
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Handling Control Data Flow Graphs for a Tightly
Coupled Reconfigurable Accelerator

Noori, Hamid
Department of Informatics, Graduate School of Information Science and Electrical Engineering,
Kyushu University

Mehdipour, Farhad
Department of Informatics, Graduate School of Information Science and Electrical Engineering,
Kyushu University

Zamani, Morteza Saheb
Department of IT and Computer Engineering, Amirkabir University of Technology

Inoue, Koji
Department of Informatics, Graduate School of Information Science and Electrical Engineering,
Kyushu University

他

https://hdl.handle.net/2324/6384

出版情報：Proceedings of 3rd International Conference on Embedded Software and Systems,
pp.345-356, 2007-05-15. International Conference on Embedded Software and Systems
バージョン：
権利関係：© 2007 Springer-Verlag Berlin Heidelberg

Y.-H. Lee et al. (Eds.): ICESS 2007, LNCS 4523, pp. 345–356, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Handling Control Data Flow Graphs for a Tightly
Coupled Reconfigurable Accelerator

Hamid Noori1, Farhad Mehdipour1, Morteza Saheb Zamani2, Koji Inoue1,
and Kazuaki Murakami1

1 Department of Informatics,
Graduate School of Information Science and Electrical Engineering,

Kyushu University, Fukuoka, Japan
{noori,farhad}@c.csce.kysuhu-u.ac.jp,

{inoue,murakami}@i.kyushu-u.ac.jp
2 Department of IT and Computer Engineering, Amirkabir University of Technology,

Tehran, Iran
szamani@aut.ac.ir

Abstract. In an embedded system including a base processor integrated with a
tightly coupled accelerator, extracting frequently executed portions of the code
(hot portion) and executing their corresponding data flow graph (DFG) on the
accelerator brings about more speedup. In this paper, we intend to present our
motivations for handling control instructions in DFGs and extending them to
Control DFGs (CDFGs). In addition, basic requirements for an accelerator with
conditional execution support are proposed. Moreover, some algorithms are
presented for temporal partitioning of CDFGs considering the target accelerator
architectural specifications. To show the effectiveness of the proposed ideas, we
applied them to the accelerator of an extensible processor called AMBER.
Experimental results represent the effectiveness of covering control instructions
and using CDFGs versus DFGs.

1 Introduction

Using an accelerator for accelerating the execution of frequently executed portions of
applications is an effective technique to enhance the performance of a processor in
embedded systems. In this technique, data flow graphs (DFGs) extracted from critical
portions of an application are executed on an accelerator. Similar technique has been
presented in [3, 4, 9, 13, 15, 22, 2, 5, 17, 21]. The accelerator can be implemented as a
reconfigurable hardware with fine or coarse granularity or as a custom hardware (such
as Application Specific Instruction-set Processors or extensible processors) [7]. The
integration of accelerator and the processor can be tightly or loosely coupled [7, 13].
For loosely-coupled systems, there is an overhead for transferring data between the
base processor and the accelerator. When an accelerator is tightly coupled [9, 2, 5, 17,
21], data is read and written directly to and from the processor’s register file, making
the accelerator an additional functional unit in the processor pipeline. This makes the
control logic simple, as almost no overhead is required in transferring data to the

346 H. Noori et al.

programmable hardware unit, however, it increases the read/write ports of the register
file. Our main focus in this paper is on a tightly coupled reconfigurable accelerator.

DFG extraction can be done at high level or binary level of the source code. In our
analysis, we focus on the latter one which means that the DFG nodes are the primitive
instructions of the base processor. The DFG containing control instructions (e.g. branch
instruction) are called Control Dataflow Graphs (CDFGs). Handling branches
(conditional execution) is a challenge in CDFG acceleration, because, due to the result
of a branch instruction, the sequence of execution changes. We consider two types of
CDFGs:

1. CDFGs which contain at most one branch instruction as its last instruction. In this
case the accelerator does not need to support conditional execution.

2. CDFGs containing more than one branch instructions. Accelerators used for
executing CDFGs should have conditional execution support.

As mentioned before, accelerators are used for executing hot portions of
applications. Therefore, while generating CDFG we only follow hot directions of
branches. For a control instruction, the only taken, or not-taken might be hot which
means that they have a considerable execution frequency (more than a specified
threshold). In some other cases, both directions can be hot. We propose adding only hot
directions of branches into the CDFG without being limited to selecting just one or all
of the directions. This brings about more instruction level parallelism (ILP) and can
hide branch misprediction penalty.

