (b)

Fig. 3. (a) The automata fragment corresponding to the fixed node nid[a,a]; (b) The automata
fragment corresponding to the alterable node nid[a, ∞]

2. When b= ∞ , nid[a,b] is an alterable node, many kinds of automata fragment can be
constructed, one example is shown in Fig.3(b). Similarly to that in case 1, we first
construct a-1 extended states and the end state s+a-1, starting from state s-1. Since
b= ∞ , it is necessary to add self-looping arc, labeled by ‘*’, in any one or more
states from state s-1 or the following a-1 extended states. The chain consisting of
the start state and the extended states, is denoted by extended state-chain. Fig.3(b)
only shows one self-looping arc at last state of the extended state-chain. Obviously,

Fig. 2. Homomorphism mapping h:p q

 Homomorphism Resolving of XPath Trees Based on Automata 825

an automata fragment corresponding to an alterable node nid[a,b] (a>1) in an XPath
tree p is optimal, if and only if there is only one state in the fragment that has a
self-looping arc, and this state must be the last state along the extended state-chain.

Definition 5: Suppose the NFA constructed from set P of XPath trees is A, called the
XHTC machine. We can create the following two index tables for each state s in A:

1) LP(s): list of leaf nodes. ∀p∈P, for each leaf node nl in p, if s is the last state
constructed from nl, then nl∈LP(s). Only when s is a leaf state, LP(s) is non-empty.

2) LB(s): list of branching nodes. ∀ p∈P, for each branching node nb in p, if s is
the last state constructed from nb, then nb∈LB(s). Only when s is a branching state,
LB(s) is non-empty.

Fig. 4(b) is the XTHC machine constructed from XPath trees p1, p2, and p3 which
are shown in Fig.4(a), pi.x represents node x in XPath tree pi, a state is denoted by a
circle. An arc implies state transition, where dashed lines represents transition of
descendant-axis type, and solid lines represents transition of child-axis type. A label
on an arc is a node test. State S1 has an arc to itself since it has a transition of
descendant-axis type.

 (a) (b)

Fig. 4. (a) The XPath tree set P ; (b) The XTHC machine constructed from XPath tree set P

Definition 6: A basic non-deterministic XTHC machine A is defined as:

 A = (Q s, Σ , δ, qs
0, F, B, Ss)

where

• Qs is the set of NFA states;
• Σ is the set of input symbols;
• qs

0 is the initial(or start) NFA state of A, i.e. the root state;
• δ is the set of state transition functions, it contains at least the NFA state transition

function, i.e. tforward: Q
 s × Σ → 2Q s;

• F ⊆ Qs is the set of final states, it is also the set of leaf states;

• B ⊆ Qs is the set of branching states;

• ∀ qs∈Qs, we call qs an NFA state of A, LP(qs) and LB(qs) are two index tables of
qs (see definition 5); Ss is the stack for state transition, the stack frame of Ss is a
subset of Q s.

826 M. Fu and Y. Zhang

3.2 Running an XTHC Machine

In order to resolve the homomorphous relationship using an XTHC machine, a depth-
first traverse on the input XPath tree is required to generate SAX events. These events
will be used as input to the XTHC machine for the XTHC machine running.

Four types of events will be generated at depth-first traverse on the input XPath
tree p: startXPathTree, startElement, endElement and endXPathTree. Time of these
events being generated is:

1) send startXPathTree event when entering root of p;
2) send startElement event when entering non-root node of p;
3) send endElement event when tracing back to non-root node of p;
4) send endXPathTree event when tracing back to root of p.

Since a and b are not always 1 in a node nid[a,b] of an XPath tree, more than one
events are sent at entering or tracing back to node nid[a,b]:

1) the startElement event sequence sent when a=b is shown in Fig.5(a);
2) the startElement event sequence sent when b= ∞ is shown in Fig.5(b).

In particular, there are some restrictions applied on a startElement(‘//’) event:

1) it occurs only when node nid[a,b] is an alterable node;

2) state transition driven by this event occurs only at state s in the extended state-
chain corresponding to the alterable node, and there is a unique state transition:

tforward(s, ‘//’) → s.

Similarly, more than one endElement event are sent when tracing back to node
nid[a,b] in the tree, which are shown in Fig. 5(c) and 5(d).

 (a) (b)

 (c) (d)

Fig. 5. (a) The startElement(“SE” for short) event sequence of the fixed node nid[a,a]; (b) The
startElement event sequence of the alterable node nid[a, ∞]; (c) The endElement(“EE” for short)
event sequence of the fixed node nid[a,a]; (d) The endElement event sequence of the alterable
node nid[a, ∞]

Fig. 6 shows rules of processing SAX events in an XTHC machine. The
homomorphism relationship between tree pi in a set of XPath tree P={p1,p2,…,pn} and
an input tree q can be resolved by running the XTHC machine. When the XTHC
machine is running, ∀ p∈P, homomorphism information between each node v in p
and nodes in the input tree q is recorded. Let v∈p, a be the label of node u in the
input XPath tree q. We define the following three operations to mark, deliver and
reset information about the mapping in the XPath tree p:

 Homomorphism Resolving of XPath Trees Based on Automata 827

1) mark(v, u): when the XTHC machine is running at a leaf state qs(qs∈ F),
∀ v∈LP(qs), mark on v the information about the mapping from the leaf
node v to the node u in the input XPath tree q;

2) deliver(v): when the machine traces back to a key state qs(qs ∈ F ∪ B),
∀ v∈ LB(qs) ∪ LP(qs), if information about the mapping was marked on
node v, deliver the mapping information of v to the nearest ancestor key node
to v in the XPath tree;

3) reset(v): when the machine traces back to a key state qs(qs ∈ F ∪ B),
∀ v∈LB(qs) ∪ LP(qs), reset the mapping information on node v.

