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Abstract. Recent advances in service-oriented frameworks and seman-
tic Web technologies have enabled software agents to discover and invoke
resources over large distributed systems, in order to meet their high-level
objectives. However, most work has failed to acknowledge that such sys-
tems are complex and dynamic multi-agent systems, where service provi-
ders act autonomously and follow their own decision-making procedures.
Hence, the behaviour of these providers is inherently uncertain — ser-
vices may fail or take uncertain amounts of time to complete. In this
work, we address this uncertainty and take an agent-oriented approach
to the problem of provisioning service providers for the constituent tasks
of abstract workflows. Specifically, we describe an algorithm that uses
redundancy to deal with unreliable providers, and we demonstrate that
it achieves an 8-14% improvement in average utility over previous work,
while performing up to 6 times as well as approaches that do not con-
sider service uncertainty. We also show that our algorithm performs well
in the presence of inaccurate service performance information.

1 Introduction

Fuelled by technological advances and the pervasiveness of communication net-
works, such as the Internet, modern computing devices are increasingly part
of complex distributed systems, allowing unprecedented access to a wide range
of resources, information sources and remote computing facilities. In this con-
text, service-oriented computing is emerging as a popular approach for allowing
autonomous agents to discover and invoke such distributed resources, encapsu-
lated as computer services [1]. In most application scenarios, from computational
Grids to automated business processes, multiple services are often combined as
part of workflows, thus enabling the consumer to achieve complex goals [2].
Now, a key feature of large distributed systems is that participants are often
autonomous agents that follow their own decision-making procedures [3]. This
means that the behaviour of service providers is beyond the control of the con-
sumer, and is thus inherently uncertain. This might be manifested by uncertain
service durations (e.g., when a provider prioritises service requests from some
consumers over others, or when it allocates a variable fraction of its available



resources to each request), or by unpredictable failures that might occur when a
provider is unable (or unwilling) to honour a service request. Such uncertainty
is a critical issue for service consumers that need to execute large workflows
of interdependent tasks in distributed systems, especially when there are time
constraints and when service providers demand remuneration.

So far, this issue has received relatively little attention in the current litera-
ture. Instead, most work is concerned with matchmaking techniques that simply
identify any single service provider able to fulfil a given goal, based on service
descriptions that are assumed to be accurate and truthful [4]. While some work-
flow languages contain static exception handling methods for dealing with service
failures [5], these are inflexible, as they: deal only reactively with problems; need
to be specified manually; and usually rely on cooperative services that signal
failures and can be rolled back.

To address failures more proactively, some approaches have used quality-of-
service measures to place constraints on services or to optimise a weighted sum
of various parameters [6], but these require appropriate constraints and weights
to be specified by a user. Other research uses utility-theory to choose optimal
services in the presence of uncertainty [7]. However, these approaches generally
provision only single providers for each task of a workflow, which leads to brittle
workflows that are highly vulnerable to single failures. An exception to this is
work on highly unreliable services in public-resource computing and peer-to-peer
systems, where services are invoked redundantly to increase the overall reliability
[8]. While dealing with uncertainty to some extent, such work assumes services
to be provided for free, and uses a fixed level of redundancy regardless of the
actual reliability of services, time constraints or the value of the workflow.

To deal with this, we previously described a strategy that uses stochas-
tic quality-of-service information about providers to flexibly provision multiple
providers for particularly failure-prone tasks in a workflow [9]. In that work,
we showed that this redundancy allows the consumer to deal proactively with
service uncertainty, and we demonstrated that the strategy worked well even
if all available providers were highly unreliable. However, the strategy used a
simple estimate of the overall workflow completion time based only on the mean
time of each task. Furthermore, we assumed accurate performance information
to be available about every task, which may be unrealistic in open and dynamic
systems, where such information is often noisy and inaccurate.

In this paper, we substantially extend our previous work in the the following
three ways. First, we describe how to calculate and use task duration variance
in order to obtain a better estimate for the overall workflow completion time.
Second, we investigate the sensitivity of our strategy in the presence of inaccurate
service performance information. Third, we show how our strategy performs in
more complex environments than previously considered.

