
Efficient Two-Party Secure Computation
on Committed Inputs

Stanisław Jarecki and Vitaly Shmatikov

University of California, Irvine
The University of Texas at Austin

Abstract. We present an efficient construction of Yao’s “garbled circuits” proto-
col for securely computing any two-party circuit on committed inputs. The pro-
tocol is secure in a universally composable way in the presence of malicious
adversaries under the decisional composite residuosity (DCR) and strong RSA
assumptions, in the common reference string model. The protocol requires a con-
stant number of rounds (four-five in the standard model, two-three in the ran-
dom oracle model, depending on whether both parties receive the output), O(|C|)
modular exponentiations per player, and a bandwidth of O(|C|) group elements,
where |C| is the size of the computed circuit.

Our technical tools are of independent interest. We propose a homomorphic,
semantically secure variant of the Camenisch-Shoup verifiable cryptosystem,
which uses shorter keys, is unambiguous (it is infeasible to generate two keys
which successfully decrypt the same ciphertext), and allows efficient proofs that
a committed plaintext is encrypted under a committed key.

Our second tool is a practical four-round (two-round in ROM) protocol for
committed oblivious transfer on strings (string-COT) secure against malicious
participants. The string-COT protocol takes a few exponentiations per player, and
is UC-secure under the DCR assumption in the common reference string model.
Previous protocols of comparable efficiency achieved either committed OT on
bits, or standard (non-committed) OT on strings.

1 Introduction

Informally, a two-party protocol for computing a circuit is secure if participants do not
learn anything from the protocol execution beyond what is revealed by the output of the
circuit. In a seminal paper, Andrew Yao showed a “garbled circuit” protocol [Yao86]
for secure two-party computation (2PC) of any circuit in the semi-honest model, i.e.,
assuming that participants faithfully follow the protocol specification. Yao’s protocol
requires O(|C|) symmetric-key operations, and its bandwidth is O(|C|) symmetric-key
ciphertexts, in addition to the cost of n instances of an oblivious transfer (OT) protocol,
where n is the size of the circuit’s inputs. Using a 2-round OT protocol, Yao’s protocol
takes only two communication rounds (assuming only one player receives the output).

The main contribution of this paper is a new variant of Yao’s protocol, which replaces
O(|C|) symmetric-key operations with O(|C|) public-key operations, and at this cost
achieves security against malicious participants in the common reference string (CRS)
model. Specifically, our protocol operates on a multiplicative group Z

∗
n2 where n is

M. Naor (Ed.): EUROCRYPT 2007, LNCS 4515, pp. 97–114, 2007.
c© International Association for Cryptology Research 2007

98 S. Jarecki and V. Shmatikov

a safe RSA modulus which satisfies DCR and strong RSA assumptions. The protocol
requires O(|C|) modular exponentiations, its bandwidth is O(|C|) elements in Z

∗
n2 , and

it takes four rounds in the standard model and two in ROM. Moreover, our protocol is
universally composable, and securely computes any circuits on committed inputs.

A fundamental primitive in Yao’s protocol is oblivious transfer (OT). Informally,
OT is a two-party protocol in which the receiver (a.k.a. the “chooser”) receives a value
of his choice from among several values sent by the sender, while learning nothing
about the other values. The sender does not learn anything from the protocol, and in
particular he does not learn which of the values he sent was received by the chooser.
Committed oblivious transfer (COT) is a variant of oblivious transfer, introduced by
Crépeau [Cré89] as a “verifiable OT,” in which both the sender and the chooser are
committed to their inputs, and the oblivious transfer proceeds on the committed val-
ues. The second contribution of our paper is a new protocol for committed oblivious
transfer on strings (“string-COT”). The protocol requires O(1) exponentiations and has
the bandwidth of O(1) elements in Z

∗
n2 , which is comparable to the cost of previous

protocols for standard (non-committed) OT on strings or previous COT protocols that
operated only on bits. This new string-COT protocol is also universally composable in
the CRS model.

A committed OT protocol secure against malicious players is a much more useful
tool in a security protocol than a standard OT. For example, unless the OT protocol runs
on committed inputs, it is fundamentally non-robust against network failures because
re-running the protocol after a failure allows the cheating receiver to learn both of the
sender’s values. Similarly, secure committed 2PC protocol is a much more useful tool
than a standard 2PC protocol. In general, universally composable string-OT and general
2PC on committed data makes it easy to ensure that multiple instances of these protocols
are executed on consistent inputs, for example as prescribed by some larger protocol.

Technical roadmap. Both protocols we present in this paper, the protocol for secure
two-party computation on committed inputs (“committed 2PC”) and the string-COT
protocol, rely on a modification of the verifiable encryption given by Camenisch and
Shoup [CS03]. The efficiency of these two protocols is essentially due to the very strong
properties that this encryption offers. We will refer to the original scheme of [CS03]
as CS encryption, and we call our modification sCS encryption, where “s” stands for
both “short” and “simplified,” because the modification consists of (1) stripping off
the chosen-ciphertext security check in the CS encryption, and (2) using significantly
shorter private keys. Below we explain how several interesting properties of this en-
cryption enable the efficient string-COT and committed 2PC protocols.

The sCS encryption scheme is additively homomorphic, i.e., given ciphertexts of
two values, one can obtain a ciphertext of their sum without decrypting the ciphertexts,
and it is verifiable, i.e., there is a very efficient ZK proof system due to [CS03] for
showing that the encrypted message corresponds to a previously committed one. These
two features together enable an efficient string-COT protocol. First, we use additive
homomorphism of the sCS encryption to build an efficient protocol for OT on strings in
a way that is similar to how Aiello et al. [AIR01] build a standard (i.e., non-committed)
OT on strings from the multiplicatively homomorphic ElGamal encryption. Then, by
adapting the ZK proof systems given for the CS encryption in [CS03], we add efficient

Efficient Two-Party Secure Computation on Committed Inputs 99

ZK proofs for showing that the parties run this string-OT protocol on the previously
committed inputs.

The sCS encryption has further useful properties which allow us to extend the string-
COT protocol to an efficient committed 2PC protocol. First, it is unambiguous, in the
sense that it is committing not only to the plaintext, but also to the encryption key:
it is infeasible to produce a ciphertext that can be successfully decrypted, even to the
same plaintext, under two different decryption keys. This property is crucial in the mali-
ciously secure version of Yao’s protocol. Otherwise, the player who creates the garbled
circuit could embed all sorts of faults into the circuit. If the circuit evaluator encounters
a fault which causes him to stop, the malicious player will learn information about the
evaluator’s inputs that he is not supposed to learn.

Second, we extend the Camenisch-Shoup ZK proof system to an efficient ZK proof
that a ciphertext encrypts a committed plaintext under a committed key. (Technically,
this proof system is defined for a symmetric-key version of the sCS encryption, where
the key is both an encryption and a decryption key.) This proof system is a crucial com-
ponent of proving that Yao’s “garbled circuit” is formed correctly. Yao’s construction
of the garbled circuit involves encrypting, for every circuit gate, the keys corresponding
to the output wires under the keys corresponding to the input wires. In our version of
Yao’s protocol, the sender commits to the keys he created for every circuit wire. For
the wires corresponding to the receiver’s inputs, the sender sends to the receiver the
appropriate key values using our efficient string-COT protocol operating on these com-
mitments. Furthermore, the sender must prove, for each gate, that the ciphertexts that are
supposed to encrypt the appropriate output-wire keys under the appropriate input-wire
keys are formed correctly. This is accomplished precisely by the above proof system,
because the input-wire keys appear as keys in these ciphertexts, while the output-wires
keys appear as plaintexts.

