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Abstract. In the paper, we present the relationship between loss func-
tions and confirmation measures. We show that population minimizers
for weighted loss functions correspond to confirmation measures. This
result can be used in construction of machine learning methods, partic-
ularly, ensemble methods.

1 Introduction

Let us define the prediction problem in a similar way as in [4]. The aim is to
predict the unknown value of an attribute y (sometimes called output, response
variable or decision attribute) of an object using the known joint values of other
attributes (sometimes called predictors, condition attributes or independent vari-
ables) x = (x1, T2, ..., x,). We consider binary classification problem, in which
we assume that y € {—1,1}. All objects for which y = —1 constitute decision
class Cl_1, and all objects for which y = 1 constitute decision class Cl;. The goal
of a learning task is to find a function F(x) (in general, F(x) € R) using a set of
training examples {y;,x;}Y that predicts accurately y (in other words, classifies
accurately objects to decision classes). The optimal classification procedure is
given by:

F*(x) = argmin E,x L(y, F(x)), (1)

F(x)

where the expected value Eyx is over joint distribution of all variables (y,x) for
the data to be predicted. L(y, F(x)) is a loss or cost for predicting F'(x) when the
actual value is y. EyxL(y, F'(x)) is often called prediction risk. Nevertheless, the
learning procedure can use only a set of training examples {y;, x;}1'. Using this
set, it tries to construct F(x) to be the best possible approximation of F*(x).
The typical loss function in binary classification tasks is, so called, 0-1 loss:

foatnry= {0 130020 ®



It is possible to use other loss functions than . Each of these functions has
some interesting properties. One of them is a population minimizer of prediction
risk. By conditioning on x (i.e., factoring the joint distribution P(y,x) =
P(x)P(y|x)), we obtain:

F*(x) = arg ?(1)3 ExE,xL(y, F(x)). (3)

It is easy to see that it suffices to minimize (3]) pointwise:

P (x) = arg min B, L(y. F (). (4)

The solution of the above is called population minimizer. In other words, this
is an answer to a question: what does a minimization of expected loss estimate
on a population level? Let us remind that the population minimizer for 0-1 loss
function is:

F*(x):{—1 ifP(y;—ux) 21 (5)

From the above, it is easy to see that minimizing 0-1 loss function one estimates
a region in predictor space in which class Cl; is observed with the higher prob-
ability than class Cl_;. Minimization of some other loss functions can be seen
as an estimation of conditional probabilities P(y = 1|x) (see Section [2)).

From the other side, Bayesian confirmation measures (see, for example, [5/9])
have paid a special attention in knowledge discovery [7]. Confirmation measure
¢(H, F) says in what degree a piece of evidence F confirms (or disconfirms) a
hypothesis H. It is required to satisfy:

>0 if P(H|E) > P(H),
o(H,E)={ =0 if P(H|E) = P(H), (6)
<0 if P(H|E) < P(H),

where P(H) is the probability of hypothesis H and P(H|E) is the conditional
probability of hypothesis H given evidence E. In Section [3} two confirmation
measures of a particular interest are discussed.

In this paper, we present relationship between loss functions and confirmation
measures. The motivation of this study is a question: what is the form of the loss
function for estimating a region in predictor space in which class C'l; is observed
with the positive confirmation, or alternatively, for estimating confirmation mea-
sure for a given x and y? In the following, we show that population minimizers
for weighted loss functions correspond to confirmation measures. Weighted loss
functions are often used in the case of imbalanced class distribution, i.e., when
probabilities P(y = 1) and P(y = —1) are substantially different. This result is
described in Section [l The paper is concluded in the last section.
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Fig. 1. The most popular loss functions (figure prepared in R [10]; similar figure
may be found in [8], also prepared in R)

2 Loss Functions

There are different loss functions used in prediction problems (for a wide discus-
sion see [8]). In this paper, we consider, besides 0-1 loss, the following three loss
functions for binary classification:

— exponential loss:
Leap(y, F(x)) = exp(—yF(x)), (7

— binomial negative log-likelihood loss:
Liog(y, F(x)) = log(1 + exp(-2y F(x))), (8)

— squared-error loss:
Legr(y, F(x)) = (y — F(x))? = (1 - yF(x))*. (9)

These loss functions are presented in Figure |2 Exponential loss is used in Ad-
aBoost [6]. Binomial negative log-likelihood loss is common in statistical ap-
proaches. It is also used in Gradient Boosting Machines [3]. The reformulation
of the squared-error loss @ is possible, because y € {—1,1}. Squared-error loss
is not a monotone decreasing function of increasing yF'(x). For values yF'(x) > 1
it increases quadratically. For this reason, one has to use this loss function in
classification task very carefully.