The remainder of this paper is structured as follows. In Section 2, we describe
the model of a service-oriented system. Then, in Section 3, we outline our ex-
tended provisioning strategy. In Section 4, we empirically evaluate the strategy
and compare it to our previous work. We conclude in Section 5.
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Fig. 1. Lifecycle of a workflow.

2 Service-Oriented System Model

In order to provide a formal basis for our work, we briefly describe our system
model in this section and relate it to the lifecycle of a workflow, as shown in Fig. 1.
As is common in related work, we assume that a service consumer has selected an
abstract workflow, describing the types of tasks and their ordering constraints
required to achieve some high-level goal (the first stage in Fig. 1). This may
originate from a workflow repository or a planner that operates on service types.
More formally, we represent such an abstract workflow as a directed acyclic
graph W = (T, E), where T = {t1,ta,...,t/7|} is the set of nodes (the tasks)
and E € T « T is the set of edges (the ordering constraints). Furthermore, we
use a reward function u € ZBL — R that denotes the utility of completing the
workflow at a given time step ¢. This is based on a maximum reward .y that is
awarded if the workflow is completed no later than a deadline d. If the workflow
is late, a cumulative penalty ¢ is deducted at each time step, until the consumer
no longer receives a reward (it does not receive a negative reward — rather, we
assume that the workflow has simply failed). Formally, we define u as:

umax ift g tmax
u(t) = Umax —0(t —d) if t > d and t < d + Umax/0 (1)
0 if t > d+ Umax/0.

Once a workflow has been selected, a consumer discovers appropriate service
providers for each of the tasks by submitting the abstract task descriptions to a
matchmaking process [10] (as shown in the matchmaking stage of Fig.1). This
might be achieved by contacting a service registry or communicating with a
broker. We represent this process using a matching function m € T — (S5),
where S = {sl, S2y .y s|5|} is the set of all service providers. This maps each
task t; to a subset of S to represent the providers that are able to satisfy t;.

In the next stage, the agent provisions service providers for each task. Here,
it makes a decision about how to allocate individual service providers to the
constituent tasks of the workflow. We focus on this particular stage, because it
allows the agent to use appropriate domain knowledge or information provided
by a trust model [11] to make predictions about the feasibility of a workflow, and,
where necessary, invest additional resources to provision providers redundantly
for particularly failure-prone tasks. In this context, we assume that some limited



performance information about the population of providers for each task ¢; is
known to the consumer!:

— S; C S is the set of suitable service providers (as given by m(t;)).

— fi € ]0,1] is the probability that a randomly chosen provider from S; will
default or otherwise fail to deliver a satisfactory result.

— D,(t) € [0,1] is the cumulative probability distribution, representing the
execution duration of a single service provider (randomly chosen from .S;
and assuming it is successful). In particular, D;(t) is the probability that the
provider will take ¢ time steps or less to complete the service.

— ¢; € R is the cost of invoking a provider from S;. This may be a financial
remuneration or a communication cost.

After provisioning, the consumer starts invoking providers for the tasks of
the workflow according to the ordering constraints given by E (the fourth stage
in Fig. 1). Here, we assume that providers are only invoked at integer time steps,
and, as is common in the Web services domain, this is done on demand when
providers are required. Hence, the cost for each is paid only at the time of
invocation (but regardless of the eventual outcome). When invoked, a provider
successfully completes the assigned task ¢; with probability 1 — f;. The duration
of a successful service execution is distributed according to D;, after which the
service consumer is notified of success. When a provider fails, we assume that it
does so silently (i.e., no response is given to the consumer). This is realistic in
distributed systems, where service providers generally do not reveal their internal
state, and where network or machine failures can cause communication losses.

Furthermore, as there may be several matching providers for a task, the
consumer can invoke more than one service for this task at the same time. In
this case, the consumer has to pay each provider separately, and the task is
completed when the earliest service has executed successfully (if any). When all
providers seem to have failed, the consumer may invoke new providers for this
task. In this case, the consumer will ignore the previously invoked providers and
assign the task to the newly provisioned set of services.

