
Differential Cryptanalysis of the Stream Ciphers
Py, Py6 and Pypy�

Hongjun Wu and Bart Preneel

Katholieke Universiteit Leuven, ESAT/SCD-COSIC
Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium

{wu.hongjun,bart.preneel}@esat.kuleuven.be

Abstract. Py and Pypy are efficient array-based stream ciphers de-
signed by Biham and Seberry. Both were submitted to the eSTREAM
competition. This paper shows that Py and Pypy are practically inse-
cure. If one key is used with about 216 IVs with special differences, with
high probability two identical keystreams will appear. This can be ex-
ploited in a key recovery attack. For example, for a 16-byte key and a
16-byte IV, 223 chosen IVs can reduce the effective key size to 3 bytes.
For a 32-byte key and a 32-byte IV, the effective key size is reduced to
3 bytes with 224 chosen IVs. Py6, a variant of Py, is more vulnerable to
these attacks.

Keywords: Differential Cryptanalysis, Stream Cipher, Py, Py6, Pypy.

1 Introduction

RC4 has inspired the design of a number of fast stream ciphers, such as ISAAC
[8], Py [2], Pypy [3] and MV3 [10]. RC4 was designed by Rivest in 1987. Being the
most widely used software stream cipher, RC4 is extremely simple and efficient.
At the time of the invention of RC4, its array based design was completely
different from the previous stream ciphers mainly based on linear feedback shift
registers.

There are two main motives to improve RC4. One motive is that RC4 is byte
oriented, so we need to design stream ciphers that can run more efficiently on
today’s 32-bit microprocessors. Another motive is to strengthen RC4 against
various attacks [7,11,16,5,6,12,15,17,13,14]. Two of these attacks affect the secu-
rity of RC4 in practice: the broadcast attack which exploits the weakness that
the first few keystream bytes are heavily biased [12], and the key recovery attack
using related IVs [6] which results in the practical attack on RC4 in WEP [13].
These two serious weaknesses are caused by the imperfection in the initialization
of RC4.

Recently Biham and Seberry proposed the stream cipher Py [2] which is re-
lated to the design of RC4. Py is one of the fastest stream ciphers on 32-bit
� This work was supported in part by the Concerted Research Action (GOA) Ambior-

ics 2005/11 of the Flemish Government and in part by the European Commission
through the IST Programme under Contract IST-2002-507932 ECRYPT.

M. Naor (Ed.): EUROCRYPT 2007, LNCS 4515, pp. 276–290, 2007.
c© International Association for Cryptology Research 2007

Differential Cryptanalysis of the Stream Ciphers Py, Py6 and Pypy 277

processors (about 2.5 times faster than RC4). A distinguishing attack against
Py was found by Paul, Preneel and Sekar [18]. In that attack, the keystream
can be distinguished from random with about 288 bytes. Later, the attack was
improved by Crowley [4], and the data required in the attack is reduced to 272.
In order to resist the distinguishing attack on Py, the designers of Py decided
to discard half of the outputs, i.e., the first output of the two outputs at each
step is discarded. The new version is called Pypy [3]. Py and Pypy are selected
as focus ciphers in the Phase 2 of the ECRYPT eSTREAM project.

The initializations of Py and Pypy are identical. In this paper, we show that
there are serious flaws in the initialization of Py and Pypy, thus these two ciphers
are vulnerable to differential cryptanalysis [1]. Two keystreams can be identical
if a key is used with about 216 IVs with special differences. It is a practical threat
since the set of IVs required in the attack may appear with high probability in
applications. Then we show that part of the key of Py and Pypy can be recovered
with chosen IVs. For a 16-byte key and a 16-byte IV, 223 chosen IVs can reduce
the effective key size to 3 bytes.

Py6 [2] is a variant of Py with reduced internal state size. We show that Py6
is more vulnerable to the attacks against Py and Pypy.

This paper is organized as follows. In Sect. 2, we illustrate the Key and IV
setups of Py and Pypy. Section 3 describes the attack of generating identical
keystreams. The key recovery attack is given in Sect. 4. In Sect. 5, we outline
the attacks against Py6. Section 6 concludes this paper.

2 The Specifications of Py and Pypy

Py and Pypy are two synchronous stream ciphers supporting key and IV sizes
up to 256 bytes and 64 bytes, respectively. The initializations of Py and Pypy
are identical. The initialization consists of two stages: key setup and IV setup.

In the following descriptions, P is an array with 256 8-bit elements. Y is
an array with 260 32-bit elements, s is a 32-bit integer. YMININD = −3,
YMAXIND = 256. The table ‘internal permutation’ is a constant permutation
table with 256 elements. ‘∧’ and ‘&’ in the pseudo codes denote binary XOR
and AND operations, respectively. ‘u8’ and ‘u32’ mean ‘unsigned 8-bit integer’
and ‘unsigned 32-bit integer’, respectively. ‘ROTL32(a,n)’ means that the 32-bit
a is left rotated over n bits.