The population minimizers for these loss functions are as follows:

) . 1 Ply=1x
F*(x) = arg Fx) ByjxLeap(y, F(x)) = 5 logP(Z(/Z—Lif

1
F*(x) = inE, L F = Zlog —2 %/
(%) arg min yixLiog(y, F(x)) 518 B, = 1)
FWX):a@ggy%meAyJN@):f%yzlk%*P@::*H@~

From these formulas, it is easy to get values of P(y = 1|x).

3 Confirmation Measures

There are two confirmation measures of a particular interest:

I(H,E) = log m, (10)

P(E|H) + P(E|-H)’

where H is hypothesis, and F is evidence. Measures | and f satisfy two desired
properties that are:

— hypothesis symmetry: ¢(H, F) = —c(—H, E) (for details, see for example [5]),
— and monotonicity property M defined in terms of rough set confirmation
measures (for details, see [7]).

Let us remark that in the binary classification problem, one tries for a given
x to predict value y € {—1,1}. In this case, evidence is x, and hypotheses are
then y = —1 and y = 1. Confirmation measures and take the following
form:
P(xly =1
P(xly =-1)’
_ Ply=1)-Pxly=-1)
P(xly =1)+ P(x|ly = —1)

I(y = 1]x) =log (12)

fly=1x) (13)

4 Population Minimizers for Weighted Loss Functions

In this section, we present our main results that show relationship between loss
functions and confirmation measures. We prove that population minimizers for
weighted loss functions correspond to confirmation measures. Weighted loss func-
tions are often used in the case of imbalanced class distribution, i.e., when prob-
abilities P(y = 1) and P(y = —1) are substantially different. Weighted loss
function can be defined as follows:

Lw(y7F(X)) =w- L(yaF(X))v



where L(y, F(x)) is one of the loss functions presented above. Assuming that
P(y) is known, one can take w = 1/P(y), and then:

L¥(y, F(x)) = %  L(y, F(x)). (14)

In the proofs presented below, we use the following well-known facts: Bayes
theorem: P(y = 1|x) = P(y = 1Nx)/P(x) = P(xly = 1)P(y = 1)/P(x); and
Ply=1)=1-Ply=-1)and Py =1|x) =1 - P(y = —1|x).

Let us consider the following weighted 0-1 loss function:

1 {o if yF(x) > 0,

Lé‘il(y,F(X))=%' 1 ifyF(x) <O0.

Theorem 1. Population minimizer of Ey Ly 1 (y, F(x)) is:

ey J1 i Py=1x)>Py=1),
F(X){—1 if P(y = —1|x) > P(y = —1)

— 1 1fc(y:1ax)207
{—1 if c(y =—-1,x) > 0. (16)

where ¢ is any confirmation measure.
Proof. We have that

F*(x) = arg min EyxLg 1 (y, F(x)).

Prediction risk is then:
EyxLo_1(y, F(x))

Eyleng(% F(x))

Py = 1x)Ly_1 (1, F(x)) + P(y = —1|x)Lg_, (—1, F(x)),
Py = 1]x) Py = —1]x)
Ply=1) Ply=-1)

This is minimized, if either P(y = 1|x)/P(y = 1) > P(y = —1]x)/P(y = —1)
for any F(x) > 0, or P(y = 1|x)/P(y = 1) < P(y = —1|x)/P(y = —1) for any
F(x) < 0 (in other words, only the sign of F(x) is important). From P(y =
1|x)/P(y =1) > P(y = —1|x)/P(y = —1), we have that:

L(),]_(—LF(X)).

Lofl(l, F(X)) —|—

Ply=1x) _ 1-Ply=1]x)
Py=1) =~ 1-Py=1)"

which finally gives P(y = 1]x) > P(y = 1) or ¢(y = 1,x) > 0. Analogously,
from P(y = 1]x)/P(y = 1) < P(y = —1|x)/P(y = —1), we obtain that P(y =
—1|x) > P(y = —1) or ¢(y = —1,x) > 0. From the above we get the thesis. O

From the above theorem, it is easy to see that minimization of L§_; (y, F'(x))
results in estimation of a region in predictor space in which class Cl; is ob-
served with a positive confirmation. In the following theorems, we show that



minimization of a weighted version of an exponential, a binomial negative log-
likelihood, and a squared-loss error loss function gives an estimate of a particular
confirmation measure, [ or f.