Giving an efficient ZK proof system for this statement for some version of the CS
encryption scheme is an interesting technical challenge, because in the CS cryptosystem
plaintexts and keys “live” in different groups (and are acted upon by different moduli).
It is not immediately obvious how to encrypt one CS encryption key under another CS
encryption key and have an efficient proof of correctness for this encryption, because
the efficient proof systems given for the CS encryption require that the plaintext be
significantly smaller than the encryption key. One solution is to extend these proof
systems to handle larger plaintexts (namely, plaintexts of the same size as the key),
using proofs of equality of elements of two different groups represented as integers (e.g.,
[Bou00]). We propose a simpler solution based on the observation that, from the results
of Håstad, Schrift and Shamir [HSS93] on simultaneous bit security of exponentiation
in groups of unknown order, it follows that one can shorten the private keys used in
the CS encryption to |n|

2 bits. This significantly speeds up the CS encryption, but, more
importantly, this modification allows for a very efficient ZK proof that a ciphertext
encrypts a committed plaintext under a committed key.

Organization of the paper. In Section 2 we discuss related work. In Section 3, we
describe our cryptographic toolkit. In Section 4, we present the string-COT protocol,
and in Section 5, the protocol for general two-party secure computation on committed
inputs. All proofs have been delegated to the full version of the paper.

100 S. Jarecki and V. Shmatikov

2 Related Work on Constant-Round 2PC and Committed OT

2PC protocols. The first constructions for secure two-party computation are Yao’s
“garbled circuits” protocol [Yao86] and the protocol of [GMW87]. Of the two, only
Yao’s protocol is constant-round, but secure only in the semi-honest model. Most sub-
sequent constant-round protocols for secure computation in the malicious model, such
as [Kil88, Lin03, KO04], employ generic zero knowledge proofs (i.e., proofs for any NP
statement). The overhead of this approach is likely to remain prohibitive for practical
applications.

There are secure 2PC protocols that avoid generic zero-knowledge proofs (e.g., see
[JJ00, GMY04] and references therein), but the round complexity of these protocols
is linear in the (boolean or arithmetic) circuit depth. On the other hand, Damgård
and Ishai [DI05] showed the first constant-round multi-party protocol with O(|C|n2k)
bandwidth and computation (here n is the number of parties, k is the security parame-
ter), assuming a trusted preprocessing stage, but this protocol is secure only with an
honest majority, and its techniques (e.g., verifiable secret sharing) do not seem applica-
ble to two-party computation.

2PC using verifiable encryption. Like our protocol, the constant-round 2PC protocol
of Cachin and Camenisch [CC00] uses a verifiable public-key encryption scheme, but
unlike in our scheme, their zero-knowledge proofs require s cut-and-choose repetitions
where s is the statistical security parameter. Hence their 2PC protocol requires O(s|C|)
group elements in bandwidth and the same number of exponentiations (vs. O(|C|) in
our construction). It is worth mentioning, however, that our ciphertexts are elements of
Z
∗
n2 , for n satisfying the DCR and strong RSA assumptions, while [CC00] can use any

group where the Diffie-Hellman assumption holds.

2PC using cut-and-choose approach. A recent series of works on efficient constant-
round 2PC protocols [Pin03, MF06, LP07, Woo07] shows that security in the malicious
model can be achieved by cut-and-choose verification of the entire garbled circuit, at the
cost of O(s|C| + s2n) [LP07] or O(s|C|) [Woo07] symmetric-key operations, where
s is the statistical security parameter of cut-and-choose and n is the input size. These
cut-and-choose constructions probably require less computation than our protocol to
achieve similar levels of security based on common assumptions, but our protocol may
require less bandwidth, especially for small circuits whose size is comparable to the
input size. Also, our protocol can be made non-interactive in the random oracle model
at no extra cost, while the security parameter s in the cut-and-choose solutions increases
if they are made non-interactive using the Fiat-Shamir heuristic.

COT. Committed OT (COT) was introduced by Crépeau [Cré89], where it was used to
construct a general 2PC protocol (but not constant-round one) following the approach of
[GMW87]. Crépeau constructed COT using black-box invocations of Ω(n3) OTs. This
was improved by [CvdGT95] to O(n) OT’s and O(n2) bit commitments. Both COT
protocols, however, operate on bits rather than strings. Based on the concrete assump-
tions of Computational or Decisional Diffie-Hellman, Cramer and Damgård [CD97]
and then Garay et al. [GMY04] give COT protocols which require O(1) exponen-
tiations but still operate only on bits, while Camenisch and Cachin [CC00] give a

Efficient Two-Party Secure Computation on Committed Inputs 101

string-COT protocol, but it requires O(k) modular exponentiations where k is the secu-
rity parameter.

Lipmaa [Lip03] proposed to extend the (non-committed) string-OT protocol of
Aiello et al. [AIR01] to a committed OT protocol on strings at the cost of O(1) ex-
ponentiations. While this protocol does ensure that the received string is consistent
with the sender’s commitment, the sender can successfully cheat on the string that has
not been transferred during the OT. This can be used to break chooser’s privacy in
any application (such as 2PC) where the sender can observe whether the chooser suc-
cesfully completed the protocol. Stronger verifiability can potentially be achieved by
extending this protocol with zero-knowledge proofs, but the resulting protocol would
not beat the O(k) modular exponentiations bound because the commitment schemes
(e.g., [CGHGN01]) suggested in [Lip03] seem to have only cut-and-choose ZK proofs.

3 Cryptographic Tools

3.1 Camenisch-Shoup (CS) Encryption Scheme [CS03]

Common reference string. A trusted third party generates a safe RSA modulus n = pq,
where p = 2p′+1, q = 2q′+1, |p| = |q|, p �= q, and p, q, p′, q′ are all primes, a random
element g′ in Z

∗
n2 and an element g = (g′)2n. The common reference string is (n, g),

which also implicitly defines element α = 1 + n. For standalone applications of CS
encryption, pair (n, g) can be thought of as part of the public key. However, placing
(n, g) in the CRS enables soundness of some very useful proof systems associated with
this encryption scheme, e.g., those used in our COT and 2PC protocols.

The group Z
∗
n2 defined by the safe RSA modulus n can be decomposed into a cross-

product of four subgroups: Z
∗
n2 = Gn × Gn′ ×G2 × T , where group Gn, generated by

α = n + 1, has order n, group Gn′ has order n′ = p′q′, and G2 and T are subgroups
of order 2. As one consequence of this structure of Z

∗
n2 , the above procedure of picking

g as a 2n-power of a random element implies that, with an overwhelming probability,
g is a generator of subgroup Gn′ . In the following we treat all multiplications and
exponentiations as operations in Z

∗
n2 , unless stated otherwise.

Key generation. The private key is a random triple x1, x2, x3 chosen in [0, n2

4]. The
public key is PK = (n, g, g, h, f, hk) where g = gx1 , h = gx2 , f = gx3 , and hk is a key
of a collision-resistant keyed hash function H.

Encryption. Consider plaintext m as an integer in [−n
2 , n

2]. (Note that one can encode
elements m′ in Zn in this range as m = m′ rem n, i.e., m = m′ if m′ ≤ n

2 and
m = m′ − n if m′ > n

2 . Observe that m = m′ mod n.) A CS encryption of m

under key PK with label L, denoted CSencL
PK(m), is a tuple (u, e, v) where u = gr,

e = αmgr, and v = abs((hfHhk(u,e,L))r), for a randomly chosen r ∈ [0, n
4]. Operation

abs(a) returns a for a < n
2 and n − a for a ≥ n

2 .