2.1 The Key Setup

The key setups of Py and Pypy are identical. In the key setup, the key is used
to initialize the array Y . The description is given below.

keysizeb=size of key in bytes;
ivsizeb=size of IV in bytes;
YMININD = -3; YMAXIND = 256;
s = internal_permutation[keysizeb-1];
s = (s<<8) | internal_permutation[(s ^ (ivsizeb-1))&0xFF];

278 H. Wu and B. Preneel

s = (s<<8) | internal_permutation[(s ^ key[0])&0xFF];
s = (s<<8) | internal_permutation[(s ^ key[keysizeb-1])&0xFF];
for(j=0; j<keysizeb; j++)
{

s = s + key[j];
s0 = internal_permutation[s&0xFF];
s = ROTL32(s, 8) ^ (u32)s0;

}
/* Again */
for(j=0; j<keysizeb; j++)
{

s = s + key[j];
s0 = internal_permutation[s&0xFF];
s ^= ROTL32(s, 8) + (u32)s0;

}
/* Algorithm C is the following ‘for’ loop */
for(i=YMININD, j=0; i<=YMAXIND; i++)
{

s = s + key[j];
s0 = internal_permutation[s&0xFF];
Y(i) = s = ROTL32(s, 8) ^ (u32)s0;
j = (j+1) mod keysizeb;

}

2.2 The IV Setup

The IV setups of Py and Pypy are identical. In the IV setup, the IV is used to
affect every bit of the internal state. EIV is a temporary byte array with the
same size as the IV. The IV setup is given below.

/* Create an initial permutation */
u8 v= iv[0] ^ ((Y(0)>>16)&0xFF);
u8 d=(iv[1 mod ivsizeb] ^ ((Y(1)>>16)&0xFF))|1;
for(i=0; i<256; i++)
{

P(i)=internal_permutation[v];
v+=d;

}
/* Now P is a permutation */
/* Initial s */
s = ((u32)v<<24)^((u32)d<<16)^((u32)P(254)<<8)^((u32)P(255));
s ^= Y(YMININD)+Y(YMAXIND);

/* Algorithm A is the following ‘for’ loop */
for(i=0; i<ivsizeb; i++)

Differential Cryptanalysis of the Stream Ciphers Py, Py6 and Pypy 279

{
s = s + iv[i] + Y(YMININD+i);
u8 s0 = P(s&0xFF);
EIV(i) = s0;
s = ROTL32(s, 8) ^ (u32)s0;

}
/* Again, but with the last words of Y, and update EIV */
/* Algorithm B is the following ‘for’ loop */
for(i=0; i<ivsizeb; i++)
{

s = s + iv[i] + Y(YMAXIND-i);
u8 s0 = P(s&0xFF);
EIV(i) += s0;
s = ROTL32(s, 8) ^ (u32)s0;

}

/*updating the rolling array and s*/
for(i=0; i<260; i++)
{

u32 x0 = EIV(0) = EIV(0)^(s&0xFF);
rotate(EIV);
swap(P(0),P(x0));
rotate(P);
Y(YMININD)=s=(s^Y(YMININD))+Y(x0);
rotate(Y);

}
s=s+Y(26)+Y(153)+Y(208);
if(s==0)

s=(keysizeb*8)+((ivsizeb*8)<<16)+0x87654321;

2.3 The Keystream Generation

After the key and IV setup, the keystream is generated. One step of the keystream
generation of Py is given below. Note that the first output at each step is discarded
in Pypy.

/* swap and rotate P */
swap(P(0), P(Y(185)&0xFF));
rotate(P);

/* Update s */
s+=Y(P(72)) - Y(P(239));
s=ROTL32(s, ((P(116) + 18)&31));

/* Output 8 bytes (least significant byte first) */
output ((ROTL32(s, 25) ^ Y(256)) + Y(P(26)));

280 H. Wu and B. Preneel

output ((s ^ Y(-1)) + Y(P(208)));
/* Update and rotate Y */
Y(-3)=(ROTL32(s, 14) ^ Y(-3)) + Y(P(153));
rotate(Y);

3 Identical Keystreams

We notice that the IV appears only in the IV setup algorithm described in
Sect. 2.2. At the beginning of the IV setup, only 15 bits of the IV (iv[0] and
iv[1]) are applied to initialize the array P and s (the least significant bit of iv[1]
is not used). For an IV pair, if those 15 bits are identical, then the resulting P
are the same. Then we notice that the IV is applied to update s and EIV as
follows.

for(i=0; i<ivsizeb; i++)
{

s = s + iv[i] + Y(YMININD+i);
u8 s0 = P(s&0xFF);
EIV(i) = s0;
s = ROTL32(s, 8) ^ (u32)s0;

}
for(i=0; i<ivsizeb; i++)
{

s = s + iv[i] + Y(YMAXIND-i);
u8 s0 = P(s&0xFF);
EIV(i) += s0;
s = ROTL32(s, 8) ^ (u32)s0;

}

We call the first ‘for’ loop Algorithm A, and the second ‘for’ loop Algorithm B.
In the following, we give two types of IV pairs that result in identical keystreams.

3.1 IVs Differing in Two Bytes

We illustrate the attack with an example. Suppose that two IVs, iv1 and iv2,
differing in only two consecutive bytes with iv1[i]⊕iv2[i] = 1, the least significant
bit of iv1[i] is 1, iv1[i + 1] �= iv2[i + 1] (1 ≤ i ≤ ivsizeb − 1), and iv1[j] = iv2[j]
for 0 ≤ j < i and i + 1 < j ≤ ivsizeb − 1. We trace how the difference in IV
affects s and EIV in Algorithm A. At the ith step in Algorithm A,

s = s + iv[i] + Y(YMININD+i);
u8 s0 = P(s&0xFF);
EIV(i) = s0;
s = ROTL32(s, 8) ^ (u32)s0;

At the end of the ith step, EIV1[i] �= EIV2[i]. Let β1 = EIV1[i], and β2 =
EIV2[i]. We obtain that s1 − s2 = 256+ δ1, where δ1 = (β1 ⊕ x) − (β2 ⊕ x), and
x = ROTL32(s, 8). Then we look at the next step.

