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Abstract. Boosted ensemble classifiers have a demonstrated ability to
discover regularities in large, poorly modeled datasets. In this paper we
present an application of multi-hypothesis AdaBoost to detect epilepti-
form activity from electrophysiological recordings. While existing boost-
ing methods do not account automatically for the sequence information
that is available when analyzing time-series data, we present a recurrent
extension to AdaBoost, and show that it improves classification accuracy
in our application domain.

Medical treatment design has long been the exclusive domain of clinical experts.
However, recently there has been a growing interest in automatically optimizing
adaptive treatment strategies for the management of chronic diseases. The chal-
lenge is in developing sequences of treatments which adapt to a patient’s char-
acteristics and the disease’s progression [1]. Additionally, there has been much
recent interest in using automatic techniques to classify neurological time-series
data [2]. There are tremendous opportunities in applying automated learning
and discovery techniques to these classes of problems.

The optimization of an adaptive treatment strategy can be cast as a rein-
forcement learning problem [1]. Reinforcement learning addresses the problem
of optimizing action sequences in dynamic and stochastic systems [3]. In this
paradigm, the state of the system represents the patient’s medical history, and
the goal is to use direct experimentation with the system to learn, for each
state, the optimal treatment strategy (or policy). Reinforcement learning unfor-
tunately tends to require large amounts of data to reach an optimal strategy.
This is impractical where data is sparse and expensive, as is often the case with
human medicine. The best way to reduce data requirements is to impose strong
constraints on the state representation.1 Thus a significant challenge is finding
a good compact state representation for a patient’s medical history.

In this paper we focus on the problem of learning a compact state represen-
tation for epileptic events. Epilepsy is a brain disorder characterized by seizures
(also known as ictal events) resulting from episodes of abnormal electrical activ-
ity in the brain. It affects about 1% of the population [4], of which at least 25% do
1 A secondary technique is to impose strong constraints on the policy space, but this

generally requires a known state representation.
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not respond to anti-epileptic medication [5]. For these non-responsive patients,
treatment by electrical stimulation has recently emerged as a promising alter-
native therapy [6]. The technology is relatively simple: a small pacemaker-like
device that applies mild electrical stimulation to the nervous system is implanted
in the patient. The optimization of an adaptive treatment strategy for such a de-
vice requires a compact state representation, as it is likely that limited amounts
of data will be available for learning. Therefore we seek methods for classifying
epileptic states from electrical field potential recordings.

In this paper we attempt to detect epileptic states by performing classification
problem over fixed time frames, and we investigate the use of boosting techniques
to discover information about key features for our state representation. Though
this is not always well recognized, ensemble methods such as AdaBoost provide a
principled and efficient mechanism for feature selection in large, poorly modeled
datasets [7,8]. However, existing boosting methods do not naturally account for
the sequential nature of time-series data, such as electrophysiological recordings.
We present a new recurrent formulation of AdaBoost, in which the classification
of prior time frames is included in the feature vector of the current time frame.
This technique distinctly improves classification accuracy in our application,
especially the detection of rare events. We also evaluate the performance of
recurrent AdaBoost using a synthetic dataset from the UCI database [9] and
demonstrate improved classification accuracy compared to standard AdaBoost.
While we do not provide a formal analysis of the properties of boosting under
the recurrent formulation, this will be an interesting line of future research.

1 Problem Description

Epileptiform signals can be separated into long normal phases, with periodic
ictal events that may span several minutes. They are also characterized by brief
interictal events, sometimes called spikes.

The problem of automated real-time detection and prediction of epileptic
seizures using electrophysiological recordings has been investigated extensively,
yielding a variety of approaches, including neural networks [10], wavelet meth-
ods [11], and nonlinear time series analysis [12]. However these results are not
sufficiently interpretable to build compact state representations.