Decryption. Given a ciphertext (u, e, v), check abs(v) = v and u2(x2+Hhk(u,e,L)x3) =
v2. If this holds, compute m̂ = (e/ux1)2. Note that e/ux1 = αm for correctly formed
ciphertexts. If m̂ �∈ 〈α〉, i.e., if n does not divide m̂−1, reject. Otherwise, set m̂′ = m̂−1

n
(over the integers), m′ = m̂′/2 mod n, and m = m′ rem n.

102 S. Jarecki and V. Shmatikov

This encryption is CCA secure under the DCR assumption on safe RSA moduli [CS03]:

Assumption 1. (DCR) [Pai99]: Given RSA modulus n, random elements of Z
∗
n2 are

computationally indistinguishable from elements of a subgroup formed by n-th powers
of elements in Z

∗
n2 .1

3.2 Simplified Camenisch-Shoup (sCS) Encryption Scheme

The group setting (n, g) is the same. Denote k′′ = |n|
2 , and let k, k′ be parameters that

control the quality of soundness and zero-knowledge of proof systems associated with
the sCS encryption. We require that 2k + k′ < k′′ and k < p′, q′. For 80-bit security,
one can take k′′ = 512 and k = k′ = 80.

Key generation. The private key is x ∈ [0, 2k′′
]. The public key is y = gx.

Encryption. The sCS encryption under key y of m, an integer in [−n
2 , n

2], denoted
sCSency(m), is (u, e) s.t. e = αmyr mod n2 and u = gr for a random r in [0, n

4].

Decryption. Proceeds exactly like CS decryption, but omitting the CCA checks on v
(since there’s no v here), and using x instead of x1 in decrypting (u, e).

Apart from stripping the CCA check, the only difference between CS and sCS encryp-
tion is the shortened private key. The fact that the scheme remains semantically secure
with such modification follows from adapting the results of [HSS93] on simultaneous
bit security of exponentiation modulo a Blum integer (and a safe RSA modulus is Blum
integer) to exponentiation in Z

∗
n2 .2 It follows that under the factoring assumption, the

entire upper half of the bits of exponent x is simultaneously hidden under the expo-
nentiation function y = gx mod n2, and therefore key y = gx for x random in Zn′ is
indistinguishable from y = gx for x random in [0, |n|

2]. 3

Theorem 1. sCS encryption is semantically secure under DCR assumption on safe RSA
moduli.

Symmetric-key version of sCS encryption scheme. The sCS cryptosystem can also
be used as a symmetric encryption scheme if the private key x ∈ [0, 2k′′

] is treated as a
symmetric key. Encryption of m under key x is a pair (e, u), where e = αmux mod n2,
u = gr for random r ∈ [0, n

4]. The decryption procedure does not change, nor does the
security of the encryption scheme.

Unambiguity of sCS encryption. We introduce a very strong notion of unambiguous
encryption, which applies to both public-key and symmetric schemes. It says that a ci-
phertext that passes a certain proof system, denoted ZKUnEnc, cannot decrypt to two
different plaintexts under two different private keys. Moreover, no two distinct decryp-
tion keys can decrypt a ciphertext even to the same plaintext. Therefore, in an unam-
biguous encryption scheme, the ciphertext is committing not only to the plaintext, but
also to the decryption key. This notion of encryption unambiguity is essential for our

1 For the safe RSA moduli n, the subgroup of n-th residues in Z
∗
n2 is the subgroup Gn′ ×G2×T .

2 Cf. similar observation in [CGHG01] for Paillier encryption, on which CS encryption is based.
3 Note that in this way one can also shorten keys x2, x3 in CS encryption and the randomness r.

Efficient Two-Party Secure Computation on Committed Inputs 103

version of Yao’s 2PC protocol, because otherwise a malicious creator of the garbled
circuit could introduce errors in this circuit, and then learn something extra about the
receiver’s inputs by observing whether the receiver successfully completes his compu-
tation on this circuit.

Definition 1. An encryption scheme is unambiguous if there exists a zero-knowledge
proof system ZKUnEnc s.t. for every efficient probabilistic algorithm A, the following
event has only negligible probability: (1) A outputs tuple (c, x1, x2) s.t. x1 �= x2, (2) A
passes the ZKUnEnc proof system on ciphertext c, (3) x1, x2 are valid private keys, i.e.,
they are accepted by the decryption procedure, and (4) both Decx1(c) and Decx2(c)
output a valid message (or messages). In the CRS model, the probability is also taken
over the randomness of the common reference string generation.

Theorem 2. sCS encryption is unambiguous under the factoring assumption on safe
RSA moduli, in the CRS model.

The ZK proof system ZKUnEnc for the sCS encryption is the proof that u2 belongs to
the group generated by g, i.e., ZKUnEnc(u, e) = ZKDL(g, u). (See section 3.4.)

3.3 CS Commitments and sCS Commitments

Our COT and 2PC protocols could be adapted to work with standard Pedersen-like com-
mitment schemes of [Ped91, FO97, DF02] at the cost of additional mappings, via range
proofs [CM99, Bou00, DF02], between commitments with different ranges of plain-
texts. Instead, we use the full (i.e., adaptive chosen-ciphertext secure) CS encryption
as a commitment scheme, because it operates on the same group as the encryption we
use, and hence is well-suited for both the COT and 2PC protocols of Sections 4 and 5.4

Moreover, using a CCA-secure encryption as a commitment helps in showing that the
COT and 2PC schemes are secure in the strong sense of universal composability.

An instance of a CS commitment scheme is a CS encryption public key PK =
(n, g, g, h, f, hk). The public key is chosen by a trusted third party, and security of this
commitment scheme requires the CRS model. The CS commitment on message m, an
integer in range [−n

2 , n
2] (with an obvious mapping to Zn), with label L, is the ciphertext

Com = CSencL
PK(m). For notational convenience of the COT and 2PC protocols, we

denote the tuple forming commitment Com as (u, C, v), i.e., u = gr, C = αmgr,
and v = abs((hfHhk(u,C,L))r). The decommitment is the (r, m, L) tuple. In the COT
and 2PC protocols, we often treat value C in the CS commitment as a commitment
to m by itself. This shortened commitment is used very heavily in the 2PC protocol,
thus we refer to value C = αmgr by itself as an sCS commitment. The corresponding
decommitment is (m, r).

3.4 Efficient Concurrently Secure ZK Proof Systems in the CRS Model

All proof systems used in our COT and Committed 2PC protocols are concurrently se-
cure ZK proofs in the CRS model. Specifically, each proof system is computationally

4 Note that instances of other commitment schemes can be mapped to this one using the verifi-
able encryption proof system that accompanies the Camenisch-Shoup encryption [CS03].

104 S. Jarecki and V. Shmatikov

sound and statistical zero-knowledge with a straight-line simulator. The latter is im-
portant for showing that the protocols are universally composable. Each of these proof
systems is built from efficient HVZK proof systems for the languages listed below by a
series of compilations which preserve the efficiency of the underlying HVZK protocols.

