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Abstract. In an intelligent tutoring system (ITS), the domain expert should pro-
vide relevant domain knowledge to the tutor so that it will be able to guide the 
learner during problem solving. However, in several domains, this knowledge is 
not predetermined and should be captured or learned from expert users as well as 
intermediate and novice users. Our hypothesis is that, knowledge discovery (KD) 
techniques can help to build this domain intelligence in ITS. This paper proposes 
a framework to capture problem-solving knowledge using a promising approach 
of data and knowledge discovery based on a combination of sequential pattern 
mining and association rules discovery techniques. The framework has been im-
plemented and is used to discover new meta knowledge and rules in a given do-
main which then extend domain knowledge and serve as problem space allowing 
the intelligent tutoring system to guide learners in problem-solving situations. 
Preliminary experiments have been conducted using the framework as an alter-
native to a path-planning problem solver in CanadarmTutor.  

1   Introduction 

In an intelligent tutoring system (ITS), the domain expert should provide relevant 
domain knowledge to the tutor so that it will be able to guide the learner during prob-
lem solving. However, in several domains, this knowledge is not predetermined and 
should be captured or learned from expert users as well as intermediate and novice 
users. Our hypothesis is that, knowledge discovery (KD) techniques can help to build 
this domain intelligence in ITS. 

This paper proposes an approach to support new domain knowledge discovery in 
domain where it is difficult to set up a clear problem space or task models. In such a 
domain, we need to capture new procedures (correct or incorrect), new problem 
spaces and new problem-solving strategies from users’ actions. Cognitive task analy-
sis that aims at producing effective problem space or task model (to support model 
and knowledge tracing, coaching, errors detection and plan recognition) is a very time 
consuming process [8]. How can we build this complex structure by learning from us-
ers’ interactions with an ITS ? 

The approach presented in this paper is based on a combination of sequential pat-
tern recognition and association rule discovery. We show how the proposed approach 
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is used to discover new knowledge in a given domain, which then extends domain 
knowledge and serves as a problem space allowing the intelligent tutor to track learn-
ers’ actions and give relevant hints when needed. 

The paper is organized as follows. First, we will present the context of this research 
work by stating the need of KD to enhance tutoring agent knowledge. Then we will 
describe the tutoring context and show how data can be transformed for KD. We will 
also briefly describe algorithms that take this context as input, to extract significant 
sequences of patterns and relationships between them, which will constitute relevant 
partial or complete plans reusable in a given problem-solving activity to track student 
cognitive behavior. Finally, we show how this knowledge is used by a tutoring system 
(CanadarmTutor) aimed at training astronauts during procedural tasks on the ISS (In-
ternational Space Station) using a robot manipulator called CanadarmII. 

2   Problem Statement and Related Works 

Educational data mining is becoming a very important area in the Artificial Intelli-
gence in Education community [1]. Several techniques are used to extract relevant 
data, information or knowledge mainly from databases and log files of learning ses-
sions. However, most work focuses on learner or group classification, clustering or 
sorting [2, 3]. Very few studies address procedural knowledge learning and none at-
tempts to find and learn relations between actions, sequences of actions, and patterns 
among them, which may provide useful information regarding the procedure.  

Kay et al. [4] describe student group interaction data mining that seeks to identify 
significant sequences of activity. Their goal is to flag interaction sequences which in-
dicate problems and successes, so that tutors can help students recognize problematic 
situations in the early stages of the learning sessions. Their goal is not related to learn-
ing procedures nor does it aim to find links between significant interaction sequences 
or patterns. 

Very little AIED research investigated ITS automatic procedural knowledge learn-
ing [5, 6, 7]. Yet, such a capability could facilitate the development of problem spaces 
(task model, procedural knowledge, etc.) and reduce the need for domain experts. For 
example, [6] attempted to induce simple production rules using a single example and the analogy 
mechanism in ACT-R; [7] looks up a set of marked examples, trying to generalize them and gen-
erate production rules. None of them have explored sequential patterns and rules discov-
ery, which can help determine problem-solving steps and rules.   