Having outlined our basic system model and workflow lifecycle, we now con-
tinue to describe our extended provisioning strategy.

3 Flexible Provisioning

In this section, we present a heuristic provisioning strategy that decides dynami-
cally how to provision providers based on the information that is available about
each task of the workflow. This strategy is an extension of the work described
in [9], and now includes mechanisms for calculating the duration variances of
individual tasks and using them to estimate the overall duration distribution of
the workflow. In Section 3.1, we begin by giving a high-level overview of our
approach, and then, in Sections 3.2 and 3.3, we detail the calculations at the
task and workflow level, respectively.

! In [12] we consider the case where more detailed information about individual
providers is available.



3.1 Provisioning Problem

As discussed in more detail in our previous work [9], we use two forms of redun-
dancy to deal with uncertainty: parallel and serial provisioning. More specifically,
for each task t;, we determine a number of providers (n;) to invoke in parallel.
Provisioning multiple providers in such a way increases the probability of success
for that task, and also decreases its expected duration (as the consumer can pro-
ceed as soon as one of the providers is successful). Furthermore, to deal with the
case where none of the providers is successful, we determine a maximum waiting
time (w;) before the consumer invokes a new set of n; service providers. How-
ever, using redundancy in such a way increases the cost for the overall workflow,
and, hence, we aim to maximise the expected net profit (denoted @(n,w)):

max u(n,w), 2
o max (n, w) (2)

where n and w are vectors, whose ith elements correspond to the number of
parallel providers (n;) and the waiting time (w;) of each task t; of the workflow.
Furthermore, we define the expected net profit @(n,w) as the difference of the
expected reward 7(n,w) and the expected cost ¢(n,w) when provisioning the
workflow using the vectors n and w:

a(n,w) =7(n,w) — é(n,w). (3)

However, even the calculation of this objective function for any given vectors
n and w is intractable, because it requires the calculation of the overall duration
distribution (this is known to be a # P-complete problem [13]). For this reason,
we use a heuristic strategy that estimates the expected reward and cost of a ran-
dom initial choice for n and w, and then performs steepest-ascent hill-climbing
to find a good solution. More specifically, at each iteration, our hill-climbing al-
gorithm generates a large set of neighbours of the current best choice for n and
w by performing small changes to it. To generate each neighbour, the algorithm
picks one component of either vector (n; or w;), then increases or decreases it
by either 1 or a random amount. This is done systematically for each task, thus
producing 8- |7T'| neighbours in total. Each neighbour is then evaluated, the best
is chosen and this process is repeated until no more improvements can be made.

Now, in our previous work, we used a simple calculation for estimating the
expected reward 7(n,w). In particular, our mechanism assumed task durations
to be deterministic and then used the longest path in the workflow to calculate
an overall, deterministic duration ¢ (conditional on success). Hence, it estimated
the expected reward as 7 = p - u(t), where p is the overall success probability
of the workflow, and u(f) is the reward at time # (omitting the parameters m
and w for brevity). A major shortcoming of this approach is that it does not
consider the variance of task durations at all, and so often overestimates the
expected reward. To address this, we artificially increased our estimate for £ by
a constant 20%, but such an approach still does not consider variance, and is
not guaranteed to work well in all environments.



To overcome this, we now use an improved heuristic that does not assume a
deterministic duration, but rather estimates the probability distribution of the
workflow duration. To this end, we estimate the expected profit as:

= p/o dw (x)u(z)dx —¢, (4)

where dy () is a probability density function that estimates the overall dura-
tion of the workflow, and ¢ is an estimate of the expected overall cost (using a
continuous probability function allows us to derive a simple and concise solution
in closed form). This equation is central to our heuristic strategy, and, in the
following two sections, we describe how to calculate its components.

3.2 Local Task Calculations

In order to solve Equation 4, we first calculate four parameters for each task
t; in the workflow: its success probability, expected cost, expected duration and
duration variance. These are discussed in more detail below.