1.1 Data Recordings

The data used in this study are field potential recordings of seizure-like activity
in slices obtained from rat brains [13]. The recordings were made using micro-
electrodes inserted in the regions of interest and sampled at a rate of 5012.5 Hz.
The recordings were filtered to roll off frequencies above 100 Hz. This study used
three separate brain slices. In each slice, neural activity was recorded in three
different channels placed in different brain structures, thus yielding a total of
nine data traces. These recordings are between 10.5 and 13 minutes in length.
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1.2 Signal Processing

Each data trace was processed as a series of nonoverlapping frames consisting
of 4096 samples (0.82 sec). Each frame was normalized by subtracting the mean
and dividing by the full range of the entire frame. The per-frame mean, range,
and energy (the sum of squared deviations from the mean) were saved for use as
features in the classification. Each frame was then apodized with a Hann window
and converted to a power spectrum using the discrete fast Fourier transform.
Because the signals were low-pass filtered at 100Hz, only the first 80 frequency
bands were used as features, representing a frequency range of approximately
1-98 Hz. The real and imaginary components of each band of the FFT were
combined into a single magnitude, giving 83 features per frame (the frequency
bands, plus mean, range and energy). Each trace yielded between 731 and 947
usable frames, for an overall total of 7692 frames.

1.3 Labeling

Each of the channels of the recordings was segmented into normal, spike, or ictal
(or seizure) periods based on guidance from an expert. This classification was
somewhat qualitative and performed by visual analysis. As can be seen in Fig. 1,
the events are reasonably distinctive. Spikes were noted only for the duration of
the most prominent portion of the spike waveform, giving a typical spike length
of 50 milliseconds. The majority (82%) of the frames was classified as normal,
with about 3% classified as an interictal spike and 14% classified as ictal. We
have also made this labeled dataset publicly available [14].

Fig. 1. An example recording, showing several spikes and an ictal event (far right)

2 Algorithmic Approach

Boosting is a general supervised learning technique that seeks to combine an
ensemble of simple, easily chosen classification rules (or hypotheses) into a single
strong hypothesis. Most boosting algorithms proceed in a series of rounds in
which a new weak hypothesis is trained according to a labeled set of training
examples. After each round, the distribution of the training examples is updated
to increase the weights of those examples that were improperly classified in the
current round. The final strong hypothesis is formed by a weighted combination
of the weak hypotheses [15].
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2.1 AdaBoost

The general boosting framework specifies neither how distributions and weights
are updated, nor how the weak hypotheses are to be combined. The AdaBoost
(“adaptive boosting”) algorithm was invented by Freund and Schapire [7]. Our
work uses AdaBoost.MH (illustrated as Algorithm 1), which is a multiclass ex-
tension of AdaBoost [16] that generalizes both the distributions and the weak
learners over a set of possible labels. We specifically use “real” AdaBoost.MH,
which outputs a real-valued confidence prediction for each class.

Our choice of AdaBoost was motivated primarily by the relative simplicity of
the final classifier. While perhaps less amenable to human interpretation than a
decision tree, a boosted classifier can yield insights into the structure of a poorly
characterized problem by weighting features according to their discriminative
power [8]. Also, while the algorithm’s performance is influenced by the choice of
weak learners, the final strong hypothesis can often be evaluated very efficiently.

The use of the AdaBoost family of algorithms was also influenced by recent
work in music genre classification which revealed AdaBoost as a powerful clas-
sification approach for complex time-series signals [17].

We use the freely available AdaBoost.MH implementation BoosTexter 2.1 [18],
which includes weak learners consisting of simple decision stumps over contin-
uous attributes. While this implementation was intended for text processing
applications, it is general enough for our application.

We use the features described in Sect. 1.2 to form the feature domain X .

Algorithm 1. Discrete AdaBoost.MH [16]
Given: (x1, Y1), . . . , (xm, Ym) where xi ∈ X , Yi ⊆ Y
Initialize D1(i, !) = 1/(mk)
for t = 1, ..., T do

Train weak learner using distribution Dt

Get weak hypothesis ht : X × Y → IR
Choose:

αt =
1
2

ln

(
1 + rt

1 − rt

)
, rt =

∑

i,!