The compilations start from 3-round HVZK proof systems with the properties of
special honest-verifier zero-knowledge and (weak) special soundess (we discuss these
below). First, with the techniques of Cramer et al. [CDS94], HVZK systems of this
class can be combined, at no extra cost, into HVZK proof systems of the same class
for any (monotonic) disjunctive and/or conjuctive formula over statements proved in
the component proof systems. Then, using Damgård [Dam02], the resulting HVZK
proof system can be compiled into a three-round concurrently secure ZK proof systems
with statistical zero-knowledge, computational soundness, and a straight-line simulator
in the CRS model. This latter technique requires statistically hiding trapdoor commit-
ments, and using Pedersen’s commitment scheme it incurs a computational overhead of
just one extra exponentiation per player. The computational soundness of the resulting
ZK proof system is subject to the same assumption as the computational binding of the
commitment scheme, which can be Strong RSA if Pedersen’s trapdoor commitment is
adapted to the Z

∗
n2 setting, e.g., as in Damgård-Fujisaki commitments [DF02]. Note

that in ROM, using the Fiat-Shamir heuristic, the HVZK proof systems of this class
can be converted at no extra cost to non-interactive ZKs with the same properties of
computational soundness and statistical zero-knowledge with straight-line simulation.

We denote the statements being proved as X, Y, Z, and the corresponding “atomic”
HVZK proof systems as HVZKX, HVZKY, HVZKZ. We use a notation derived from
boolean formulas for the ZK proof systems resulting from this series of compilations.
For example, the resulting ZK proof system for language X ∧ (Y ∨ Z) will be denoted
ZKX∧(ZKY∨ZKZ). We catalog the proof systems used in the COT and 2PC protocols
by the statements they prove, namely, membership in the languages DL, DLEQ, NotEq,
Cot, Com, and PlainEq. Each of these is parameterized by tuple (n, g, g, h, f, hk),
which forms an instance of the CS commitment scheme. Triple (n, g, g) also defines
an instance of the sCS commitment. Parameters k, k′, k′′ are as in Section 3.2.

DL = {(g, X) | there exists x s.t. X2 = g2x}.

DLEQ = {(g, X, g̃, X̃) | there exists x s.t. X2 = g2x, X̃2 = g̃2x}.

NotEq = {(Ca, Cb) | there exist a, b, ra, rb s.t. a �= b mod n, Ca = αagra , and
Cb = αbgrb}. In other words, Ca and Cb are sCS commitments to two different values.

Cot = {(i, e′, u′, e, u, y, C) | there exist m, w, s, r s.t. C2 = α2mg2w,
e′2 = e2sα2m−i∗2sy2r, and u′2 = u2sg2r}. In other words, m rem n is committed in
sCS commitment C, and (u′, e′) is a correct “re-encryption” of m performed by the
sender in the COT protocol, given the (y, u, e) tuple sent by the receiver.

Com = {(Com, ids) | there exist m, r s.t. Com = (u, C, v) where u = gr, C =
αmgr, and v = abs((hfHhk(u,C,ids))r)}. In other words, Com is a properly formed CS
commitment to some message m with label ids.

Efficient Two-Party Secure Computation on Committed Inputs 105

PlainEq = {((e, u), Cx, Cm) | there exist x, m, rx, rm s.t. e = αmux, Cx = αxgrx ,
and Cm = αmgrm}. In other words, (e, u) is an sCS encryption of the plaintext m
committed in (sCS commitment) Cm under the key x committed in Cx.

All of the above languages have efficient 3-round HVZK proof systems HVZKDL,
HVZKDLEQ, etc., which unconditionally satisfy the two properties we need: (1) spe-
cial HVZK, and (2) weak special soundness. The only exception is HVZKPlainEq, for
which we show that weak special soundness holds under the strong RSA assumption.
All systems are efficient: the players make only a few exponentiations (between one
and four) modulo n2, and communication complexity ranges from 3|n| in HVZKDL
to at most 20|n| bits in HVZKPlainEq. We show the HVZKPlainEq proof system in
Appendix A, because it has the most novelty. We delegate the other proof systems to
the full version of the paper, but most of them are either standard, or simple modifica-
tions of the proofs that appear in [CS03]. The HVZKPlainEq proof system shown in
Appendix A gives a good idea of how all of these HVZKs work.

Special HVZK and (weak) special soundness. Let (P1, P2, V) be a specification
of a 3-round public coin proof system for language L. The prover’s message in the
first round on instance x, witness w for x ∈ L, and randomness r is computed as
a = P1(x, w, r), its response in the third round is computed as z = P2(x, w, r, e) where
e is the verifier’s challenge, and the verifier accepts if and only if V (x, a, e, z) = 1.
We call this proof system special (statistical) HVZK if there exists a simulator S s.t.
for every challenge e and every witness (x, w) for x ∈ L, the tuple (a, z) output
by S(z, e) is distributed statistically close to tuple (a, z) where a = P1(x, w, r) and
z = P2(x, w, r, e). The probability is over the coins of S and over r. We say that
this proof system has (weak) special soundness if for every x �∈ L, and for every
PPT algorithm P̂ , the probability that P̂ (x) outputs (a, e, z, e′, z′) s.t. e �= e′ and
V (x, a, e, z) = V (x, a, e′, z′) = 1, is negligible. Since the HVZK proof systems we
use are parametrized by a reference string, the adversary P̂ takes the CRS as an input
and the probability is taken over the choice of the CRS and the adversary’s coins. This
notion of (weak) special soundness is weaker than the special soundness assumed by
the compilers of [CDS94, Dam02], but it’s easy to see that the same compilers still
apply to this weaker class of HVZKs.

4 UC-Secure Committed Oblivious Transfer on Strings

Our protocol Pcot for 1-out-of-2 committed oblivious transfer (COT) on strings is sim-
ilar to the 1-out-of-2 non-committed string-OT protocol of Aiello et al. [AIR01], but
instead of multiplicatively homomorphic ElGamal encryption, Pcot uses additively ho-
momorphic and verifiable sCS encryption, which enables succinct (constant number of
exponentiations) proofs that receiver’s and sender’s inputs into OT match their previous
commitments. Moreover, Pcot is universally composable in the CRS model.

We define the ideal functionality FCOT for a COT scheme, and show that Pcot
securely realizes it. In contrast to the ideal COT functionality proposed by Garay et
al. [GMY04], our functionality FCOT runs on strings rather than bits. However, FCOT
is more restricted than the functionality of [GMY04] in that (1) the obliviously

106 S. Jarecki and V. Shmatikov

Ideal functionality FCOT for committed oblivious transfer on strings (COT)

Commit: Upon receiving a 〈ComMsg, (Pi, cid), m〉 message from Pi, FCOT records
the ((Pi, cid), m) pair and broadcasts 〈Committed, (Pi, cid)〉. Here m can be ei-
ther a message in the prescribed message space or a special symbol ⊥.

StartCOT: Upon receiving msg = 〈StartCOT, (PS , PR, sid, cidR, cidS,0, cidS,1)〉
from PR, FCOT verifies that it has records ((PR, cidR), mR),
((PS, cidS,0), mS,0), and ((PS , cidS,1), mS,1), and that mR �=⊥. If this
fails, FCOT ignores this message; otherwise, FCOT records msg and forwards it
to PS .

CompleteCOT: Upon receiving 〈CompleteCOT, (PS , PR, sid, cidR, cidS,0, cidS,1)〉
from PS , FCOT verifies that it has a record 〈StartCOT, ids〉, where ids =
(PS, PR, sid, cidR, cidS,0, cidS,1). FCOT looks up records ((PS, cidS,0), mS,0)
and ((PS, cidS,1), mS,1), and checks if mS,0 �=⊥ and mS,1 �=⊥. If anything fails,
FCOT ignores this message.
Otherwise FCOT looks up the record ((PR, cidR), mR) (observe that
such a record must exist). If mR /∈ {0, 1}, FCOT sends a spe-
cial message 〈COTFailed, PS, PR, sid〉 to PR. Otherwise FCOT sends
〈CompleteCOT, ids, (mS,b, b)〉 to PR for b = mR.