Differential Cryptanalysis of the Stream Ciphers Py, Py6 and Pypy 281

s = s + iv[i+1] + Y(YMININD+i+1);
u8 s0 = P(s&0xFF);
EIV(i+1) = s0;
s = ROTL32(s, 8) ^ (u32)s0;

Because iv1[i+1] �= iv2[i+1], if iv2[i+1]− iv1[i+1] = δ1, then s1 and s2 become
identical with high probability. Let s1 = s2 with probability p1. Based on the
simulation, we obtain that p1 = 2−10.6. If s1 = s2, then EIV1[i+1] = EIV2[i+1],
and in the following steps i+2, i+3, · · · , i + ivsizeb − 1 in Algorithm A, s1 and
s2 remain the same, and EIV1[j] = EIV2[j] for j �= i.

After Algorithm A, the iv[i] and iv[i+1] are used again to update s and EIV
in Algorithm B. At the ith step in Algorithm B,

s = s + iv[i] + Y(YMAXIND-i);
u8 s0 = P(s&0xFF);
EIV(i) += s0;
s = ROTL32(s, 8) ^ (u32)s0;

At the end of this step, EIV1[i] = EIV2[i] with probability 1
255 . Let γ1 = s01,

and γ2 = s02. If EIV1[i] = EIV2[i], we know that γ2 − γ1 = β1 − β2. At the
end of this step, s1 − s2 = 256 + δ2, where δ2 = (γ1 ⊕ y) − (γ2 ⊕ y), and y is
ROTL32(s,8). Note that δ1 and δ2 are correlated since γ2 − γ1 = β1 − β2. Then
we look at the next step.

s = s + iv[i+1] + Y(YMAXIND-i-1);
u8 s0 = P(s&0xFF);
EIV(i+1) += s0;
s = ROTL32(s, 8) ^ (u32)s0;

At the end of this step, if iv2[i + 1] − iv1[i + 1] = δ2, then s1 and s2 become
identical with high probability. Note that iv2[i + 1] − iv1[i + 1] = δ1, and δ1
and δ2 are correlated, so iv2[i + 1] − iv1[i + 1] = δ2 with probability larger than
2−8. Let s1 = s2 with probability p′1. Based on a simulation, we obtain that
p′1 = 2−5.6. Once the two s values are identical, EIV1[i + 1] = EIV2[i + 1], and
in the following steps i + 2, i + 3, · · · , i + ivsize − 1 in Algorithm B, s1 and s2
remain the same, and EIV1[i + 2] = EIV2[i + 2], EIV1[i + 3] = EIV2[i + 3], · · ·,
EIV1[i + ivsize − 1] = EIV2[i + ivsize − 1].

Thus after introducing the IV to update s and EIV , s1 = s2 and EIV1 =
EIV2 with probability p1 × 1

255 × p′1 ≈ 2−24.2.
Note that once an IV has been introduced in Algorithm A and B, the IV is

not used in the rest of the IV setup. Thus once s1 = s2 and EIV1 = EIV2 at
the end of Algorithm B, we know that those two keystreams will be the same.

Experiment 1. We use 214 random 128-bit keys in the attack. For each key,
we randomly generate 216 pairs of 128-bit IV that differ in only two bytes:
iv1[6]⊕iv2[6] = 1, iv1[7] �= iv2[7]. We found that 111 pairs of those 230 keystream
pairs are identical. For example, for the key (08 da f2 35 a3 d5 94 e2 85 cc 68

282 H. Wu and B. Preneel

ba 7e 10 8a b4), and the IV pair (6e e7 09 b1 35 85 2f 07 1a fe 3f 50 a8 84 30
11) and (6e e7 09 b1 35 85 2e 80 1a fe 3f 50 a8 84 30 11), the two keystreams
are identical, and the first 16 keystream bytes of Pypy are (6f eb ca 18 54 3f 59
96 b6 17 8a 54 6e bd 45 1f).

From the experiment, we deduce that for an IV pair with the required differ-
ence, the two keystreams are identical with probability about 111

230 = 2−23.2,
about twice the theoretical value.

The IV difference at two bytes. In the above analysis, the difference is chosen
as iv1[i] ⊕ iv2[i] = 1, iv1[i + 1] �= iv2[i + 1] (i ≥ 1). We can generalize this type
of IV difference so that iv1[i] and iv2[i] can take other differences. As long as
(iv1[i] − iv2[i]) mod 256 = 1 or 255, iv1[i + 1] �= iv2[i + 1] (i ≥ 2), there is a
non-zero probability that the two keystreams can be identical.

For example, if iv1[i] ⊕ iv2[i] = 3, the two least significant bits of iv1[i] are 01
or 10, and iv1[i + 1] �= iv2[i + 1] (i ≥ 2), then two identical keystreams appear
with probability 2−23.2. On average, if iv1[i]−iv2[i] = 1, and iv1[i+1] �= iv2[i+1]
(i ≥ 2), then two identical keystreams appear with probability 2−26.4.