Dt(i, !)Yi[!]ht(i, !)

Update:

Dt+1(i, !) =
Dt(i, !) exp(−αtYi[!]ht(xi, !))

Zt

(Where Zt is a normalizing constant chosen such that
∑

i Dt+1(i) = 1)
end for
Output final hypothesis:

H(x, !) = sign

(
T∑

t=1

αtht(xi, !)

)
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2.2 Recurrent AdaBoost

AdaBoost does not directly represent any dependencies between events; each
training example is assumed to be drawn independently randomly from the set
X . For time series data it is likely that the classification of prior frames in the
series will provide useful information for the classification of later frames.

The most obvious way to test this is to incorporate features from prior time
frames xi−1, ..., xi−N with features of the current time frame xi. This method,
which we call AdaBoost with Memory, is conceptually simple and maintains the
good theoretical properties of boosting. However, it scales badly for domains
with a large feature space.

Instead, we propose to use the classification labels of prior time frames. We
train a classifier f such that yi = f(xi, yi−1, ..., yi−N ), where xi is the input
feature of frame i, N is the number of prior predictions considered, and yi is
the set of real numbers corresponding to the class membership scores output by
AdaBoost.MH. We call this algorithm Recurrent AdaBoost. It scales nicely with
history size, assuming a small number of classes (3 in our case). A problem with
K classes and N recurrent time steps adds NK features to the input vector.

Our recurrent approach requires inserting two steps in the AdaBoost training
procedure. First, during initialization we set all of the prior labels in our training
examples to zero. Second, these labels must be updated at the end of each
round of training. The testing procedure also must be modified slightly in cases
where test frames are processed in a batch manner. It is necessary to iterate
classification of the test set (up to N times) to allow full incorporation of the
classifier information. This is not necessary when test examples are presented in
an order consistent with the time-series.

3 Experimental Evaluation

3.1 Method

In this section, we investigate the performance of boosting for the classification
of epileptic brain activity from electrophysiological signals. We consider three
different classification approaches:

yi = f(xi) Standard AdaBoost
yi = f(xi, xi−1, ..., xi−N ) AdaBoost with Memory
yi = f(xi, yi−1, ..., yi−N ) Recurrent AdaBoost

In the control experiment, which we call Standard AdaBoost, each feature
vector includes the 83 scalar values associated with the current time frame only.

In the second experiment, which we call AdaBoost with Memory, each feature
vector includes the features of both the current time window and the prior time
window for a total of 166 scalar values. This method can be extended to longer
memory, but we did not try this because of the substantial training time required.
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In the third experiment, which we call Recurrent AdaBoost, the input feature
vector includes the 83 standard features with the addition of the output weights
for each class, for each of N prior windows (where we vary N from 1 to 5.)

In each experiment, we performed three train/test folds using six traces as the
training set and three traces as the test set. Training proceeded for 300 rounds,
as the classification error leveled off after that point.

3.2 Results

We begin by considering an illustrative example. Figures 2b, 2c, and 2d show
the classifier outputs for a representative test trace, using Standard AdaBoost.
While overall results in this case were good (93% accuracy), only 10 of 12 spike
frames (83%) and 82 of 119 ictal frames (69%) were correctly classified.

Figures 2e, 2f, and 2g show classifier outputs using Recurrent AdaBoost with
the predictions of two prior frames. Here all 12 spike frames were properly iden-
tified, and the recognition of ictal frames increased to 102 out of 119 (86%).