Success Probability (p;): This is the probability that the task will be suc-
cessful, regardless of the eventual finishing time. Because we assume that the
consumer will continue invoking providers until the task is completed (with the
given waiting time w; between invocations), it is the probability that at least
one provider from the set S; is successful within its allocated time:

pi=1— (1= (1~ fi) Di(wy))"*. ()

Expected Cost (&;): This is expected overall cost that the consumer will spend
on the task. To calculate it, we let f; = (1—(1— f;)- D;(w;))™ be the probability
that a single invocation of n; parallel providers is unsuccessful within their given
waiting time, m = [|S;|/n;| the maximum number of such invocations (with n;
providers), and r = |S;| mod n; the number of service providers available for the
last invocation. The expected cost is then:
m
Ci = Nic; - ! fé + flreir. (6)

%

Expected Duration (%;): This is the expected time the providers will take to
complete the task (conditional on overall success). Here, we let p1; = D;(w;)~*

Vi k- (Di(k) — Di(k — 1)) be the mean time to success of a single successful
invocation of n; service providers (where D;(z) =1 — (1 — (1 — f;) - Ds(2))™ is
the cumulative non-conditional probability that at least one out of n; services
has finished successfully by time x), \; the corresponding mean time for the
final invocation of r providers, and f, the failure probability of that invocation
(calculated analogously to f;) Hence, we calculate the expected duration as:

Sl fiemf ot (m = D) f
tZ*pi(HZ(l fi )+wz l_fi

+ [ (1= f) i may)). (7)



Variance of Duration (¢?): This is the variance of the task duration. To
calculate it, we let C; be a random variable representing the duration of the
task, conditional on its success. Then, E(C;) is its expected value (note that
E(C;) = t;), E(C?) is its expected square, and VAR(C;) is its variance. Hence,

o7 = VAR(Cy) = E(C?) — E(Cy)* = B(C) - £;. (®)

In order to obtain E(C?), we consider two cases: (1) the task is completed
successfully within the first m invocations, and (2) it is completed during the
last invocation of r providers (if » # 0). We denote the durations in each case
by the random variables A; and B, respectively. This allows us to treat both
cases separately, and, letting P4 and Pp be the respective probabilities of each
case occurring (conditional on overall success), we write E(C’?) as:

1- frfzm Z 1 - frfm

Next, we note that each duration is divided into a time period spent waiting
during any unsuccessful invocations (we denote these as Ayw; and Bw;), and a
period spent during the final invocation until the first provider is successful (we
denote these as Ap; and Bp;). We note that these are independent in our model,
and treat case (1) first:

E(CY) = PaE(A]) + PpE(B;) = E(Bf). (9)

E(A?) = VAR(4;) + E(A;)?
= VAR(Aw;) + VAR(Ap:) + (E(Aw;) + E(ADi))2
= E(A%y,) + E(AD,) + 2E(Awi)E(Ap;). (10)
Now, E(Ap;) = pi, and E(A%,) can be similarly calculated by multiplying the

term inside the summation by k? instead of k. Furthermore, we obtain E(Ay ;)
from Equation 7, and then derive E(A,,) in a similar way:

wi(f; — mf" + (m — 1)fim+1)

BlAws) = (1 —R)a—Fm (1)
2 m—1

(af) = LS fm E e 12)
7 k=0

= wi(fi+ f2=mf" = 2m+1 - 2m®) fr !
+(@2m—1—m?) [ ) (1= ) (= fi)7?
Treating case (2) next, we calculate E(B?) analogously to Equation 10. This
is easier, as the waiting time Byy; is constant (mw;). Hence,
E(B}) = E(Bjy;) + E(Bb;) + 2E(Bw:)E(Bp;)

The remaining terms, E(Bp;) and E(B%,), are calculated as E(Ap;) and
E(4%,), discussed above. Combining all terms to solve Equation 8 gives us a



closed form for calculating the variance of the duration of a given task. With
these parameters for each task, we now continue to describe how they are com-
bined over the entire workflow to solve our heuristic function (Equation 4).