Creating cognitive tutors usually rests on the implicit assumption that one should 
predefine a task model describing correct and incorrect solution paths. Similarly, 
CTAT (Cognitive Tutor Authoring Tool) [8] offers a set of tools that allows ITS de-
signers to specify the behavioural graph (BG) of a task, presenting correct and buggy 
paths. BGs (sometimes transformed into production rules) are used to track student 
actions. The behaviour recorder can automate the translation of user actions into a 
BG. This concept was improved by the BND (Bootstrapping Novice Data) approach 
proposed by McLaren et al. [5]. BND records the actions of many students in a log 
file which is then used to create a common BG that can be improved by designers. In-
stead of having authors build problem-solving expertise from scratch, tap into only 
their own experience or incorporate student data manually as in traditional ITS  
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development, this tool semi-automatically leverages the empirical data of actual prob-
lem-solving activities. However, the BND approach is devoid of data mining and 
learning, reducing the approach to a simple way of storing or integrating raw user so-
lutions into a structure, as in [6] and [7]. In fact, student data are incorporated into the 
BG regardless of possible links between problem steps or actions. This is very limit-
ing because the system does not try to extract useful knowledge from those solutions, 
which could enrich the problem space.  

Contrary to these approaches, we are proposing a solution to create a more general, 
flexible and powerful (albeit sometimes partial) BG-like structure by inferring asso-
ciation rules between actions or action sequences. In fact, domain users (both expert 
and novice) can provide primitive action sequences required to achieve typical tasks 
in the application domain. These sequences (good and buggy) may then be used to 
teach procedural knowledge associated with the task, thereby continually enhancing 
the system's intelligence. 

3   Modelling Procedural Knowledge in CanadarmTutor  

One of the main goals of an intelligent tutoring system is to actively provide relevant 
feedback to the student in problem-solving situations [9]. This kind of support be-
comes very difficult when an explicit representation of the training task is not avail-
able. This is the case in the ISS environment where the problem space associated with 
a given task consists of an infinite number of paths. Moreover, there is a need to  
generate new tasks on the fly without any cognitive structure. Roman Tutor brings a 
solution to these issues by using FADPRM, a path planner, as main resource for the 
tutoring feedback. 

FADPRM [10] is a flexible and efficient approach for robot path planning in con-
strained environments. In addition to the obstacles that the robot must avoid, our  
approach holds account of desired and non-desired (or dangerous) zones. This will 
make it possible to take into account the disposition of cameras on the station. Thus, 
our planner will try to bring the robot in zones offering the best possible visibility of 
the progression while trying to avoid zones with reduced visibility.  

FADPRM allows us to put in the environment different zones with arbitrary geo-
metrical forms. A degree of desirability dd, a real in [0 1] is assigned to each zone. 
The dd of a desired zone is then near 1, and the more it approaches 1, the more the 
zone is desired; the same for a non-desired zone where the dd is in [0 0.5]. On the in-
ternational Space Station, the number, the form and the placement of zones reflect the 
disposition of cameras on the station. A zone covering the field of vision of a camera 
will be assigned a high dd (near 1) and will take a shape which resembles that of a 
cone; whereas a zone that is not visible by any camera from those present on the sta-
tion will be considered as an non-desired zone with a dd near to 0 and will take an ar-
bitrary polygonal shape. 

The ISS environment is then preprocessed into a roadmap of collision-free robot 
motions in regions with highest desirability degree. More precisely, the roadmap is a 
graph such that every node n is labeled with its corresponding robot configuration n.q 
and its degree of desirability n.dd, which is the average of dds of zones overlapping 
with n.q. An edge (n,n') connecting two nodes is also assigned a dd equal to the  
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average of dd of configurations in the path-segment (n.q,n'.q). The dd of a path (i.e., a 
sequence of nodes) is an average of dd of its edges.  

Following probabilistic roadmap methods (PRM) [11], we build the roadmap by 
picking robot configurations probabilistically, with a probability that is biased by the 
density of obstacles. A path is then a sequence of collision free edges in the roadmap, 
connecting the initial and goal configurations.  

Following the Anytime Dynamic A* (AD*) approach [12], to get new paths when 
the conditions defining safe zones have dynamically changed, we can quickly re-plan 
by exploiting the previous roadmap. Moreover, paths are computed through incre-
mental improvements so that the planner can be called at anytime to provide a colli-
sion-free path and the more time it is given, the better the path optimizes moves 
through desirable zones. Therefore, our planner is a combination of the traditional 
PRM approach [11] and AD* [12] and it is flexible in that it takes into account zones 
with degrees of desirability. This explains why we called it Flexible Anytime  
Dynamic PRM (FADPRM).   