Note: Additionally, FCOT screens outs duplicates in commitment identifiers cid for
every Pi, and in COT instance identifiers sid for every (PS , PR) pair.

Fig. 1. FCOT ideal functionality

transferred values are the plaintexts of commitments, not full decommitments; and (2)
FCOT does not support opening of the committed values. Nevertheless, FCOT can en-
sure that any combination of COT instances is executed on same committed inputs,
and thus it can ensure that whenever COT is used as part of any security protocol, the
parties’ inputs into COT are consistent across multiple COT instances.

The COT protocol Pcot is given in fig. 2. It assumes a common reference string
picked by the trusted third party, which defines an instance PK of the CS commitment
scheme. The message space for this COT scheme is [−n

2 , n
2], the message space of the

CS commitment scheme. The commitment, identified as cid, of player Pi on message
m is a CS commitment Com = CSencids

PK(m) with label ids = (Pi, cid). As we will
argue, Pcot is a secure realization of FCOT; in particular, the receiver either outputs
message mσ committed in ComS,σ, or rejects.

The two proof systems used in Pcot involve conjunctions of Com, DLEQ, and Cot
statements. As explained in Section 3.4, such proofs are computationally sound ZK
proofs which are concurrently secure in the CRS model. Each takes only a few expo-
nentiations and three communication rounds. Moreover, the messages in both proofs
(PR to PS and PS to PR) can be piggy-backed, with the statements proved by the two
players delayed to the last messages, which results in a 4-round protocol. In the random
oracle model these proofs are non-interactive and the protocol takes only 2 rounds.

Theorem 3. Under the DCR assumption, protocol Pcot is a UC-secure realization of
the Committed-OT functionality FCOT in the CRS model, if the proof systems involved

Efficient Two-Party Secure Computation on Committed Inputs 107

Protocol Pcot for committed oblivious transfer on strings

Common Reference String: CS commitment instance PK = (n, g, g, h, f, hk).

Commit: For player Pi, on commitment instance cid and message m: Player Pi sets
ids = (Pi, cid), Com = CSencids

PK(m), and broadcasts 〈ComMsg, ids, Com〉.

Receiver PR executes a COT instance sid with sender PS . PR’s bit σ is com-
mitted in ComR, PS’s messages m0, m1 are committed in ComS,0, ComS,1. Let
cidR, cidS,0, cidS,1 be the identifiers for these commitments.

COT Step 1: PR sets ids = (PS, PR, sid, cidR, cidS,0, cidS,1), retrieves ComR =
(ũ, C, ṽ) and its decommitment r ∈ [0, n

4]. Note that C = ασgr. PR picks x ∈ [0, n
4],

and computes
y = gx, u = gr, e = ασyr

PR sends 〈COTMsg1, ids, (u, e, y)〉 to PS , and performs as the prover in the proof
system ZKDLEQ(g, u, g/y, C/e) ∧ ZKCom(PK, ComR, (PR, cidR)) with PS .

COT Step 2: Upon receiving 〈COTMsg1, ids, (u, e, y)〉 from PR, PS retrieves mes-
sages m0, m1 committed in ComS0 = (ũ0, C0, ṽ0) and ComS1 = (ũ1, C1, ṽ1). Note
that Ci = αmigrmi for some rmi . PS creates two “COT-encryptions” for i = 0, 1:

ei = esiαmi−i∗siyri and ui = usigri

for random even values si ∈ [0, 2n] and ri ∈ [0, n
2]. If PR passed its proof in Step 1, PS

sends message 〈COTMsg2, ids, (u0, e0, u1, e1)〉 to PS , and performs with PR as the
verifier a proof system ZKCot(0, e0, u0, e, u, y,C0) ∧ ZKCot(1, e1, u1, e, u, y,C1) ∧
ZKCom(ComS,0, (PS, cidS0)) ∧ ZKCom(ComS,1, (PS , cidS1)).

COT Step 3: PR decrypts the sCS ciphertext (uσ, eσ) and obtains mσ. If PS passed its
proof in step 2, then PR outputs mσ; otherwise PR rejects.

Note: Either player rejects if the values he receives are visibly not in Z
∗
n2 , i.e., they are

outside the [1, n2] range or are divisible by n.

Fig. 2. Protocol Pcot for committed OT on strings

are computationally sound and statistically zero-knowledge with straight-line simula-
tors in the CRS model.

Due to lack of space, we present only the crucial aspects of the proof.

Verifiability of inputs. By computational soundness of the proof systems, the play-
ers cannot, except with negligible probability, enter different values σ, m0, m1 into the
OT protocol than those they previously committed. This is easy to see for the cheat-
ing receiver PR. For the cheating sender PS , by soundness of ZKCot, if PR accepts,
then, with overwhelming probability, for each i there exists a tuple (mi, rmi , si, ri) s.t.
(Ci)2 = α2mig2rmi , e2

i = e2siα2mi−i∗2siy2ri , and u2
i = u2sig2ri , where Comi =

(ũi, Ci, ṽi) is PS’s commitment whose id is cidS,i. In particular, mi is the message
committed in Comi. Since for honest PR, e = ασyr and u = gr, it follows that for

108 S. Jarecki and V. Shmatikov

i = σ we have e2
σ = α2mσy2r′′

and u2
σ = g2r′′

where r′′ = sσr + rσ . Therefore,
message mσ decrypted by PR from the ciphertext (uσ, eσ) is the message committed
in Comσ.

Receiver’s and sender’s privacy. Receiver’s privacy follows from semantic security
of CS encryption, while the sender’s privacy relies on the fact that if PR’s commit-
ment ComR = (ũ, C, ṽ) and the tuple (u, e, y) in PR’s COT message are correctly
formed (and they are, except for negligible probability, if PS accepts PR’s ZKCom
and ZKDLEQ proofs, and if the factoring assumption holds), and if σ is a value that
satisfies e2 = α2σg2r for some r (there exists such σ for every e ∈ Z

∗
n2), then the

pairs (e0, u0) and (e1, u1) sent by PS reveal mσ , but information-theoretically hide
mi for i �= σ. Observe first that if tuples (ũ, C, ṽ) and (u, e, y) are accepted by the
verifier (i.e., each element is in Zn2 , but is not a multiple of n), then under the fac-
toring assumption, which is implied by the DCR assumption, all these elements are
also in Z

∗
n2 , except for negligible probability. Second, if PR passes the ZKCom proof

on ComR and the ZKDLEQ proof on (u, e, y), then except for negligible probability
we have e = ω0α

σgr, u = ω1g
r, and y = ω2g

x for some (σ, r, x) and some ele-
ments ω0, ω1, ω2 of order 2 in Z

∗
n2 . Therefore, values (ui, ei) sent by PS are equal

to ei = αmi+si(σ−i)ysir+ri and ui = gsir+ri , because si is even. Note that for any
σ, gcd(σ − i, n) = 1 for either i = 0 or i = 1 (or for both). Since the order of α
is n, and (si mod n) is distributed uniformly in Zn, value αmi+si(σ−i) is distributed
uniformly in the subgroup generated by α in Z

∗
n2 . Because (1) the orders of g and y

are both divisors of 2n′, (2) sir + ri is even, and (3) (ri mod n′) is distributed statis-
tically close to uniform over Zn′ , it follows that pair (gsir+ri , ysir+ri) is distributed
statistically close to (g2r′

, y2r′
) for r′ uniform in Zn′ . Taken together, it follows that

pair (ei, ui), for i �= σ, is distributed statistically close to (αm′
y2r′

, g2r′
) for random

(m′, r′) ∈ (Zn × Zn′), and thus it is statistically independent of mi.