3.2 IVs Differing in Three Bytes

In the above attack, we deal with the ith and (i + 1)th bytes of the IV, and use
the difference at iv[i + 1] to eliminate the difference introduced by iv[i] in s. In
the following, we introduce another type of difference to deal with the situation
when the difference at iv[i + 1] cannot eliminate the difference introduced by
iv[i] in s. The solution is to introduce a difference in iv[i + 4].

We illustrate the attack with an example. Suppose that two IVs, iv1 and iv2,
differ in only three bytes iv1[i] ⊕ iv2[i] = 0x80, the most significant bit of iv1[i]
is 1, iv1[i +1] �= iv2[i+ 1], iv1[i +4] ⊕ iv2[i+ 4] = 0x80, and the most significant
bit of iv1[i+4] is 0, where i ≥ 2. We trace how the difference affects s and EIV .
At the ith step in Algorithm A,

s = s + iv[i] + Y(YMININD+i);
u8 s0 = P(s&0xFF);
EIV(i) = s0;
s = ROTL32(s, 8) ^ (u32)s0;

At the end of this step, EIV1[i] �= EIV2[i], and s1 − s2 = 0x8000 + δ1, where δ1
is the difference of two different 8-bit numbers. Then we look at the next step.

s = s + iv[i+1] + Y(YMININD+i+1);
u8 s0 = P(s&0xFF);
EIV(i+1) = s0;
s = ROTL32(s, 8) ^ (u32)s0;

Because iv1[i + 1] �= iv2[i + 1], s1 − s2 = 0x8000 with probability p2 = 2−8. If
s1 − s2 = 0x8000, then EIV1[i + 1] ⊕ EIV2[i + 1] = 0.

Differential Cryptanalysis of the Stream Ciphers Py, Py6 and Pypy 283

Since v1[i + 2] = v2[i + 2], at the end of the (i + 2)th step of Algorithm A,
EIV1[i + 2] = EIV2[i + 2], and s1 − s2 = 0x800000 with probability close to 1.

Since v1[i + 3] = v2[i + 3], at the end of the (i + 3)th step of Algorithm A,
EIV1[i + 3] = EIV2[i + 3], and s1 − s2 = 0x80000000 with probability close to
1. Now consider the (i + 4)th step.

s = s + iv[i+4] + Y(YMININD+i+4);
u8 s0 = P(s&0xFF);
EIV(i+4) = s0;
s = ROTL32(s, 8) ^ (u32)s0;

At the end of this step, the probability that EIV1[i + 4] = EIV2[i + 4], and
s1 = s2 is 1. So for the above 5 steps, s1 = s2 with probability p2. Once s1 = s2,
in the following steps i + 5, i + 6, · · · , i + ivsize − 1 in Algorithm A, the s1 and
s2 remain the same, and EIV1[i + 5] = EIV2[i + 5], EIV1[i + 6] = EIV2[i + 6],
· · ·, EIV1[i + ivsize − 1] = EIV2[i + ivsize − 1].

Then iv[i] and iv[i + 1] are used again to update s and EIV . With a similar
analysis, we can show that at the end of the updating, EIV1 = EIV2, s1 = s2
with probability about (p2)2 × 1

255 ≈ 2−24. (As shown in the experiment in the
next subsection, this probability is about 2−22.9.)

The IV difference at three bytes. In the above analysis, the difference is
chosen at only three bytes, iv1[i] ⊕ iv2[i] = 0x80, the most significant bit of
iv1[i] is 1, iv1[i + 1] �= iv2[i + 1], iv1[i + 4] ⊕ iv2[i + 4] = 0x80, and the most
significant bit of iv1[i + 4] is 0 (i ≥ 2). For this type of IV difference, we can
generalize it so that iv1[i] and iv2[i] can choose other differences instead of 0x80.
In fact, once we set the difference as iv1[i] − iv2[i] = iv2[i + 4] − iv1[i + 4],
iv1[i + 1] �= iv2[i + 1] (i ≥ 2), then the two keystreams are identical
with probability close to 2−23. For two IVs different only at three bytes, if
iv1[1] ⊕ iv2[1] = 1, iv1[2] �= iv2[2], and iv1[1] − iv2[1] = iv2[5] − iv1[5], then this
IV pair is also weak.

3.3 Improving the Attack

The number of IVs required to generate identical keystreams can be reduced in
practice. The idea is to generate more IV pairs from a group of IVs. For the IV
pair with a two-byte difference iv1[i] ⊕ iv2[i] = 1, iv1[i + 1] �= iv2[i + 1], if iv[2]
takes all the 256 values, then we can obtain 255 × 255 = 215.99 IV pairs with
the required differences from 512 IVs. Thus with 512 chosen IVs, the probability
that there is one pair of identical keystreams becomes 215.99 × 2−23.2 ≈ 2−7.2.
With about 27.2 × 512 = 216.2 IVs, identical keystreams can be obtained.

Experiment 2. We use 216 random 128-bit keys in the improved attack. For
each key, we generate 512 128-bit IVs with the values of the least significant bit
of iv[4] and the eight bits of iv[5] choosing all the 512 possible values, while all
the other 119 IV bits remain unchanged for each key (but those 119 IV bits are

284 H. Wu and B. Preneel

random from key to key). Then we obtain 255 × 255 = 215.99 IV pairs with the
required difference. Among these 216 × 215.99 ≈ 232 IV pairs, 447 IV pairs result
in identical keystreams.