We now present a more formal comparison of the approaches. We achieved
average overall accuracy greater than 90% with all methods considered.
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Fig. 2. Results for classification of one channel. (a) The original trace. (b) (c) (d)
The per-class confidence values using Standard AdaBoost. (e) (f) (g) The per-class
confidence values using Recurrent AdaBoost with two prior time frames.
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Results for all cases are summarized in Table 1. For Standard AdaBoost,
the variance in accuracy among train/test folds was relatively high, ranging
from 90% to 97%. Recognition of spikes was quite poor. Spike events may be
especially difficult for our detector, because of both their short duration and
their relatively rarity (3% of all frames). In some cases the classifier tended to
classify spikes as ictal events. This may reflect variability in the spikes, which
can resemble brief ictal events (see Fig. 3).

In the AdaBoost with Memory case, all features from the prior frame are
concatenated with all features from the current frame. This approach shows a
large improvement over Standard AdaBoost, and markedly reduced the variance
in the accuracy. Note especially the improved detection of interictal spikes.

Fig. 3. Three channels recording a spike at approximately the same time. The bottom
spike shows a long “ictal” tail.

Table 1. Summary of experimental results. Row labels reflect ground truth, column
labels reflect classification results.

Experiment Normal Spike Ictal Total Class% Overall% Range%
Standard Normal 6209 18 67 6294 99 95 90–97
AdaBoost Spike 35 119 99 253 47

Ictal 97 65 983 1145 86
AdaBoost Normal 6242 15 37 6294 99 97 93–99
with Spike 48 187 18 253 74
Memory Ictal 92 15 1038 1145 91
Recurrent Normal 6253 16 25 6294 99 98 94–99
AdaBoost Spike 49 187 17 253 74
(1 prior) Ictal 69 12 1064 1145 93
Recurrent Normal 6239 22 33 6294 99 97 92–99
AdaBoost Spike 42 199 12 253 79
(2 prior) Ictal 101 15 1029 1145 90
HMM Normal 97 94

Spike 45
Ictal 78
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Results for Recurrent AdaBoost are shown for two cases, incorporating the
predictions for either one or two prior frames. Incorporating one prior frame,
there is a strong improvement over Standard AdaBoost in classifying both spikes
and ictal events. Incorporating two prior frames provides no consistent benefit.
These results are comparable to those of AdaBoost with Memory, but with less
training time, given the smaller size of the feature space.

We evaluated Recurrent AdaBoost when incorporating predictions for 1–5
prior frames into the feature vector. These results are summarized in Fig. 4.
There is little improvement beyond two frames, suggesting that, for our dataset,
there is little added information in more distant time frames.
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Fig. 4. Results for Recurrent AdaBoost using varying numbers of prior frames

These results show solid detection of the various epileptic states. However,
spike detection accuracy is at most 79%. In conversations with experts with years
of experience reading recordings of the type shown in Fig. 1, the consensus is that
given a full trace it is fairly easy to differentiate spiking and ictal events. However,
given only data up to time t, it is difficult to predict whether a subsequent burst
of energy is either a spike or the onset of an ictal event.

We also show results obtained using a standard time-series approach, the
Hidden Markov Model (HMM) [19].2 The results for classification of spike events
are comparable to those of Standard AdaBoost but significantly worse than those
of Recurrent AdaBoost. Classification of ictal events is worse than both Standard
and Recurrent AdaBoost.

3.3 Feature Extraction

To better characterize the data, we performed principal components analysis of
the 83 features that form our input space. Figure 5 shows that at least 50%
of the principal components are required to reconstruct 90% of the variance
2 Observation probabilities were modeled assuming each input feature follows a uni-

variate Gaussian. All parameters were derived from the labeled training data.
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Fig. 5. Principal components analysis of 83 features

in our data. We also observed much overlap between the spike class and the
ictal/normal classes in principal components space. Both this analysis and the
prior literature on the topic suggest that epileptic state detection from electrical
signals is difficult, especially for spike events.

We also examined the strong hypotheses produced by AdaBoost.MH for all
of the experiments. We observed a number of striking regularities.