Construction of the straight-line simulator. The proof that protocol Pcot UC-realizes
the COT functionality FCOT involves construction of a straight-line simulator, which
pretends to follow the protocol on behalf of the uncorrupted parties by executing it
on some fixed values unrelated to the real inputs of these parties, and simulates their
proof systems using their straight-line simulators. Moreover, the simulator straight-
line extracts the effective inputs contributed by the corrupted players by choosing the
Camenisch-Shoup public key PK embedded in the CRS and decrypting these play-
ers’ inputs from their commitments. The simulator submits these extracted inputs to the
ideal functionality if the corrupted players pass the associated ZK proofs. CCA security
of Camenisch-Shoup encryption implies that the ciphertexts contained in the commit-
ments and COT messages created by the simulator remain indistinguishable from the
corresponding ciphertexts created in the real protocol, even if the simulator accesses
the decryption oracle (to extract the values committed by the corrupt players). Finally,
the proof systems performed by the corrupted players are sound even if the simulator
picks the CRS because as long as the adversary passes its proofs only on correct state-
ments, the simulation is distributed statistically close to the real execution. Hence, by
the standard soundness of the proof systems involved, the adversary has only negligible
probability of passing some proof on an incorrect statement in the simulation.

Efficient Two-Party Secure Computation on Committed Inputs 109

5 UC-Secure Two-Party Computation on Committed Inputs

We present an efficient version of Yao’s “garbled circuits” protocol for secure two-
party computation (2PC). The protocol operates on committed inputs and is universally
composable (in the CRS model). In addition to any two-party secure computation in
the malicious model, our protocol can be used, for example, to ensure that multiple
instances of secure computation are executed on consistent inputs.

The ideal functionality F2PC for secure two-party computation on committed inputs
in shown in fig. 3. Abstracting from the bookkeeping details, F2PC is a simple gen-
eralization of the standard secure computation functionality where two players send
their respective inputs x and y to the trusted third party F , who returns the result of
evaluating some circuit C(x, y) to one or both players.

The committed 2PC functionality F2PC accepts any number of commitments from
parties P1, . . . , Pn, which are intended to represent the commitments to the bits encod-
ing these parties’ inputs into some two-party computation protocols. For every commit-
ment, F2PC records the committed bit. If some party PR requests secure computation
of some circuit C with another party PS , the request specifies C and a vector of com-
mitments to PR’s and PS’s inputs into this circuit. If party PS accedes to this request,
F2PC sends to PR the output of circuit C computed on the inputs committed in the
specified commitments. Note that our F2PC sends the output only to PR, but since this
is a committed 2PC functionality, the players can simply reverse the roles and request
that the same C be computed on the same vector of commitments, in order to enable
PS to receive the output. (Our actual 2PC protocol allows PS to receive the output with
no computational overhead and one extra communication round.)

We assume that the circuit C consists of binary two-input gates G = {g1, . . . , gc}
with unbounded fan-out but no cycles, connected by wires W = {w1, . . . , wm}. Some
subset WS of ns input wires are designated as PS’s inputs, and nr input wires form the
set WR of PR’s inputs. Some subset WO of the output wires is designed as outputs for
PR. (Optionally, some output wires can also be designated as outputs for PS .)

The Committed 2PC protocol is in fig. 4. It is similar to the COT protocol of Sec-
tion 4, and uses the same commitments and same message pattern, requiring 4 rounds
in CRS and 2 rounds in ROM. In the first message, the receiver uses the proof sys-
tems of the Pcot protocol and an additional proof system ZKBit(C) = (ZKDL(g, C) ∨
ZKDL(g, C/α)) for proving that the CS commitment Com = (u, C, v) or the sCS
commitment C are commitments to a bit. In the second message, the sender creates the
garbled circuit and uses the CorrectYao proof system to prove that it has been formed
correctly. This step encompasses the entire Yao’s construction and is discussed below.
In the following, we denote sender PS as S and receiver PR as R.

Wire keys and commitments: S picks two random (symmetric) sCS private keys
xw

0 , xw
1 for every wire w ∈ W , and for each xw

i computes an sCS commitment Cw
i to

xw
i . Also, S makes a set of wire keys corresponding to his inputs, {xw

bw
}w∈WS , where

bw is S’s input bit on w ∈ WS .

COTs on receiver’s wire keys: S completes nr instances of the COT protocol on
the wire keys corresponding to receiver’s wires: for each i = 1, .., nr, S enters keys
(xwi

0 , xwi
1) as a sender in the COT protocol, where wi designates the receiver’s ith input

110 S. Jarecki and V. Shmatikov

Ideal functionality F2PC for two-party secure computation on committed inputs

Commit: Upon receiving a 〈ComMsg, (Pi, cid), m〉 message from Pi, F2PC verifies
that this cid has not been used by Pi before, records the ((Pi, cid), m) pair and broad-
casts a 〈Committed, (Pi, cid)〉 message. Message m is either a message in the pre-
scribed message space, or a special symbol ⊥.

Start2PC: Upon receiving

msg = 〈Start2PC, (PS, PR, sid, cidS1, . . . , cidSns , cidR1, . . . , cidRnr , C)〉

from PR, F2PC verifies that (i) this sid has not been used by PS and PR before; (ii) for
every index k such that 1 ≤ k ≤ ns, F2PC has a unique record ((PS , cidSk), mSk)
(these commitments correspond to PS’s inputs into the protocol); (iii) for every index l
such that 1 ≤ l ≤ nr , F2PC has a unique record ((PR, cidRl), mRl) and that mRl ∈
{0, 1} (these commitments correspond to PR’s inputs into the protocol), and (iv) C is a
description of a circuit that takes ns + nr bits as inputs. If this fails, F2PC ignores this
message; otherwise, it records msg and forwards it to PS .

Complete2PC: Upon receiving

msg = 〈Complete2PC, (PS, PR, sid, cidS1, . . . , cidSns , cidR1, . . . , cidRnr , C)〉

from PS , F2PC verifies that it has a record 〈Start2PC, ids〉, where ids =
(PS , PR, sid, cidS1, . . . , cidR1, . . . , C). If not, F2PC ignores this message.
F2PC looks up the records ((PS , cidS1), mS1), . . . , ((PS, cidSns), mSns) and
((PR, cidR1), mR1), . . . , ((PR, cidRnr), mRnr). If mSk /∈ {0, 1} for some index k,
F2PC ignores this instance of the 2PC protocol.
Otherwise, F2PC evaluates circuit C on inputs mS1, . . . , mSns , mR1, . . . , mrnr . F2PC

sends 〈Complete2PC, ids, b)〉 to PR, where b is the output of the circuit.

Note: This is a functionality for one-directional two-party computation, where only the
receiver PR learns the output. Because both parties are committed to their inputs, they
can run another instance of the same protocol with the roles of PS and PR reversed.

Fig. 3. F2PC ideal functionality

wire. This way, for every w ∈ Wr, the receiver obtains the wire key xw
bw

where bw is his
input bit on wire w. Technically, S computes tuple (u0

(wi), e0
(wi), u1

(wi), e1
(wi)) by

following the sender’s algorithm in Step 2 of Pcot on tuple (u(i), e(i), y(i)) and a pair
of messages (x0

wi , x1
wi), and their corresponding sCS commitments (C0

wi , C1
wi).

Receiver’s output wires: For every receiver’s output wire w ∈ W0, S creates a pair of
ciphertexts Ew

0 , Ew
1 that enables R to interpret the corresponding wire keys. Namely,

Ew
0 = sCSencxw

0
(0) and Ew

1 = sCSencxw
1
(1).