We implemented FADPRM as an extension to the Motion Planning Kit (MPK)[11] 
by changing the definition of PRM to include zones with degrees of desirability and 
changing the algorithm for searching the PRM with FADPRM. The calculation of a 
configuration’s dd and a path’s dd is a straightforward extension of collision checking 
for configurations and path segments. 

 

Fig. 1. Path planning and task demonstration using FADPRM 
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FADPRM computes a collision and soft constraints (camera views, etc.) free path 
that serves as expert solution for the tutor. FADPRM is also called when the tutor 
needs to validate student actions, to demonstrate a given task or to suggest a solution 
path. However, the resulting path is sometimes too much complex to be followed by a 
human user and far from the procedure that a human would execute in a real-world 
situation. In figure 1, FADPRM generates a path that the user should follow and can 
demonstrate it in another window. 

A good tutor in procedural tasks should fulfill at least the following important 
properties: 1) guide the user through expert users’ solution; 2) and recognize the stu-
dent profile (novice, intermediate or expert) to offer tailored help. 

Tutoring services based on FADPRM fails to satisfy these properties. We believe 
that a way to solve this problem is to base coaching on knowledge that comes from 
users themselves. In this way, the system can 1) capture data from the system usage 
by users of all possible profiles and 2) learn rules and constraints that can contribute 
to a knowledge base to support adapted tutoring services. Our hypothesis is that, tu-
toring services based on such a knowledge base will guarantee high quality assistance 
to the learners. 

The next sections of this paper present a way to implement this solution. 

4   Problem-Solving Data Representation 

In cognitive tutors, problem-solving knowledge is represented as procedures each cor-
responding to a possible path to a successful or unsuccessful solution to the problem. 
A procedure (or a plan) is a sequence of atomic and non-atomic actions. Non-atomic 
actions are actions containing at least two atomic actions. Actions are events that oc-
cur at a given time. Table 1 shows an example dataset of 8 successful plans where 
each entry corresponds to a plan’s events. From this dataset, it is possible to easily 
compute frequent sequences of actions using a minimal support (minsup) defined by 
the user. A sequence is said to be frequent if it occurs more than minsup times.  

Table 1. A data set of 8 successful plans 

PlanID Sequences of  actions 

P1 1 2 25 46 48 {9 10 11 31} 
P2 1 25 46 54 79 {10 11 25 27}  

P3 1 2 3 {9 10 11 31} 48 

P4 2 3 25 46 11 {14 15 16 48} 74  

P5 2 25 46 47 48 49 {8 9 10} 
P6 1 2 3 4 5 6 7 
P7 25 26 27 28 30 {32 33 34 35 36} 
P8 46 54 76 {10 27} {48 74} 

From the frequent sequences set, the next step consists in finding rules that connect 
them using a simple algorithm that considers sub-sequences of each sequence and de-
rives a relationship between them given their number of occurrences in the dataset.  
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5   The Proposed Framework 

The system that we propose goes through different stages or processes to learn rules. 
At each stage, we adapt and integrate specific algorithms. The main scheme is as fol-
low (process in bold): 

Log files containing users plans  Automatic coding of data  Formated Binary-
File  Sequential Patterns Finding (PrefixSpan)  Frequent patterns  Building 
of the Meta-Context  Meta-Context  Association Rules Finding (IGB)  New 
procedural task knowledge (PTK)   Integration within the Tutoring System. 

5.1   Sequential Patterns Mining  

The problem of mining sequential patterns was originally proposed by Agrawal and 

Srikant [11]. Let I = {i1, i2,…, in} be a set of items or actions. We call a subset X ⊆ I an 
itemset or an actionset and we call |X| the size of X. A sequence s = (s1, s2, … , sm) is 

an ordered list of actionsets, where si ⊆ I, i ∈ {1,…,m}. The size, m, of a sequence is 
the number of actionsets in the sequence, i.e. |s|. The length of a sequence s = (s1, s2, 
… , sm) is defined as :  l =  ∑ |si|,  for i =1 to m. 