3.3 Workflow Calculations

In order to solve Equation 4, we require the overall success probability p, a
distribution for the workflow duration dy (), and the estimated overall cost é.
The success probability p is simply the probability that all tasks are eventually
successful, and the estimated total cost ¢ is the sum of all task costs, each
multiplied by the probability that the task is ever reached (denoted r;):

p= H Di- (14)

{ilt:€T}
E= Y ri (15)
{ilt:€T}
11t —t:)e } Pj Otherwise.

To estimate the workflow duration function dy (x), we use a technique from
operations research [14]. In particular, we consider the critical path of the work-
flow (i.e., the path that maximises the sum of all mean task durations along it)
and obtain the sum of all mean task durations (Ay) and variances on it (v ).
Exploiting the central limit theorem, we then approximate the duration of the
workflow using a normal distribution with mean Ay and variance vy :

1 _@-ap)?

dw(z) = Noor: e Tw . (17)

Now, to solve Equation 4, we let Dy (z) = [*__ dw (y) dy be the cumulative
probability function? of dy (), we let Dyax = Dw (tmax) be the probability that
the workflow will finish within the deadline ¢y and Diate = Dw (t0) — Dw (tmax)
the probability that the workflow will finish after the deadline but no later than
time tg = Umax/0 + tmax (both conditional on overall success).

Next, we consider three distinct cases, based on the form of u(t) (Equation
1). First, the workflow may finish within the deadline ¢,,,x — this happens with
probability Dyax and results in the full reward, umax. Second, the workflow
may finish after ¢y, — this happens with probability 1 — Dy (¢o), and here the
consumer receives no reward (and so we can ignore it). Finally, the workflow may
finish between these two times, which happens with probability Di... Because
u(t) is linear on this interval, we calculate the expected reward in this case by

2 This common function is usually approximated numerically. In our work, we use the
SSJ library (http://www.iro.umontreal.ca/~simardr/ssj).



applying u(t) to the mean time on the interval, which we denote by #j.t. Hence,
we re-write Equation 4, concluding our heuristic utililty function:

U= D (Dmax * Umax + Dlatc : u(flatc)) —c (18)
_ 1 to
with  flate = / dw (z)x dz
Dlate tmax
—(tmax—Aw)? —(tg—Ap )2 Ve
“dw (e Bwo o —e Tw o) v (19)

Dhate - v 2

Using this heuristic function, it is now possible to use steepest-ascent hill-
climbing as described at the beginning of this section. Through observations, we
have seen that our hill-climbing algorithm quickly converges to a good solution®.
In particular, the heuristic function @ can be solved efficiently in quadratic time.
The bottleneck here is the calculation for Equations 15 and 16. However, after
the initial calculation, only small adjustments need to be made at each iteration
of the hill-climbing procedure, further reducing the run-time of calculating @. In
this case, it is bounded by the critical path problem required to obtain Ay, and
vw used in Equation 19, which has a run-time in O(|T| + |€|) where |T| is the
number of tasks in the workflow and |€| the number of non-transitive edges*.

Having concluded our discussion of the improved provisioning strategy, we
now describe a set of empirical experiments to evaluate our work.

4 Empirical Evaluation

To investigate the performance of our strategy and compare it to our previous
work, we conduct a set of empirical experiments using the same methodology
as described in [9]. To summarise briefly, we test our strategy by randomly
generating a set of service providers and a single workflow according to a set of
controlled variables that specify a particular environment. Then, we provision
the workflow using our strategy and simulate its execution, recording the overall
net profit achieved. This is repeated 1000 times for each environment to achieve
statistical significance (we give all results with 95% confidence intervals and carry
out ANOVA and two-sample t-tests as appropriate, both at the 99% confidence
level). Throughout all experiments, we vary the failure probability of providers
(as given by f;) to evaluate our strategy in environments with varying levels
of service unreliability, keeping all other variables constant for consistency. To
provide a benchmark, we compare our results to a naive strategy that provisions
a single provider for each task of the workflow. This strategy represents currently
prevalent approaches that ignore any service uncertainty and thus rely only on
functional service descriptions to find any suitable provider for each task.

3 On average, around six iterations are needed per task in the workflow. During the
empirical evaluation of our algorithm (see Section 4), a solution was typically found
within 250ms (10 tasks) or 5s (50 tasks) on a 3GHz Pentium 4 with 1GB RAM.