In this work, we intend to answer these two following questions.

a) Does acceleration based on CDFG vs. DFG obtain higher performance?
b) How can the conditional execution be supported on an accelerator?

To answer the first question, we investigate the effect of extending DFGs and
covering control instructions on the speedup and present some important motivations
for extending DFGs over basic blocks (using CDFGs instead of DFGs). Moreover, as
an answer to the second question, we introduce basic requirements for an accelerator
with conditional execution support.

Due to the limitations of hardware resources of the accelerator (e.g. the number of
inputs, outputs, logics, connections and etc) and different size of extracted CDFGs
from various applications, in most cases the whole CDFG can not be mapped on the
accelerator. As another contribution in this paper, we present CDFG temporal
partitioning algorithms to partition large CDFGs to smaller and mappable ones.
Mappable CDFGs satisfy the accelerator architectural constraints, hence, can be
mapped and executed on the accelerator.

2 Motivations

In this section, basic arguments to extend DFGs over control instructions and
supporting CDFGs are investigated. We follow a quantitative analysis approach and
use some applications of Mibench [14] for these analyses. As mentioned above, DFGs
are extracted from the frequently executed portions of an application and a control
instruction (e.g. branch instruction) may cause the DFG generation to be stopped.

 Handling Control DFGs for a Tightly Coupled Reconfigurable Accelerator 347

Therefore, short distance control instructions may result in generation of small size
DFGs (SSDFG). In fact, SSDFGs are not suitable for improving performance in
application execution and have to be run on the base processor [11] because they do not
offer any more speedup.

In Fig. 1, a piece of a main loop of adpcm(enc) has been shown. adpcm(enc) is an
application program which includes a loop which consumes 98% of total execution
time. The critical portion of application contains 3 loads and 12 branch instructions.
According the location of branch instructions, 4 DFGs can be extracted from the piece
of loop that has been shown in Fig 1. Three DFGs from four depicted DFGs in Fig. 1
are SSDFGs (have the length less than or equal to 5 (we only execute DFGs which have
more than 5 nodes on the accelerator). These SSDFGs do not bring about more speedup
and have to be run on the base processor.

Fig. 1. Control data flow graph of hot portion of adpcmc(enc)

This kind of analysis was accomplished for 17 applications of Mibench [14]. Results
of analysis motivate us to use CDFGs instead of DFGs for acceleration. Fig. 2 shows
the overall percentage of frequently executed (hot) potion of each application. In
addition, this figure shows the fraction of applications that can not be accelerated due to
SSDFGs. For example, for bitcount application, almost 92% of application is hot. On
the other hand, 32% out of 92% of hot portions do not worth to be accelerated due to the
SSDFGs, therefore, they are dismissed from execution on the accelerator. However,
analyses show for some applications like fft, fft(inv) and sha which includes few branch
instructions, supporting conditional execution results in no considerable speedup,
because a small portion of generated DFGs are removed due to SSDFGs.

0

10

20

30

40

50

60

70

80

90

100

%

adpc
m

(e
nc)

ad
pc

m
(d

ec
)

bitc
ounts

blo
wfis

h

blo
wfis

h (d
ec

)

bas
ic

m
at

h
cj

pe
g

crc

dijk
stra

djp
eg fft

fft
 (i

nv
)

la
m

e

pat
ric

ia
sh

a

st
rin

gs
ea

rc
h

su
sa

n

Percentage of hot portions Percentage of eliminated hot portions due to SSDFGs

Fig. 2. Fraction of hot portions and eliminated hot portions in applications

348 H. Noori et al.

Extending DFGs to contain more than one branch instruction and generate the
CDFGs vs. DFGs is one solution to prevent many SSDFGs generation. For a control
instruction, in some cases only taken or not-taken might be hot and for some others both
directions are hot. In latter case, covering both directions may help to the generation of
larger CDFGs, hence more parallelism and elimination of branch misprediction
penalties. In addition, architecture of the accelerator should be modified to execute the
CDFGs. Indeed, appropriate algorithms are required to generate CDFGs considering
the specifications of the accelerator.

3 Basic Requirements for Architecture with Conditional Execution
Support

To support conditional execution in an accelerator, the capability of branch instruction
execution should be added to the accelerator. It is assumed that the proposed
accelerator is a coarse grain reconfigurable hardware which is a matrix of functional
units (FUs) with specific connections between the FUs. Moreover, each FU like the
processor’s ALUs can execute an instruction level operation.