 A sequence with length l is called an l-sequence. A sequence sa = (a1,a2,…, an) is 
contained in another sequence sb = (b1, b2,…, bm) if there exists integers 1 ≤ i1 < i2 < 

… < in ≤ m such that a1 ⊆ bi1 , a2 ⊆ b i2 , . . . , an ⊆ bin. If sequence sa is contained in 
sequence sb, then we call sa a subsequence of sb and sb a supersequence of sa.  

The relative support is defined as the percentage of sequences s ∈ D that contains 
sa. The support of sa in D is denoted by supD(sa).  

Given a support threshold minsup, a sequence sa is called a frequent sequential pat-
tern on D if supD(sa) ≥ minsup. The problem of mining sequential patterns is to find 
all frequent sequential patterns for a database D, given a support threshold minsup.  

Table 1 shows the dataset consisting of tuples in its sequence representation. Con-
sider the sequence of plan 2; the size of this sequence is 6, and the length of this se-
quence is 9. Suppose we want to find the support of the sequence sa = (1 {9 31}). 
From Table 1, we know that sa is a subsequence of the sequences for plan 1 and plan 3 
but is not a subsequence of the sequence for plan 2. Hence, the support of sa is 2 (out 
of a possible 8), or 0.25. If the user-defined minimum support value is less than 0.25, 
then sa is deemed frequent. 

A subsequence or pattern, P, is closed if there exists no superset of P with the same 
support in the database. A closed pattern induces an equivalence class of pattern shar-
ing the same closure. The minimal generators and the unique closed pattern of an 
equivalence class of actionsets share a common set of plans. The minimal generators 
are the minimal ones among the equivalent actionsets, while the closed pattern is the 
maximum one. The closed pattern is unique. 

5.2   Finding Frequent Sequential Patterns Using PrefixSpan 

Many algorithms have been proposed to efficiently mine sequential patterns or other 
time-related data [13, 14, 15, 16]. We choose here the PrefixSpan approach [15] as it is 
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one of the most promising ones for mining large sequence databases having numerous 
patterns and/or long patterns, and also because it can be extended to mine sequential 
patterns with user-specified constraints. PrefixSpan is a projection-based, sequential pat-
tern-growth approach that recursively projects a sequence database into a set of smaller 
projected databases. Sequential patterns are grown in each projected database by explor-
ing only locally frequent fragments. Table 2 shows examples of sequential patterns ex-
tracted by PrefixSpan from data in table 1 using a minimum support equals 25%. 

Links between sequential patterns can lead to the tutor goal. Thus PrefixSPan can 
find long frequent sequence patterns, and those patterns will be linked by generating 
associations among them. In our case, we are interested by minimal and non redun-
dant association rules, also called generic bases. 

Table 2. Examples of sequential patterns extracted by PrefixSpan with their associated labels 

Sequential patterns Sequence patterns’ labels 
1 25  46  48 S1 

1 25 46 {10 11} S2 
1 {9 10 31} S6 
1 {9 11 31} S7 

1 {9 10 11 31} S8 
1 46 {10 11} S13 

Among previous studies on mining of generic bases, we choose IGB [17] as it effi-
ciently extracts more compact generic bases without information loss, i.e. all associa-
tion rules can be derived from these generic bases with their exact support. 

5.3   Extracting Generic Rules Between Patterns Using IGB 

IGB [17] is a new informative generic basis. It has a valid and complete axiomatic 
system allowing the derivation of all the association rules. Rules of IGB are correla-
tions between minimal premise and maximal conclusion (in term of items number). 
Indeed, it was shown that this kind of rules is the most general (i.e., conveying the 
maximum of information). The premise of some generic rules of IGB can be empty 
such that they are two types of generic rules: (1). factual rules having an empty prem-
ise; and (2). implicative rules having a non empty premise. 

IGB basis is generated by a dedicated algorithm which takes as input the meta-
context of initial plans, and two thresholds which are the minimum support, minsup 
(already defined in PrefixSpan), and the minimum confidence, minconf. The meta-
context of initial plans (see example in Table 3) is the set of plans redefined with the 
frequent sequential patterns obtained with PrefixSpan.  