In all recurrent examples, the first weak hypothesis recruited was either fre-
quency band 62 or 63, corresponding to frequencies of 76 or 77 Hz. High values
in these bands favor a normal classification, whereas low values weight towards
ictal classification. Frequency bands 6–8 (∼ 7–10 Hz) were consistently recruited
early. Low values in these bands favor normal classification, whereas high values
favor ictal classification.

In most cases, energy was recruited in the first 20 rounds. A high energy value
resulted in a strong weighting toward a spike classification. A similar effect was
seen for the range feature.

In recurrent cases, prior labels primarily acted as a source of hysteresis in the
system: prior labels of ictal or normal biased the present frame towards either
ictal or normal, respectively.

3.4 Validation

We also performed validation of Recurrent AdaBoost with synthetic data by
adapting a similar task of known difficulty, the “waveform” classification prob-
lem from the UCI Machine Learning repository [20,9,21]. This task requires
discrimination among three classes of 21 noisy continuous features. When the
classes are chosen uniformly randomly in sequence (i.e. when the examples are
generated i.i.d.), Bayes optimal performance is 86% [9]. We modified the problem
by sampling examples from these three classes in a nonuniform sequence using
the simple Markov model illustrated in Fig. 6 so as to produce time-series data.

We repeated each of the algorithms using 12 train/test rounds of 5000 train-
ing examples and 1000 testing examples, varying the transition probability P .
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Fig. 6. Simple Markov model used to generate synthetic data. The parameter P sets
the probability that the output class of an example is the same as that of the prior
example. Initial states are chosen uniformly randomly.

The results are summarized in Fig. 7. The bar graph on the left shows the results
for P = 0.9 for Standard AdaBoost (left), AdaBoost with Memory (middle), and
Recurrent AdaBoost using one prior prediction (right). The line graph on the
right shows the results for Recurrent AdaBoost when P = 0.33, P = 0.66, and
P = 0.9, varying the number of prior predictions.
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Fig. 7. Results for experiments with synthetic data. Error bars show 95% confidence
intervals over 12 folds.

When no prior information is used, the results are similar to the Bayes opti-
mal value (86%) for the uniformly random case; this is the Standard AdaBoost
algorithm. However, when prior information is incorporated, we achieve signifi-
cantly improved performance, as the algorithm is able to exploit the time-series
information we added to the problem. Unsurprisingly, the improvement is largest
when the value of P is highest, and only a single prior prediction is needed to
capture the first-order Markov model. Recurrent AdaBoost performs slightly bet-
ter than AdaBoost with Memory on this domain. We speculate that Recurrent
AdaBoost achieves this by forming a smoothed summary of the state history.
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4 Discussion

We propose a new way to apply boosting to time-series data by recurrent incor-
poration of class predictions into the feature vector. We show that this approach
improves classification results in experiments with both real and synthetic data.
We also contribute a new labeled dataset for time-series classification [14].

We also provide the first empirical evidence that AdaBoost can be used to
characterize epileptic states in neurophysiological recordings. This task is diffi-
cult because of the large feature space, the unbalanced class distributions, the
limited availability of training data, and the great variability of these recordings.

These findings show robust detection of key epileptic states. Recognition of
interictal spikes was the most problematic, exhibiting high variance over the test
cases. Note however that the training set is very small for this class, at most 204
examples for an 83-dimensional feature space. Furthermore, the class has strong
overlap with others over the principal components of the feature space. In the
future, we hope to investigate whether a similar approach may be used to classify
subtler signals, such as those of cognitive states.

Our investigation was limited to using very simple weak learners. There is
evidence that more sophisticated weak learners may yield a better strong hy-
pothesis [17]. Other methods for applying boosting to time series data involved
modifying the weak learners to account for time or spatial relationships [22,23].
This may be something to consider in the future.

We do not at this time provide a formal analysis of the convergence properties
of Recurrent AdaBoost. The main challenge is the fact that the input set is not
stationary due to its dependence on the classification of prior instances. This
raises interesting theoretical questions which will be addressed in the future.
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