The above experiment shows that with 216 × 512 = 225 selected IVs, 447 IVs
result in identical keystreams. It shows that two identical keystreams appear for
every 225

447 = 216.2 IVs.

For the IV pair with three-byte difference, a similar improvement can also be
applied.

Experiment 3. We use 216 random 128-bit keys in the improved attack. For
each key, we generate 512 128-bit IVs with the values of the most significant
bit of iv[4] and the eight bits of iv[5] choosing all the 512 possible values, and
the most significant bit of iv[8] is different from the most significant bit of iv[4],
while all the other 118 IV bits remain unchanged for each key (but those 118 IV
bits are randomly generated for each key). Then we obtain 255 × 255 = 215.99

IV pairs with the required difference. Among these 216 × 215.99 ≈ 232 IV pairs,
570 IV pairs result in identical keystreams.

The above experiment shows that with 216 × 512 = 225 selected IVs, 570 IVs
result in identical keystreams. It means that two identical keystreams appear for
every 225

570 = 215.9 IVs.

Remarks. The attacks show that the Py and Pypy are practically insecure. In
the application, if the IVs are generated from a counter, or if the IV is short
(such as 3 or 4 bytes), then the special IVs (with the differences as illustrated
above) appear with high probability, and identical keystreams can be obtained
with high probability.

4 Key Recovery Attack on Py and Pypy

In this section, we develop a key recovery attack against Py and Pypy by ex-
ploiting the collision in the internal state. The key recovery attack consists of
two stages: recovering part of the array Y in the IV setup and recovering the
key information from Y in the key setup.

4.1 Recovering Part of the Array Y

We use the following IV differences to illustrate the attack (the other IV dif-
ferences can also be used). Let two IVs iv1 and iv2 differ only in two bytes,
iv1[i] ⊕ iv2[i] = 1, iv1[i + 1] �= iv2[i + 1] (i ≥ 1), and the least significant bit of
iv1[i] be 1. This type of IV pair results in identical keystreams with probability
2−23.2.

We first recover part of Y from Algorithm A in the IV setup (more information
of Y will be recovered from Algorithm B).

Differential Cryptanalysis of the Stream Ciphers Py, Py6 and Pypy 285

Note that the permutation P in Algorithm A is unknown. According to the
IV setup algorithm, there is 15 bits of secret information in P , i.e., there are
at most 215 possible permutations. During the recovery of Y , we assume that
P is known (the effect of the 15-bit secret information in P will be analyzed
in Sect. 4.2). For ivm, denote the s at the end of the jth step of Algorithm A
as sm

j , and denote the least and most significant bytes of sm
j as sm

j,0 and sm
j,3,

respectively. Denote the least and most significant bytes of Y (j) with Yj,0 and
Yj,3, respectively. Note that in Algorithm A, Y remains the same for all the IVs.
Denote ξ as a binary random variable with value 0 with probability 0.5. Denote
with B(x) a function that gives the least significant byte of x. If the keystreams
for iv1 and iv2 identical, then from the analysis given in Sect. 3.1, we know that
s1

i+1 = s2
i+1, i.e.,

s1
i + iv1[i + 1] = s2

i + iv2[i + 1] . (1)

From Algorithm A, we know

si = ROTL32(si−1 + iv[i] + Y (−3 + i), 8)
⊕P (B(si−1 + iv[i] + Y (−3 + i))) (2)

Thus we obtain

si,0 = P (B(si−1,0 + iv[i] + Y (−3 + i))) ⊕ B(si−1,3 + Y (−3 + i) + ξi) , (3)
(s1

i − s1
i,0) − (s2

i − s2
i,0) = (iv1[i] − iv2[i]) << 8 = 256 , (4)

where ξi is caused by the carry bits at the 24th least significant bit position when
iv[i] and Y (−3+i) are introduced, and (4) holds with probability 1−2−15. From
(1), (3) and (4), we obtain

(P (B(s1
i−1,0 + iv1[i] + Y−3+i,0))⊕ B(s1

i−1,3 + Y−3+i,3 + ξi,1))+ 256+ iv1[i +1]

=(P (B(s2
i−1,0 + iv2[i] + Y−3+i,0)) ⊕ B(s2

i−1,3 + Y−3+i,3 + ξi,2)) + iv2[i + 1], (5)

where ξi,1 = ξi,2 with probability 1 − 2−15 since the iv[i] has a negligible effect
on the value of ξ1 and ξ2. In the following, we use ξi to represent ξi,1 and ξi,2.