IGB algorithm checks for each non empty closed pattern, P, if its support is greater 
or equal to minconf. If it is the case, then the generic rule Ø  P is added to IGB 
base. Else, it iterates on all frequent closed actionsets P0 subsumed by P. For those 
having support at least equal to support(P)/minconf, the algorithm iterates on the list 
of minimal generators associated to P0. During this iteration, we look for the smallest 
minimal generator gs, such that there does not exist a generator g0 subsumed by gs 
which is already inserted in the list L of smallest premises. Then, IGB algorithm  
iterates on all elements of the list L in order to generate rules of IGB which have the 
following form: gs  (P – gs). 
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Table 3. Part of the crisp meta-context of frequent sequences built from dataset in table1 

PlanID Frequent sequential patterns 

P1 S1 S2 S4 S5 S6 S7 S8 S9 S10 S95 S97 S98 S113 S116 S118 
P2 S1 S5 S6 S7 S9 S98 
P3 S1 S2 S3 S4 S5 S6 S8 S10 S95 S97 S98 S113 S116 S118 
P4 S2 S3 S6 S7 S9 S10 
P5 S2 S4 S5 S7 S9 S10 S95 
P6 S1 S2 S3 
P7 S7 
P8 S5 S9 S10 

By dividing the sub-sequence occurrence by the plans’ occurrence, we obtain the 
relative support associated to the sub-sequence. Let consider a minsup of 2 (25%), 
meaning that a valid sequence should occur in at least 2 input-plans, we can obtain the 
meta-context which part is shown in table 3. Each sub-sequence can appear in a plan 
with a certain confidence which is its relative support (in table 3, we consider a crisp 
context where dichotomic values (0 or 1) are assigned when a subsequence appears or 
not in a plan). Using this meta-context as input, IGB computes a set of generic meta-
rules, part of which is shown in table 4. These meta-rules combined with frequent se-
quential patterns will constitute the knowledge that will be used by the tutor to guide 
students and domain users to explore and learn the procedural task. 

Table 4. Examples of generic meta-rules extracted by IGB 

Meta-rules  Support   Confidence Expanded meta-rules 
S10 ===> S9  4   0.8 … 
S9 ===> S7  4   0.8 1 {10 31} ===>  1 {9 11 31} 
S9 ===> S5  4   0.8 … 
S5 ===> S10  4 0.8 … 

6   How the Learned Knowledge Base Is Used for Tutoring 
Services? 

As said before, tutoring systems should provide useful tutoring services to assist the 
learner. These services include coaching, assisting, guiding, helping or tracking the stu-
dent during problem-solving situations. To offer these services, a tutoring system needs 
some knowledge related to the context. The knowledge base namely procedural task 
knowledge (PTK) obtained from the previous knowledge mining process serves to that 
end. The next paragraphs present some examples of services that can be supported. 

Assisting the User to Explore Possible Solutions of a Given Problem. Domain ex-
pert users can explore, validate or annotate the PTK. The validation can consist in  
removing all meta-rules with a low confidence, meaning that those rules can not sig-
nificantly contribute to help the student. Annotation consists in connecting some use-
ful information to meta-rules lattice depicting semantic steps of the problem as well as  
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hints or skills associated to a given step. A meta-rule lattice annotated in this way is 
equivalent to [8]’s BN or Sherlock’s effective problem space (EPS), except that EPS 
and BN are explicitly built from scratch by domain experts. 

For student users, exploring PTK will help them learn about possible ways of solv-
ing problem. They can be assisted in this exploration using an interactive dialog with 
the system which can prompt them on their goals and helps them go through the rules 
in order to achieve these goals. This kind of service can be used when the tutoring 
system wants to prepare students before involving them in real problem-solving situa-
tion.  

Tracking the Learner Actions to Recognize the Plan S/He is Following. Plan rec-
ognition is very important in tutoring systems. PTK is a great resource to this process. 
Each student’s action can be tracked by searching the space defined by meta-rules lat-
tice so that we can see the path being followed. For this service, partitioning the space 
in terms of equivalent classes corresponding to maximal sequences as proposed in 
[14] can make plan recognition (and exploration) easier. In fact, when it is recognized 
the current plan is in a class, all other classes are pruned so that the exploration will 
continue only in a single class.  