4 We also assume that the probability density functions of service durations and ex-
pected values (e.g., p; in Equation 7) can be efficiently calculated or approximated.



In the remainder of this section, we first test our improved strategy using the
same experimental setup as in our previous work to allow a direct comparison
(Section 4.1). Because that setup considers relatively small workflows with ho-
mogeneous tasks, we then examine a more complex scenario with heterogeneous
tasks and larger workflows in Section 4.2. Finally, in Section 4.3, we evaluate the
performance of our strategy in the presence of inaccurate information.

4.1 Small Workflows

In order to compare the improved strategy to our previous work, we first consider
the same environments as described in [9] (however, for consistency, we repeat
all experiments). Here, workflows consist of 10 tasks in a strict sequence, they
have a deadline of d = 400 time steps, a maximum utility umax = 1000 and a
penalty of 6 = 10 per time step. Furthermore, there are 1000 providers able to
satisfy each task. Each provider has a cost ¢; = 10 and its duration distribution
is a gamma distribution with parameters k = 2 and 6 = 10 (hence, the duration
distribution for each provider is D;(t) = v(k,t/0)I"(k)~1).

Fig. 2(a) shows the results of our improved strategy (improved flexible), our
previous strategy (old flexible) and the naive strategy. Clearly, the performance
of all three strategies is significantly different. Averaged over all failure probabil-
ities, the naive strategy achieves a net profit of only 106.00 + 5.95, and, in fact,
begins making an overall loss when the failure probability drops to 0.3 or lower.
As discussed in previous work, our old flexible strategy clearly improves on this,
yielding an average net profit of 474.91+7.77. The results also indicate that our
modified improved flexible strategy further yields a significant improvement in
overall performance with an average net profit of 515.02 4 4.02. At all failure
probabilities from 0.1-0.7, the strategies achieve significantly different amounts
of net profit, with the improved flexible strategy outperforming all others. At
0.8 and beyond, the difference between the two flexible strategies becomes less
pronounced due to the overall low net profit, and it is no longer significant. How-
ever, they still outperform the naive strategy. When the failure probability is 0,
all strategies perform equally well, as a single provider for each task is always
sufficient to complete the workflow in time.

To summarise, averaged over the failure probabilities discussed here, our
improved flexible strategy achieves a 385.87% =+ 8.69% improvement over the
naive strategy, and an 8.44% +2.21% improvement over the old flexible strategy.

4.2 Large Workflows

To show that our strategy performs well in more complex environments, we
perform another set of experiments with workflows consisting of 50 tasks and
heterogeneous task parameters. More specifically, for each experimental run, we
first generate a workflow by randomly populating an adjacency matrix until
25% of all possible edges have been added (ignoring any that would result in a
cyclic graph). This ensures that the workflow contains a considerable number of
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Fig. 2. Net profit of flexible strategies.

parallel tasks. We also assume there are 100 providers for each task, the deadline
is d = 1000, the maximum reward umax = 1000 and the penalty § = 1.

In order to vary the performance characteristics of the tasks in the workflow,
we randomly assign each to one of seven different types of tasks with varying costs
(¢;) and duration distributions (D;), as shown in Table 1. For every experimental
run, we also attach a failure probability to each type (to determine f;) that is
drawn from a beta distribution with parameters a = 10- f and § = 10— «, where
f is the average failure probability of the environment (unless f = 0 or f =1,
in which case all tasks have the same failure probability). This adds further
variance to the tasks, while ensuring that the overall average failure probability
over all runs is close to f.

Fig. 2(b) shows similar results to those described in the previous section.
When providers are always reliable (the failure probability is 0), there is no sig-
nificant difference between the strategies. However, as soon as providers begin to
fail, the naive strategy begins to perform poorly and make an overall loss. The
two flexible strategies achieve far better results and avoid making a loss in any
environment. As before, our improved flexible strategy outperforms the old flex-
ible strategy in most environments, except when the overall failure probability
reaches 0.9, when there is no more significant difference between them.