Let us consider the following weighted exponential loss function:

Ly (y, F(x)) =

exp

1
W exp(—y - F(x)). (17)

Theorem 2. Population minimizer of Ey L), (y, F(x)) is:

= ; Oglf(E:TgL?J::—ll)) = %l(y = 1,x). (18)

Proof. We have that

F*(x) = arg win Eyx Ly, (y, F(x)).

Prediction risk is then:

EyxLeup(y, F(%)) = Py = 1x) Ly, (1, F(x)) + Py = —1{x) L, (—1, F(x)),

Bty 0 F ) = Tt =1 exp(- () + T =1 ()
Let us compute a derivative of the above expression:
OByl (y, F(x)) Py =1]x) Py = —1|x)
SE = Pl 1y OPFR)) ¢ S exp(F(0)
Setting the derivative to zero, we get:
_ Ply=1x)Py=-1)
SPEED) = By =1 Py=1)
Flx) = 21 Ply=1x)Ply=-1) _ Ly=1x. O

T2 % Py =1x)Py=1) 2

Let us consider the following weighted binomial negative log-likelihood loss
function:

v (4 F(x) = %Mg(l + exp(~2y - F(x))). (19)

Theorem 3. Population minimizer of Ey Ly, (y, F(x)) is:

F*(x) = ;logm _ %l(y —1,%). (20)



Proof. We have that

Fr(x) = arg win EyxLigg (y, F(x)).

Prediction risk is then:

EyixLing(y, F(x)) = Py = 1|x) Lo, (1, F(x)) + P(y = —1|x) Ljo,(—1, F(x))
Py = 1|x) Py = —1]x)

=7 " og(1 + exp(—2F(x))) + Ply=—1)

Ply=1) log(1 + exp(2F'(x))).

Let us compute a derivative of the above expression:

OBy jxLig, (y, F(x)) _ Py =1x)  exp(=2F(x))
OF (x) P(y=1) 1+ exp(—2F(x))
Ply=—1x) exp(2F(x))

P(y=-1) 1+exp(2F(x))

+2

Setting the derivative to zero, we get:

Ply=1x)P(y = —1)
P(y=—-1x)P(y =1)
Py =1[x)P(y = -1)

1 1
F(x) = 510g Ply= 1Py =1) il(y =1,x). O

exp(2F (x)) =

Let us consider the following weighted squared-error loss function:

LY (3, F(x)) = ﬁ@ ~ F(x)°. (21)

Theorem 4. Population minimizer of EyLg,,(y, F'(x)) is:

iy PEly=1) -Pxly=-1) .
P00 = pady =1+ Peay = 1) T .

Proof. We have that

F*(x) = arg 1{51(1}3 Ey|xL;“qT(y7 F(x)).

Prediction risk is then:

Eyx Loy, (y, F(x)) = P(y = 1{x) L, (1, F(x)) + P(y = —1|x) Ly, (-1, F(x)),
Py =1|x) Py = —1|x)

Byl (. F(x)) = “pf— (1 = FO)P + ~pp == 1+ F())*
Let us compute a derivative of the above expression:
OB xLit, 0 F(x) _  Ply=1p9 | o Ply=-1) .
OF () = -2 Py =1) (1—-F(x))+2 Pl =—1) (14 F(x)).



Setting the derivative to zero, we get:

5

F(x) Ply=1x)/Ply=1) - Ply=-1[x)/P(y=-1)
P(y=1|x)/P(y=1)+ P(y = —1|x)/P(y = —1)’
_ Pixly=1) - Pxly=-1) _
B = Py =) 7 Py = —1) ~SW =1 O
Conclusions

We have proven that population minimizers for weighted loss functions corre-
spond directly to confirmation measures. This result can be applied in construc-
tion of machine learning methods, for example, ensemble classifiers producing
a linear combination of base classifiers. In particular, considering ensemble of
decision rules [I2], a sum of outputs of rules that cover x can be interpreted as
an estimate of a confirmation measure for x and a predicted class.

Our future research will concern investigation of general conditions that loss

function has to satisfy to be used in estimation of confirmation measures.
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