Fig. 6. The processing rules of SAX events in XTHC

The time complexity of the algorithm resolving homomorphism from one XPath
tree p to another XPath tree q is O(|p||q|2)[2]. Therefore, the time complexity from
each tree p in a set of XPath tree P={p1,p2,…,pn} to q is O(n|p||q|2) without using
prefix-sharing automata. However, if prefix-sharing automata is used, the time
complexity is O(m|q|2), where m is the number of states in NFA. When XPath trees in
P have common branches and prefixes, n|p| is much greater than m, therefore, it is
much more efficient to resolve homomorphism from multi-XPath trees to one single
XPath tree using prefix-sharing automata.

4 Experiments

An algorithm resolving homomorphism based on the XTHC machine (XHO) was
implemented using Java. The experimental platform is on Windows XP operation
system, Pentium 4 CPU, with frequency of 1.6GHz and memory of 512MB. We
compared several algorithms: the homomorphism algorithm (HO)[2], the complete
algorithm in a cononical model (CM), branch homomorphism algorithm(BHO)[4],
and the proposed XHO algorithm. We checked the scope of each algorithm at
resolving containment of XPath expressions (see table 1, where T/F represents p
containing/not containing q), and the time complexity of these algorithms(see Fig. 7).

This experiment shows XHO is as capable as existing homomorphism algorithms.
Furthermore, XHO supports containment calculation from multi-XPath expressions to
one single XPath expression. Although BHO also supports such calculation, it may

startXPathTree()

push(Ss, {qs
0}); other initialization

startElement(a)
qs

set ={}; // current NFA state set

u = getCurrentInputNode();

for each qs in peek(Ss)

merge tforward(q
s, a) into qs

set

push(Ss, qs
set);

for each qs in qs
set

if (qs∈F)

for each in LP(s)

endElement(a)

qs
set = pop(Ss);

for each qs in qs
set

if (qs∈B or qs∈F){

for each v in LB(qs) or LP(qs)

 if exsit mapping of v{

deliver(v);

reset(v);

}

}

endXPathTree()

828 M. Fu and Y. Zhang

give incorrect results in some cases as shown in Table 1. BHO gives a result that is
rather different from the correct result CM gives. Compared to BHO, XHO gives
smaller discrepancy between containment and homomorphism.

Table 1. Some pairs of XPath trees for experiments and containment results

No p q HO BHO XHO CM
no.1 /a//*[.//c]//d /a//b[c]//d T T T T
no.2 /a/*/*/c /a/b[c]/e/c T T T T
no.3 /a//b[*//c]/b/c /a//b[*//c]/b[b/c]//c T T T T
no.4 /a//*/b /a/*//b T F T T
no.5 /a/*[.//b]//c /a//*/b/c F F T T
no.6 /a[a//b[c/*//d]/b/c/d] /a[a//b[c/*//d]/b[c//d]/b/c/d] F F F T
no.7 /a/*/*/*/c /a//*/b//b/c F F F F
no.8 /a//b[c]/d /a/b[.//c]//d F F F F

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

HO BHO XHO CM

Homomorphism Algorithms

R
u
n
n
i
n
g

T
i
m
e
(
m
i
c
r
o
s
e
c
o
n
d
)

no.1

no.2

no.3

no.4

no.5

no.6

no.7

no.8

Fig. 7. The experimental results for some homomorphism algorithms

5 Conclusion

This paper considers an algorithm to resolve containment between multi-XPath
expressions and one single XPath expression through homomorphism. While high
efficiency is kept at calculating multi-containment relationships, we also consider
discrepancy between containment and homomorphism. The algorithm works correctly
on calculating containment of a special type of XPath expressions. Experiments
showed that our algorithm is more complete than conventional homomorphism
algorithms. Future research can be done on how to resolve homomorphism between
one XPath tree and multi-XPath trees simultaneously.

References

[1] World Wide Web Consortium, XML Path Language (XPath) Version 1.0,
http://www.w3.org/TR/xpath, W3C Recommendation, November 1999.

[2] G. Miklau and D. Suciu. Containment and equivalence for a fragment of XPath. Journal of
the ACM, 51(1):2-45, 2004.

[3] Yuguo Liao, Jianhua Feng, Yong Zhang and Lizhu Zhou. Hidden conditioned
homomorphism for XPath fragment containment. In DASFAA 2006, LNCS 3882, 454-467,
2006.

[4] Sanghyun Yoo, Jin Hyun Son and Myoung Ho Kim. Maintaining homomorphism
information of XPath patterns. IASTED-DBA2005, 2005, 192-197.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