Guiding Learners. When solving a problem, an ITS should be able to help the stu-
dent. A classic situation is when the student asks the tutor what to do next from the 
actual state. PTK can help the tutoring agent to produce the next most probable ac-
tions that the student should execute and prompt him on that, taking into account un-
certainty related to rules’ confidence. An example of a dialog can be as follow: 

…. 
Student : What should I do now ? 
Tutor : Oh! I don’t quite know but I think you should try action B. 
Student : Why ? 
Tutor : Well, in 75% of the cases, people who tried that action achieved the final goal ! 
Student : Ok! Are there any other possibilities? 
... 

7   Results and Discussion 

We have set up two scenarios consisting each in moving the load to one of the two 
cubes (figure 2a). A total of 15 users (a mix of novices, intermediates and experts) 
have been invited to execute these scenarios using the CanadarmII robot simulator. A 
total of 119 primitive actions have been identified. Figure 2b shows part of an exam-
ple log file from a user’s execution of the first scenario. We obtain a database with 45 
entries each corresponding to a given usage of the system. A value indicating the fail-
ure or success of the plan has been added at the end of each entry. 

The framework presented in section 5 was applied. A unique number was assigned 
to each action. After coding each entry of the traces database using PrefixSpan data 
representation, we obtained a binary file containing plans’ data for the two scenarios. 
This file was sent as input to the rest of the process.  
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Fig. 2. (a) Environment setup for the two               (b) An entry of the plans’ database 
                 experimental scenarios  

The Results. After executing PrefixSpan, the first stage of the experiment consisting 
in finding sequential patterns from the input data, we obtained a total of 76 significant 
patterns (with a support greater that .5). At the second stage, we created a binary con-
text where each row represents a plan data and each column stands for a set of pat-
terns. The goal at this stage was to mine association rules between sequential patterns. 
Using IGB approach, we obtained a PTK of 37 significant meta-rules. These rules 
were then coded and integrated in a new version of CanadarmTutor that uses this 
knowledge base to support tutoring services. An empirical test with this version has 
been conducted with the same users of the system’s version relying on the FADPRM. 
They have been asked to execute the two scenarios. We found that, the system behav-
ior in terms of guiding the user was significantly improved compared to the behavior 
observed in the version relying on the path planner. The system can now recommend 
good and easy-to-follow actions sequences. The system can also recognize users’ 
plans and anticipate failures or successes, thus proactively help them at the earlier 
stage. Using the learned knowledge base, the system can also infer user profiles by 
detecting (analyzing) the path they follow. The PTK produced by our framework is 
sometimes too large and contains non useful rules. However, this is not harmful for 
the tutor behavior but it may slow the performance as the system need to go through 
this huge knowledge base each time the user executes an action. We are now working 
to improve the quality of the PTK. We are also looking for a way of managing unsuc-
cessful plans data. In fact in the actual version of the implemented framework, we do 
not consider plans that fail. We should find a way to integrate these data. We believe 
that this integration may lead to a more powerful behavior of the tutoring agent in the 
sense that it can easily identify sequence patterns that lead to failure or success, hence 
better guiding the learner. 

8   Conclusion 

In this paper, we proposed a KD framework that combines sequential pattern mining 
and association rules discovery techniques. We showed how the proposed framework 
can contribute to enhance an intelligent tutoring system’s knowledge in procedural 

… 
EnterCorridor(CouloirZoneCameraInitiale) 
{SelectCamera(Monitor1,CP8),SelectCamera(Monitor2,CP10),    
   SelectCamera(Monitor3,CP9)} 
SelectJoint(WE) 
bigMove(WE,decrease) 
LeaveCorridor(CouloirZoneCameraInitiale) 
smallMove(WE,decrease) 
SelectJoint(SP) 
bigMove(SP,decrease) 
SelectCamera(Monitor1,CP2) 
smallMove(SP,decrease) 
EnterCorridor(CouloirZoneCameraInitialeBasDroitePresqueTotale) 
mediumMove(SP,decrease) 
LeaveCorridor(CouloirZoneCameraInitialeBasDroitePresqueTotale) 

smallMove(SP,decrease) 
… 
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domain. We used the framework to build a meta-knowledge base of plans from users’ 
traces in CanadarmTutor. The resulting knowledge base enables CanadarmTutor to 
better help the learner. For future works, we plan to find some ways of filtering the 
resulting meta-rules and integrating unsuccessful paths. We will also carry out further 
tests to clearly measure the benefit of the approach in terms of tutoring assistance  
services. 
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