Denote ivθ as a fixed IV with the first i bytes being identical to all the IVs
with differences only at iv[i] and iv[i + 1]. Thus sθ

i−1,0 = s1
i−1,0 = s2

i−1,0, and
sθ

i−1,3 = s1
i−1,3 = s2

i−1,3. (5) becomes

(P (B(sθ
i−1,0 + iv1[i] + Y−3+i,0)) ⊕ B(sθ

i−1,3 + Y−3+i,3 + ξi)) +256+ iv1[i + 1]

= (P (B(sθ
i−1,0 + iv2[i] + Y−3+i,0)) ⊕ B(sθ

i−1,3 + Y−3+i,3 + ξi)) + iv2[i + 1] . (6)

Using another IV pair different at iv[i] and iv[i + 1], and the first i bytes being
the same as ivθ, another equation (6) can be obtained if there is collision in their
internal states. Suppose that several equations (6) are available. We consider that
the value of ξi is independent of iv[i] in the following attack since ξi is affected by
iv[i] with small probability 2−15. We can recover the values of B(sθ

i−1,0+Y−3+i,0)

286 H. Wu and B. Preneel

and B(sθ
i−1,3 + Y−3+i,3 + ξi). From the experiment, we find that if there are two

equations (6), on average the correct values can be recovered together with 5.22
wrong values. If there are three, four, five, six, seven equations (6), in average
the correct values can be recovered together with 1.29, 0.54, 0.25, 0.12, 0.06
wrong values, respectively. It shows that the values of B(sθ

i−1,0 + Y−3+i,0) and
B(sθ

i−1,3 + Y−3+i,3 + ξi) can be determined with only a few equations (6).
After recovering several consecutive B(sθ

i−1,0+Y−3+i,0) and B(sθ
i−1,3+Y−3+i,3

+ξi) (i ≥ 1), we proceed to recover part of the information of the array Y . From
the values of B(sθ

i−1,0 +Y−3+i,0), B(sθ
i−1,3 +Y−3+i,3 + ξi) and (3), we determine

the value of sθ
i,0. From the values of B(sθ

i,0 + Y−3+i+1,0) and sθ
i,0, we know the

value of Y−3+i+1,0.

Generating the equations (6). The above attack can only be successful if we
can find several equations (6) with the same sθ

i−1,0 and sθ
i−1,3. In the following,

we illustrate how to obtain these equations for 2 ≤ i ≤ ivsizeb−3. At the begin-
ning of the attack, we set a fixed ivθ. For all the IVs different at only iv[i] and
iv[i + 1], we require that their first i bytes are identical to that of ivθ. Let the
least significant bit of iv[i] and the 8 bits of iv[i + 1] choose all the 512 values,
and the other 119 bits remain unchanged, then we obtain a 255 × 255 ≈ 216

desired IV pairs. We call these 512 IVs a desired IV group. According to Ex-
periment 2, this type of IV pair results in identical keystreams with probability
2−23.2, we thus obtain 2−23.2

216 = 2−7.2 identical keystream pairs from one desired
IV group. It means that we can obtain 2−7.2 equations (1) from one desired IV
group. We modify the values of the 7 most significant bits of iv1[i] and iv2[i],
and 3 bits of iv1[i + 2] and iv2[i + 2], then we obtain 27 × 23 = 210 desired IV
groups. From these desired IV groups, we obtain 210 × 2−7.2 = 7 equations (1).
There are 27 × 23 × 29 = 219 IVs being used in the attack. To find all the si,0
for 2 ≤ i ≤ ivsizeb − 3, we need (ivsizeb − 4) × 219 IVs in the attack.

We are able to recover sθ
i,0 for 2 ≤ i ≤ ivsizeb − 3, which implies that we can

recover the values of Y−3+i,0 for 3 ≤ i ≤ ivsizeb−3. Then we proceed to recover
more information of Y by considering Algorithm B. Applying an attack similar
to the above attack and reusing the IVs, we can recover the values of Y256−i,0
for 3 ≤ i ≤ ivsizeb − 3.

Thus with (ivsizeb − 4) × 219 IVs, we are able to recover 2 × (ivsizeb − 6)
bytes of Y : Y−3+i,0 and Y256−i,0 for 3 ≤ i ≤ ivsizeb − 3.

4.2 Recovering the Key

In the above analysis, we recovered the values of Y−3+i,0 and Y256−i,0 for 3 ≤ i ≤
ivsizeb−3 by exploiting the difference elimination in s. Next, we will recover the
15-bit secret information in P by exploiting the difference elimination in EIV .
Denote sθ

i in Algorithm A and B as sA,θ
i and sB,θ

i , respectively. Denote EIV1[i] at
the end of Algorithm A and B as EIV A

1 [i] and EIV B
1 [i], respectively. For two IVs

differing in only iv[i] and iv[i + 1] and generating identical keystreams, EIV A
1 [i],

EIV A
2 [i], EIV B

1 [i] and EIV B
2 [i] are computed as:

Differential Cryptanalysis of the Stream Ciphers Py, Py6 and Pypy 287

EIV A
1 [i] = P (B(sA,θ

i−1,0 + iv1[i] + Y−3+i,0)) (7)

EIV A
2 [i] = P (B(sA,θ

i−1,0 + iv2[i] + Y−3+i,0)) (8)

EIV B
1 [i] = EIV A

1 [i] + P (B(sB,θ
i−1,0 + iv1[i] + Y256−i,0)) (9)

EIV B
2 [i] = EIV A

2 [i] + P (B(sB,θ
i−1,0 + iv2[i] + Y256−i,0)) (10)

Since the two keystreams are identical, it is required that

EIV B
1 [i] = EIV B

2 [i] . (11)

Note that the values of B(sA,θ
i−1,0 + Y−3+i,0) and B(sB,θ

i−1,0 + Y256−i,0) are deter-
mined when we recover part of Y from Algorithm A and Algorithm B, respec-
tively. Eight bits of information on P is revealed from (7),(8),(9),(10) and (11).
In Sect. 4.1, there are about 7 pairs of IVs resulting in identical keystreams for
each value of i. Thus P can be recovered completely.