In a DFG, the nodes (instructions) receive their input from a single source whereas,
in the CDFG, nodes can have multiple sources with respect to the different paths
generated by branches. The correct source is selected at run time according to the
results of branches. Fig. 3 shows the CFG (contains only control flow of instructions)
and DFG for a section of an adpcm(enc) loop. Node 8 may receive one of its inputs
from nodes 5 or 7. The result of the branch that located in node 6 determines which one
should be selected. The nodes that generate output data of a CDFG are altered
according to the results of branches as well. Therefore, the accelerator should have
some facilities to support conditional execution and generate valid output data.
Predicated execution is one technique [16].

Fig. 3. Control flow (a) and data flow graphs (b) for a part of adpcm(enc) loop

Predicated execution is an effective technique to remove control dependency of
programs running on ILP (Instruction level parallelism) processors. Proposed
architecture in [8] uses predicated instructions. With predicated execution, control

 Handling Control DFGs for a Tightly Coupled Reconfigurable Accelerator 349

dependency is essentially turned into data dependency using predicates. A predicate is a
Boolean variable used to represent the control information of a control instruction and
to nullify the following instructions associated with it. The following instructions
become no-ops if the predicated variable is evaluated to be false. The architecture
featuring predicated execution should have radical changes, since every instruction can
be predicated and a separated predicated register file is needed. Also, partial
architectural support has also been studied [10]. In [10], Mahlke et al. proposed
architecture with two new instructions added to the original instruction set to support
predicated execution.

In this section, we propose basic requirements of an architecture which can support
conditional execution. In the general architecture with conditional execution features,
following items are considered to support conditional execution:

a) An FU in the accelerator can receive its inputs directly from accelerator
primary inputs or from output of the other FUs.

b) According to the condition of branch instructions, output of each node can be
directed to the other nodes from different paths. For example, in Fig. 3 output of
node 8 can be routed to nodes 16, 19 or 22. Node 19 will receive the output of node
7 if branch instruction in node 7 is not-taken, otherwise it will be obtained by node
22. Therefore, there may be several outputs for a CDFG and some of them may be
valid as its output accelerator final outputs.

According to above mentioned properties, the accelerator architecture must have
these following requirements:

a) Capability of selective receiving of inputs from both accelerator primary
inputs and output of other instructions (FUs) for each node.

b) Possibility of selecting the valid outputs from several outputs generated by
accelerator according to conditions made by branch instructions. In this case,
no need to modify the FUs.

c) Accelerator should be equipped by control path besides to data path which
provides the correct selection of inputs and outputs for each FU and entire
accelerator.

We will give more details on the architecture specifically proposed for an extensible
processor in Section 5.

4 Algorithms for CDFG Temporal Partitioning

CDFG extracted from various applications are in different sizes and for some of the
CDFGs the whole of it can not be mapped on the accelerator due to the limitations of
hardware resources of the accelerator (e.g. number of inputs, outputs, logics and
specifically routing resource constraints). Even if the logic resource limitations are
considered, some constraints like the routing resource constraints are not applicable in

350 H. Noori et al.

CDFG generation phase. Satisfying or violating routing resource constraints can be
specified after trying to map a CDFG on the accelerator. Therefore, we investigate
some algorithms for partitioning CDFGs under the different hardware resources
constraints of the accelerator and introduce a mapping-aware framework which
considers the routing resource constraints in CDFG generation process. Temporal
partitioning can be stated as partitioning a data flow graph (DFG) into a number of
partitions such that each partition can fit into the target hardware and also,
dependencies among the nodes are not violated [6].

Integrated Framework presented in [11] (based on design flow proposed in [12])
performs an integrated temporal partitioning and mapping process to generate
mappable DFGs. This framework takes rejected DFGs and attempts to partition them to
appropriate ones with the capability of being mapped on the accelerator. The DFGs
which are called rejected (vs. mappable) DFGs are ones that are not mappable on the
accelerator due to hardware constraints [11]. Moreover, the partitions obtained from the
integrated temporal partitioning process are the same appropriate DFGs which are
mappable on the accelerator.

Extending the CDFGs to cover hot directions of branch instructions will result in
larger CDFGs. Using temporal partitioning algorithms considering the accelerator
constraints is a solution to this issue. As the authors knowledge there are small number
of algorithms for CDFG partitioning, though a lot of works have been done around the
DFG temporal partitioning [1, 6, 12].