Forming the garbled truth tables: The following process is repeated for every gate
g ∈ G. Let A and B be the input wires of g, and C the output wire. Let CA

0,1, C
B
0,1, C

C
0,1

be the six sCS commitments to the respective wire keys (two per wire). These commit-
ments form the truth table for the gate g in which the input bits bA, bB and the output bit
bC = g(bA, bB) are replaced by commitments to the corresponding wire keys. As in the

Efficient Two-Party Secure Computation on Committed Inputs 111

Committed 2PC Protocol

Common Reference String: CS commitment instance PK = (n, g, g, h, f, hk).

Commit: As in Pcot of fig. 2, player Pi on commitment instance cid and message m
broadcasts 〈ComMsg, ids, Com〉 where Com = CSencids

PK(m) for ids = (Pi, cid).

2PC Step 1: To trigger instance sid of the protocol in order to compute circuit C on com-
mitment instances cidS1, . . . , cidSns made by PS and commitments cidR1, . . . , cidRnr

made by PR, the receiver PR prepares nr messages, each computed as in Step 1 of Pcot

(fig. 2): for each i = 1, .., nr , PS computes a tuple (y(i), u(i), e(i)) on bit σi committed
in ComcidRi = (ũ(i), C(i), ṽ(i)) and its decommitment r(i). PS sends to PR message

〈Start2PC, ids, C, {y(i), u(i), e(i)}i=1..nr 〉

where ids is the above vector of commitment ids. PR then performs the ZK proof system
ZKR2PC, which is a conjunction of nr instances of the ZKDLEQ(. . .) ∧ ZKCom(. . .)
proof system used in Step 1 of Pcot, one per each tuple (ri, C(i), y(i), u(i), e(i)), and nr

instances of the ZKBit(C(i)) proof.

2PC Step 2: On receiving the 〈Start2PC, ids, C, ...〉 message and verifying the ZK
proofs, PS retrieves its commitments ComcidS1 , ..., ComcidSns

specified in the ids
string, and sends to PR a garbled version of circuit C computed on these inputs:

Complete2PC〈 ids, {Cw
b }b∈{0,1}, w∈W , {Eg

αβ}αβ∈{00,01,10,11}, g∈G,

{xw
bw

}w∈WS , {Ew
0 , Ew

1 }w∈W0 , {u
(w)
0 , e

(w)
0 , u

(w)
1 , e

(w)
1 }w∈WR 〉

These values are defined in Section 5. PS also performs the ZK proof CorrectYao.

2PC Step 3: PR verifies the ZK proof CorrectYao, evaluates the garbled circuit and
outputs its result. (Optionally, PR can send back to PS the wire keys corresponding to
PS’s output wires.)

Fig. 4. Committed 2PC Protocol

original Yao’s protocol, S creates a ciphertext for each row of the truth table, encrypt-
ing the output-wire key corresponding to this row’s output bit under the two input-wire
keys corresponding to this row’s input bits. The ciphertexts must be randomly shuffled
to prevent R from learning which row (bA, bB, g(bA, bB)) of the truth table he succeeds
in decrypting. S picks two random bits, σA and σB , which determine, intuitively, if the
values corresponding to the A and B wires are “switched” or not. (If w is S’s input
wire, than σw is equal to S’s input bit on that wire.) If the rows are denoted in binary
as 00, 01, 10, 11, then the first ciphertext received by R corresponds to row σAσB , the
second to row σ̄AσB , the third to row σAσ̄B , and the fourth to row σ̄Aσ̄B .

S creates the ciphertext list (E00, E01, E10, and E11) using a two-key encryption
scheme Eαβ = 2KEncx1, x2(x), where for each α, β, x1 = xA

α⊕σA
, x2 = xB

β⊕σB
, and

x = xC
g(α⊕σA,β⊕σB). For example, if σA = σB = 0, then each Eαβ is a two-key en-

cryption under keys xA
α and xB

β of the output-wire key xC
g(α,β). If σA = 1, σB = 0, then

each Eαβ is a two-key encryption under keys xA
α and xB

β of key xC
g(α,β), and so on. Note

112 S. Jarecki and V. Shmatikov

that tuple (σA, σB, α, β) uniquely defines the commitments C1, C2, C that correspond
to the above keys x1, x2, x: C1 = CA

α⊕σA
, C2 = CB

β⊕σB
, and C = CC

g(α⊕σA ,β⊕σB).

The two-key encryption 2KEncx1, x2(x) is created as follows. The key x ∈ [0, 2k′′
] is

split in two parts, x′
1 and x′

2, by choosing x′
1 at random in [−2k′′+k, 2k′′+k] (recall that

k′′, k are security parameters, where k′′ = |n|
2 and k can be 80), and setting x′

2 = x−x′
1

(over integers). S also computes an sCS commitment D to x′
1. Observe that if C is an

sCS commitment to x, then C/D is an sCS commitment to x′
2. The ciphertext E is a

triple 〈D, F (1), F (2)〉, where F (i) = sCSencxi(x′
i). Let Eαβ denote 〈Dαβ , F

(1)
αβ , F

(2)
αβ 〉.

Proving circuit correctness: CorrectYao is a (concurrent ZK, with straight-line simu-
lator) proof system formed by conjunction of the following proof systems:

∧
g∈G CorrectGarbleg ∧

∧
w∈W GoodKeysw ∧

∧
w∈WS

CorrectInputw
∧

∧
w∈WR

ZKSw ∧
∧

w∈WO
CorrectOutputw

where

GoodKeysw = ZKNotEq(Cw
0 , Cw

1)
CorrectInputw = (ZKDL(g, Cw

0 /αxw
bw) ∧ ZKDL(g, Cb)) ∨

(ZKDL(g, Cw
1 /αxw

bw) ∧ ZKDL(g, Cb/α)), where Cb is the
sCS commitment inside ComcidSi if w is the ith input wire ofS

CorrectOutputw = ZKPlainEq2(Ew
0 , Cw

0 , 0) ∧ ZKPlainEq2(Ew
1 , Cw

1 , 1)

Here ZKSw refers to the proof performed by the sender in the instance of the COT pro-
tocol that corresponds to receiver’s wire w ∈ WR. ZKPlainEq2(E, Ck, m) is the proof
system for showing that E is an sCS encryption of plaintext m under key k committed
in Ck, and is a trivial simplification of the ZKPlainEq(E, Ck, Cm) proof system for
proving the same about commitment Cm to m. Finally, CorrectGarbleg proves that the
ciphertext table E00, E01, E10, E11 corresponding to garbled gate g is formed correctly,
where Eαβ = (Dαβ , F

(1)
αβ , F

(2)
αβ):

CorrectGarbleg = CorrectShuffle(0, 0) ∨ CorrectShuffle(0, 1) ∨
CorrectShuffle(1, 0) ∨ CorrectShuffle(1, 1)

CorrectShuffle(α, β) = CorrectCipher(0, 0, α, β) ∧ CorrectCipher(0, 1, α, β) ∧
CorrectCipher(1, 0, α, β) ∧ CorrectCipher(1, 1, α, β)

CorrectCipher(σA, σB , α, β) = ZKPlainEq(F (1)
αβ , CA

α⊕σA
, Dαβ) ∧

ZKPlainEq(F (2)
αβ , CB

β⊕σB
, (CC

g(α⊕σA,β⊕σB)/Dαβ))

Circuit evaluation: R obtains his input-wire keys via COT and evaluates the entire
circuit gate by gate. Unambiguity of sCS encryption and soundness of the proof systems
ensures that for each gate, R decrypts exactly one of the four ciphertexts forming that
gate’s garbled truth table and obtains the key corresponding to the gate’s output wire.