We proceed to recover the key information. We consider the last part of the
key schedule:

for(i=YMININD, j=0; i<=YMAXIND; i++)
{

s = s + key[j];
s0 = internal_permutation[s&0xFF];
Y(i) = s = ROTL32(s, 8) ^ (u32)s0;
j = (j+1) mod keysizeb;

}

We call the above algorithm Algorithm C. From Algorithm C, we obtain the
following relation:

B(Y−3+i,0 + key[i + 1 mod keysizeb] + ξ′i)
⊕P ′(B(Y−3+i+3,0 + key[i + 4 mod keysizeb])) = Y−3+i+4,0 , (12)

where P ′ indicates the ‘internal permutation’, ξ′i indicates the carry bit noise
introduced by key[i + 2] and key[i + 3]; it is computed as ξ′i ≈ (key[i + 2] +
Y−3+i+1,0) >> 8. The value of the binary ξ′i is 0 with probability about 0.5.

Once the values of Y−3+i,0 (3 ≤ i ≤ ivsizeb− 3) are known, we find a relation
(12) linking key[i + 1 mod keysizeb] and key[i + 4 mod keysizeb] for 3 ≤ i ≤
ivsizeb − 7. Each relation leaks at least 7 bits of key[i + 1 mod keysizeb] and
key[i + 4 mod keysizeb]. The values of Y256−i,0 (3 ≤ i ≤ ivsizeb − 3) are also
known, thus we can find a relation (12) linking key[i + 1 mod keysizeb] and
key[i+4 mod keysizeb] for 262−ivsizeb ≤ i ≤ 252. Thus there are 2×(ivsizeb−
9) relations (12) linking the key bytes.

For the 16-byte key and 16-byte IV, 14 relations (12) can be obtained: 7
relations linking key[i] and key[i + 3] for 4 ≤ i ≤ 10, and another 7 relations
(12) linking key[i] and key[i + 3 mod 16] for 7 ≤ i ≤ 13. There are 13 key bytes
in these 14 relations (12). Note that the randomness of ξ′i does not affect the
overall attack (once we guess the values of key[4], key[5] and key[6], then we

288 H. Wu and B. Preneel

obtain the other key bytes key[j] (7 ≤ j ≤ 15), key[0], and all the ξ′j (3 ≤ j ≤
9 and 247 ≤ j ≤ 249). Thus these 14 relations are sufficient to recover the 13
key bytes. The effective key size is reduced to 3 bytes and these three bytes can
be found easily with brute force search.

For the 32-byte key and 32-byte IV, 46 relations (12) can be obtained: 23
relations linking key[i] and key[i + 3] for 4 ≤ i ≤ 26, and another 23 relations
(12) linking key[i] and key[i + 3 mod 32] for 7 ≤ i ≤ 29. There are 29 key bytes
in these 46 relations. The effective key size is again reduced to 3 bytes.

5 The Security of Py6

Py6 is a variant of Py with reduced internal state size. The array P is a permu-
tation with only 64 elements, and the array Y has 68 entries. Py6 was proposed
to achieve fast initialization, but it is weaker than Py. Paul and Preneel has
developed distinguishing attack against Py6 with data complexity 268.6 [19].
In the following, we show that identical keystreams are genereated from Py6
with high probability. There is no detailed description of the key and IV setups
of Py6. Thus we use the source code of Py6 submitted to eSTREAM as refer-
ence. In our experiment, the following IV differences are used: iv1[i]−iv2[i] = 32,
iv1[i+1] �= iv2[i+1], iv1[i+1] >> 6 = iv2[i+1] >> 6, and iv2[i+5]−iv1[i+5] = 8
(i ≥ 2). After testing 230 pairs with the original Py6 source code, we found that
identical keystreams appear with probability 2−11.45. This probability is much
larger than the probability 2−23 for Py and Pypy. It shows that Py6 is much
weaker than Py and Pypy.

6 Conclusion

In this paper, we developed practical differential attacks against Py, Py6 and
Pypy: the identical keystreams appear with high probability, and the key infor-
mation can be recovered when the IV size is more than 9 bytes. To resist the
attacks given in this paper, we suggest that the IV setup be performed in an
invertible way.

Several ciphers in the eSTREAM competition have been broken due to the
flaws in their IV setups: DECIM [20], WG [21], LEX [21], Py, Pypy and VEST
[9]. We should pay great attention to the design of the stream cipher IV setup.

Acknowledgements

The authors would like to thank the anonymous reviewers of Eurocrypt 2007 for
their helpful comments.

References

1. E. Biham, A. Shamir, “Differential Cryptanalysis of DES-like Cryptosystems.”
Advances in Cryptology – Crypto’90, LNCS 537, A. J. Menezes and S. A. Vanstone
(Eds.), pp. 2–21, Springer-Verlag, 1991.

Differential Cryptanalysis of the Stream Ciphers Py, Py6 and Pypy 289

2. E. Biham, J. Seberry, “Py (Roo): A Fast and Secure Stream Cipher Using Rolling
Arrays.” The ECRYPT eSTREAM project Phase 2 focus ciphers. Available at
http://www.ecrypt.eu.org/stream/ciphers/py/py.ps .