When averaging over all failure probabilities, the naive strategy achieves an
average net profit of 81.53 +5.12, the old flexible achieves 470.21 + 7.44 and the
improved flexible achieves 536.12 £ 7.46. This means that our improved flexible

Table 1. Service types used to test complex workflows.

Type|Cost|Duration Mean|Variance
Ty 0.1 |Gamma(1,0.1) 0.1 0.01

T 0.1 |Gamma(1,10) |10 100

Ts 1 Gamma(5,1) 5 5

Ty 1 Gamma(5,10) |50 500

Ts 2 Gamma(10,1) |10 10

Ts 2 Gamma(10,5) |50 250

T 2 Gamma(100,0.1)|10 1
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Fig. 3. Effect of incorrect failure probabilities.

strategy achieves a 557.60% 4 11.10% improvement over the naive strategy and
a 14.02% + 2.24% improvement over the old flexible strategy.

4.3 Sensitivity Analysis

In order to evaluate the performance of our strategy in the presence of inaccurate
information, we follow the same experimental setup as in Section 4.1, but now
systematically introduce errors into the information that is available to a service
consumer following the improved flexible strategy. To this end, we first evaluate
the effect of relying on inaccurate failure probabilities, and then examine the
impact of inaccurate service duration information. In both cases, we expect the
performance of our strategy to decrease as the information becomes less accu-
rate. However, because we rely on heuristic estimates, we anticipate that small
inaccuracies will have little overall impact on the performance of the strategy.
In our first set of experiments, we consider the case where the consumer
underestimates the failure probability of service providers. Hence, we multiply
the actual values for the failure probabilities f; by a scalar ey < 1 to provide an
inaccurate input to the improved flexible strategy. The results for various values
of ey are shown in Fig.3(a). In most cases, the average net profit gained by
the strategy degrades gracefully as the performance information becomes more
inaccurate. In fact, when the (true) failure probability is low in the environment
(up to around 0.3), the strategy does well even if the information is up to 90%
inaccurate (i.e., e = 0.1). However, when the failure probability rises to 0.7
and beyond, the impact of inaccurate information becomes more detrimental
to the performance of the strategy. This is particularly evident when €5 = 0.8,
which results in a large net loss at high failure probabilities. This is because
the strategy provisions a large number of providers in parallel without detecting
that the workflow is infeasible (and thus, it loses its high investment). Perhaps
surprisingly, when information becomes even more inaccurate at high failure
probabilities, the consumer begins to make smaller losses again. This is due to



1000 1000

' imp‘roved‘ flexible ——
Tt eFL05 -+
800 800 T gdzl_l o
= = T £471.2 -
$  e00f §  e00f <
o o RN
5 ao0f 3 a00f
[} [
g 200f 9  200f
g g
2 or z ol
200 v 200 |
e P
0 010203 04 05 06 0.7 08 09 1 0 010203 04 050607 0809 1
Failure Probability Failure Probability
(a) Underestimating duration (eq < 1). (b) Overestimating duration (eq > 1).

Fig. 4. Effect of incorrect failure probabilities.

the strategy provisioning less providers in parallel and therefore losing less of
its investment when the workflow eventually fails. Despite the special case when
er = 0.8, the results are promising and show that small inaccuracies in the
information (up to 10%) have little or no effect on our strategy. In most other
cases, performance degrades gracefully as the information becomes less accurate.

Next, we are interested in the trends resulting from overestimating the failure
probability of service providers. Hence, we now multiply the failure probabilities
by a scalar €; > 1 to provide an inaccurate input to our strategy (using a failure
probability of 1 whenever f; - ey > 1). The results of this are shown in Fig. 3(b).
Not surprisingly, the performance of the strategy simply degrades as the per-
ceived failure probability rises. Because its behaviour is more conservative when
it overestimates the failure probability of providers (it will provision unneces-
sarily many providers), it never makes a long-term loss. These results show that
our strategy performs well, even when it significantly overestimates failure prob-
abilities. In fact, the overall performance degrades only slightly when the failure
probability is overestimated by 10% (e; = 1.1). Even at 20% (ey = 1.2), the per-
formance is extremely good, and at 50% the strategy still performs reasonably
well compared to the case with accurate information.