Theorem 4. Under the strong RSA and DCR assumptions, the 2PC protocol of fig. 4 is
a UC-secure realization of the Committed 2PC functionality F2PC in the CRS model.

Efficient Two-Party Secure Computation on Committed Inputs 113

References

[AIR01] W. Aiello, Y. Ishai, and O. Reingold. Priced oblivious transfer: How to sell digital
goods. In Proc. EUROCRYPT, pages 119–135, 2001.

[Bou00] F. Boudot. Efficient proofs that a committed number lies in an interval. In Proc.
EUROCRYPT, pages 431–444, 2000.

[CC00] J. Camenisch and C. Cachin. Optimistic fair secure computation. In Proc.
CRYPTO, pages 93–111, 2000.

[CD97] R. Cramer and I. Damgård. Linear zero-knowledge – a note on efficient zero-
knowledge proofs and arguments. In Proc. STOC, pages 436–445, 1997.

[CDS94] R. Cramer, I. Damgård, and B. Schoenmakers. Proofs of partial knowledge and
simplified design of witness hiding protocols. In Proc. CRYPTO, pages 174–187,
1994.

[CGHG01] D. Catalano, R. Gennaro, and N. Howgrave-Graham. The bit security of Paillier’s
encryption scheme and its applications. In Proc. EUROCRYPT, pages 229–243,
2001.

[CGHGN01] D. Catalano, R. Gennaro, N. Howgrave-Graham, and P. Nguyen. Paillier’s cryp-
tosystem revisited. In Proc. CCS, pages 206–214, 2001.

[CM99] J. Camenisch and M. Michels. Proving in zero-knowledge that a number is a
product of two safe primes. In Proc. EUROCRYPT, pages 107–122, 1999.

[Cré89] C. Crépeau. Verifiable disclosure of secrets and applications. In Proc. EURO-
CRYPT, pages 181–191, 1989.

[CS03] J. Camenisch and V. Shoup. Practical verifiable encryption and decryption of
discrete logarithms. In Proc. CRYPTO, pages 126–144, 2003.

[CvdGT95] C. Crépeau, J. van de Graaf, and A. Tapp. Committed oblivious transfer and
private multiparty computation. In Proc. CRYPTO, pages 110–123, 1995.

[Dam02] I. Damgård. Efficient concurrent zero-knowledge in the auxiliary string model.
In Proc. EUROCRYPT, pages 418–430, 2002.

[DF02] I. Damgård and E. Fujisaki. A statistically hiding integer commitment scheme
based on groups with hidden order. In Proc. ASIACRYPT, pages 125–142, 2002.

[DI05] I. Damgård and Y. Ishai. Constant-round multiparty computation using a black-
box pseudorandom generator. In Proc. CRYPTO, pages 378–394, 2005.

[FO97] E. Fujisaki and T. Okamoto. Statistical zero knowledge protocols to prove mod-
ular polynomial relations. In Proc. CRYPTO, pages 16–30, 1997.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In
Proc. STOC, pages 218–229. ACM, 1987.

[GMY04] J. Garay, P. MacKenzie, and K. Yang. Efficient and universally composable obliv-
ious transfer and applications. In Proc. TCC, pages 297–316, 2004.

[HSS93] J. Håstad, A. Schrift, and A. Shamir. The discrete logarithm modulo a composite
hides o(n) bits. J. Comput. Syst. Sci., 47:850–864, 1993.

[JJ00] M. Jakobsson and A. Juels. Mix and match: Secure function evaluation via ci-
phertexts. In Proc. ASIACRYPT, pages 162–177, 2000.

[Kil88] J. Kilian. Founding cryptography on oblivious transfer. In Proc. STOC, pages
20–31, 1988.

[KO04] J. Katz and R. Ostrovsky. Rount-optimal secure two-party computation. In Proc.
CRYPTO, pages 335–354, 2004.

[Lin03] Y. Lindell. Parallel coin-tossing and constant-round secure two-party computa-
tion. J. Cryptology, 16(3):143–184, 2003.

[Lip03] H. Lipmaa. Verifiable homomorphic oblivious transfer and private equality test.
In Proc. ASIACRYPT, pages 416–433, 2003.

114 S. Jarecki and V. Shmatikov

[LP07] Y. Lindell and B. Pinkas. An efficient protocol for secure two-party computation
in the presence of malicious adversaries. In Proc. EUROCRYPT, 2007.

[MF06] P. Mohassel and M. Franklin. Efficiency tradeoffs for malicious two-party com-
putation. In Proc. PKC, pages 458–473, 2006.

[Pai99] P. Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In Proc. EUROCRYPT, pages 223–238, 1999.

[Ped91] T. P. Pedersen. Non-interactive and information-theoretic secure verifiable secret
sharing. In Proc. CRYPTO, pages 129–140, 1991.

[Pin03] B. Pinkas. Fair secure two-party computation. In Proc. EUROCRYPT, pages
87–105, 2003.

[Woo07] D. Woodruff. Revisiting the efficiency of malicious two-party computation. In
Proc. EUROCRYPT, 2007.

[Yao86] A. Yao. How to generate and exchange secrets. In Proc. FOCS, pages 162–167,
1986.

A HVZK Proof System for Statement PlainEq

This is an HVZK proof system for language PlainEq = {((e, u), Cx, Cm) | there
exist x, m, rx, rm s.t. e = αmux, Cx = αxgrx , and Cm = αmgrm }, i.e., for the
language of tuples ((e, u), Cx, Cm) s.t. (e, u) is an sCS encryption of the plaintext m
committed in sCS commitment Cm under the key x committed in sCS commitment Cx.
It is special HVZK with weak special soundness under the strong RSA assumption. All
the parameters are as in section 3.4, except for two additional elements G, H which are
assumed to be random in Z

∗
n2 and can be included in the CRS.

1. The private inputs of the prover are

m ∈ [−2k′′+k, 2k′′+k], x ∈ [0, 2k′′
], rm, rx ∈ [0,

n

4
]

2. The prover picks tx ∈ [0, n
4] and sends Tx = GxHtx to the verifier. He also picks

m′, r′m, x′, r′x, t′x ∈ [0, 2k+k′+2k′′
]

and sends the following commitments to the verifier:

e′ = α2m′
u2x′

, C′
x = α2x′

g2r′
x , C′

m = α2m′
g2r′

m , T ′
x = Gx′

Ht′
x

3. Verifier responds with a random challenge c ∈ {0, 1}k

4. Prover sends the following responses, all computed over integers:

m̃ = m′ − cm, r̃m = r′m − crm, x̃ = x′ − cx, r̃x = r′x − crx, t̃x = t′x − ctx

5. Verifies accepts if x̃ ∈ [−n
4 , n

4] and if the following equations hold:

e′ = e2cα2m̃u2x̃,

C′
m = (Cm)2cα2m̃g2r̃m , C′

x = (Cx)2cα2x̃g2r̃x ,

T ′
x = (Tx)cGx̃H t̃x

	Introduction
	Related Work on Constant-Round 2PC and Committed OT
	Cryptographic Tools
	Camenisch-Shoup (CS) Encryption Scheme [CS03]
	Simplified Camenisch-Shoup (sCS) Encryption Scheme
	CS Commitments and sCS Commitments
	Efficient Concurrently Secure ZK Proof Systems in the CRS Model

	UC-Secure Committed Oblivious Transfer on Strings
	UC-Secure Two-Party Computation on Committed Inputs
	References