3. E. Biham, J. Seberry, “Pypy (Roopy): Another Version of Py.” The ECRYPT
eSTREAM project Phase 2 focus ciphers. Available at http://www.ecrypt.eu.org/
stream/p2ciphers/py/pypy p2.ps

4. P. Crowley, “Improved Cryptanalysis of Py.” Available at http://www.ecrypt.
eu.org/stream/papersdir/2006/010.pdf .

5. S. R. Fluhrer, D. A. McGrew, “Statistical Analysis of the Alleged RC4 Keystream
Generator,” Fast Software Encryption – FSE 2000, LNCS 1978, B. Schneier (Ed.),
pp. 19–30, Springer-Verlag, 2000.

6. S. R. Fluhrer, I. Mantin, A. Shamir, “Weaknesses in the Key Scheduling Algorithm
of RC4,” Selected Areas in Cryptography – SAC 2001, LNCS 2259, S. Vaudenay
and A.M. Youssef (Eds.), pp. 1–24, Springer-Verlag, 2001.

7. J. Golić, “Linear statistical weakness of alleged RC4 keystream generator,” Ad-
vances in Cryptology – Eurocrypt’97, LNCS 1233, W. Fumy (Ed.), pp. 226–238,
Springer-Verlag, 1997.

8. R. J. Jenkins Jr., “ISAAC,” Fast Software Encryption – FSE 1996, LNCS 1039,
D. Gollmann (Ed.), pp. 41–49, Springer-Verlag, 1996.

9. A. Joux, J. Reinhard, “Overtaking VEST.” Fast Software Encryption – FSE 2007,
LNCS, A. Biryukov (Ed.), Springer-Verlag, to appear.

10. N. Keller, S. D. Miller, I. Mironov, and R. Venkatesan, “MV3: A new word based
stream cipher using rapid mixing and revolving buffers,” Topics in Cryptology –
CT-RSA 2007, The Cryptographers’ Track at the RSA Conference 2007, LNCS
4377, M. Abe (Ed.), pp. 1–19, Springer-Verlag, 2006.

11. L. R. Knudsen, W. Meier, B. Preneel, V. Rijmen and S. Verdoolaege, “Analysis
Methods for (Alleged) RC4,” Advances in Cryptology – ASIACRYPT’98, LNCS
1514, K. Ohta and D. Pei (Eds.), pp. 327–341, Springer-Verlag, 1998.

12. I. Mantin, A. Shamir, “A Practical Attack on Broadcast RC4,” Fast Software
Encryption – FSE 2001, LNCS 2355, M. Matsui (Ed.), pp. 152–164, Springer-
Verlag, 2001.

13. I. Mantin, “A Practical Attack on the Fixed RC4 in the WEP Mode.” Advances in
Cryptology – ASIACRYPT 2005, LNCS 3788, B. Roy (Ed.), pp. 395–411, Springer-
Verlag, 2005.

14. I. Mantin, “Predicting and Distinguishing Attacks on RC4 Keystream Generator.”
Advances in Cryptography – EUROCRYPT 2005, LNCS 3494, R. Cramer (Ed.),
pp. 491–506, Springer-Verlag, 2005.

15. I. Mironov, “(Not so) random shuffles of RC4,” Advances in Cryptology –
CRYPTO’02, LNCS 2442, M. Yung (Ed.), pp. 304–319, Springer-Verlag, 2002.

16. S. Mister and S. E. Tavares, “Cryptanalysis of RC4-like Ciphers,” Selected Areas
in Cryptography – SAC’98, LNCS 1556, S. Tavares, H. Meijer (Eds.), pp. 131–143,
Springer-Verlag, 1998.

17. S. Paul, B. Preneel, “A NewWeakness in the RC4 Keystream Generator and an
Approach to Improve the Security of the Cipher,” Fast Software Encryption – FSE
2004, LNCS 3017, B. Roy (Ed.), pp. 245–259, Springer-Verlag, 2004.

18. S. Paul, B. Preneel, S. Sekar, “Distinguishing Attack on the Stream Cipher Py.”
Fast Software Encryption – FSE 2006, LNCS 4047, M. J. Robshaw (Ed.), pp. 405–
421, Spring-Verlag, 2006.

19. S. Paul, B. Preneel, “On the (In)security of Stream Ciphers Based on Arrays and
Modular Addition.” Advances in Cryptology – ASIACRYPT 2006, LNCS 4284, K.
Chen, and X. Lai (Eds.), pp. 69–83, Spring-Verlag, 2006.

290 H. Wu and B. Preneel

20. H. Wu, B. Preneel, “Cryptanalysis of the Stream Cipher DECIM.” Fast Software
Encryption – FSE 2006, LNCS 4047, M. J. Robshaw (ed.), pp. 30–40, Springer-
Verlag, 2006.

21. H. Wu, B. Preneel, “Resynchronization Attacks on WG and LEX.” Fast Software
Encryption – FSE 2006, LNCS 4047, M. J. Robshaw (ed.), pp. 422–432, Springer-
Verlag, 2006.

	Introduction
	The Specifications of Py and Pypy
	The Key Setup
	The IV Setup
	The Keystream Generation

	IdenticalKeystreams
	IVs Differing in Two Bytes
	IVs Differing in Three Bytes
	Improving the Attack

	Key Recovery Attack on Py and Pypy
	Recovering Part of the Array Y
	Recovering the Key

	The Security of Py6
	Conclusion
	References