Apart from the failure probabilities, our strategy also relies on probability
density functions for the duration of a service execution. Because these will most
likely be based on past observations and can be subject to noise, we now examine
the effect of inaccurate information about these functions. Here, we multiply the
scale parameter 6 of the underlying gamma distribution by a scalar ¢4 to yield
an inaccurate duration distribution. By varying the scale parameter, we ensure
that the mean of the distribution is varied proportionally with e (e.g., when
€q = 0.5, the consumer estimates the mean service execution time to be half of
the true value), while the overall shape of the distribution stays the same.

Again, we first consider the case of underestimating the duration of service
providers (¢4 < 1). The results are shown in Fig. 4(a). Here, the strategy handles
an error of up to 20% (eq = 0.8) very well with only a marginal performance
decrease. Even when the error rises to 30% (eq = 0.7), the performance comes
close to the accurate information case. However, as the information becomes even
more inaccurate, the strategy performs increasingly badly. Also, the strategy



behaves more erratically at the same time — occasionally, the average net profit
at a given level of inaccuracy increases as the failure probability rises (this is
because the strategy constantly varies the balance between parallel and serial
invocations, the latter of which is more susceptible to wrong duration estimates).

Finally, Fig. 4(b) shows the corresponding results when the consumer overes-
timates the service duration. Here, the performance again degrades slowly as the
error rises. This is because the agent allocates unnecessarily long waiting times
to the providers or provisions parallel providers when this is not needed. How-
ever, the loss in performance is clearly very small. This is because the consumer
will occasionally wait longer than required or incur extra expenditure by provi-
sioning parallel providers, but in many cases, the providers will simply complete
their services earlier than anticipated and the consumer will be able to continue
the workflow immediately and without penalty.

To conclude the sensitivity analysis, the results presented in this section show
that our strategy is robust to small and moderate inaccuracies. In all cases, it
performs well when the information provided is within 10% of the true value, and
often errors up to 20% and 30% lead to only marginal decreases in performance,
especially when the consumer is overly pessimistic (i.e., when it overestimates
the failure probability or duration of services). Overall, performance generally
degrades gracefully as larger errors are introduced into the information that
is known about providers (until they are too large to be of any value to the
consumer — e.g., as €4 reaches 0.5).

We also identified one case where underestimating the failure probability of
providers can lead to poor performance. However, this only occurs in very specific
scenarios when providers are highly unreliable and when the error in informa-
tion is a significant 20%. Hence, our strategy may benefit from identifying these
conditions in advance, and we will consider this in future work. Nevertheless, the
overall results presented here are promising, showing that our strategy is appli-
cable even in environments where completely accurate performance information
is unavailable (as will be typical in any large dynamic multi-agent system).

5 Conclusions

In this paper, we have extended our previous work by taking into considera-
tion the variance of service duration times. This is important to consider when
predicting the overall completion time of a workflow, and in empirical experi-
ments, we have shown that our new strategy performs significantly better than
our previous work. We have also given more extensive results in a variety of set-
tings and shown that our strategy copes well in environments where performance
information is not accurate.

Considering these results, our work is highly applicable in realistic scenarios,
where software agents autonomously execute large workflows in service-oriented
systems. Examples of such scenarios include: the Grid domain, where expen-
sive and time-intensive data processing services are often required as part of
complex workflows; peer-to-peer systems, where a vast amount of cheap, but



usually unreliable providers offer their services; and e-commerce applications,
where the consumers often face highly valued workflows with strict deadlines
(e.g., extensive supply-chains or large commercial projects).

In future work, we will extend our strategy to handle more advanced negoti-
ation mechanisms rather than the fixed price model we use at the moment. Such
mechanisms have been widely used in the context of multi-agent systems, and
are now increasingly being employed in service-oriented systems to allow con-
sumers and providers to reach service-level agreements prior to invocation. We
also plan to improve the adaptivity of our strategy, utilising information about
workflow progress to dynamically alter the provisioning of services.
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