In [1] a temporal portioning algorithm has been presented that partitions a CDFG
considering target hardware with non-homogenous architecture. Setting control signal
values determines a specific path of the data and converts a CDFG to sub-graphs that do
not include control instructions. This algorithm considers all states of the control
instructions in application to convert corresponding CDFG to a set of DFGs and then it
tries to reduce the number of generated DFGs. Using this algorithm the large number of
DFGs may be obtained during CDFG to DFG conversion. In addition, the knowledge to
different states in application is required to reduce the number of DFGs. In this section,
we propose some CDFG temporal partitioning algorithms. The proposed algorithms
can also be used as general CDFG temporal partitioning algorithms.

4.1 TP Based on Not-Taken Paths (NTPT)

This algorithm adds instructions from not-taken path of a control instruction to a
partition until violating the target hardware architectural constraints (e.g. the number of
logic resources, inputs and outputs) or reaching to a terminator control instruction. A
terminator instruction is an instruction which changes execution direction of the
program, e.g. procedure or function call instructions and also backward branches (to
prevent cycles in CDFG). In fact, a terminator instruction is an exit point for a CDFG.
Therefore, in our methodology a CDFG can include one or more exit-points according
the different paths achieved based on control instructions conditions. Generating a new
partition is started with branch instructions which at least one of their taken or not-taken
instructions has not been located in the current partition.

 Handling Control DFGs for a Tightly Coupled Reconfigurable Accelerator 351

4.2 Execution Frequency-Based Algorithms

In NTPT algorithm, instructions were selected only from not-taken paths of branches,
whereas execution frequency of taken and not-taken instructions may be different. Our
second temporal partitioning algorithm considers the execution frequency (obtained
through profiling) of taken and not-taken instructions as an effective factor for selecting
the instruction and adding them to the current partition. A frequency threshold is
defined to determine that whether instruction is critical or not. Critical instruction
means an instruction with a frequency more than the defined threshold. For a branch
instruction one of its taken or not-taken instructions or both of them can be critical.

In our frequency-based temporal partitioning algorithm, instructions are added one
after another until observing a terminator or a branch instruction. For each instruction,
list of all instructions located on its taken and not-taken paths stopping at a terminator
are created. All instructions of two lists are added to the current partition if enough
space is available. Otherwise the list with higher execution frequency is selected. In this
case, the other list is used to create a new partition. If two lists are terminating in a
unique instruction, it is attempted to add them to the current partition, so, there is no
need to reconfiguration during execution of the current partition instructions.

4.3 Evaluating Proposed Algorithms

The proposed algorithms were compared according to a) the number of generated
partitions and b) efficiency factor. The former is a factor that determines the number of
reconfigurations required during run-time. The latter has been defined as a factor to
show the efficiency of executing CDFGs on the accelerator. Efficiency factor is ratio of
the number of clock cycles spent for DFG execution on the base processor to the
number of clock cycles on the accelerator. Because of the space limitation we omitted
the details of efficiency factor calculation. Larger amount of this factor means lower
delay and correspondingly higher speedup. Six applications of Mibench [14] were
selected for evaluation of the two proposed algorithms. These applications have
considerable number of branch instructions and high potential to get enhanced
performance using the conditional execution supporting features (Fig. 2). In addition,
in these applications the large numbers of SSDFGs are generated due to the many short
distance branch instructions. Comparison of two NTPT and execution frequency-based
temporal partitioning algorithms was accomplished with respect to the average number
of partitions (CDFGs) generated and the efficiency factor. According to Fig. 4, using
NTPT algorithm, small number of partitions is obtained for all of the benchmark
applications. We removed all small length CDFGs (SSDFGs) from the CDFG set
generated by the temporal partitioning algorithms.

On the other hand, results obtained show that the NTPT algorithm has more or
equivalent efficiency in comparing with frequency-based algorithm (Fig. 5). Though,
the NTPT algorithm is a simpler approach for temporal partitioning, but it may bring
about more efficiency comparing with the frequency-based algorithm which is more
complicated. Some compilers which are used for VLIW processors move hot
instructions to the not-taken part of branch instructions to avoid the pipeline flushing
[9, 19]. For the applications have been modified by this kind of compliers, using NTPT
algorithm is suggested. However, we do not claim that the NTPT algorithm does better
for all critical portions of applications.

352 H. Noori et al.

0

0.5
1

1.5
2

2.5
3

3.5
4

4.5

5
A

ve
ra

ge
 P

ar
tit

io
n

N
o.

ad
pcm

c

ad
pcm

d

blowfis
h(enc)

blowfis
h(dec

)
crc

dijk
str

a

NTP Alg. Frequency Based Partitioning Alg.

0

1

2

3

4

5

6

7

E
ffi

ci
en

cy

ad
pcm

c

ad
pcm

d

blowfis
h(en

c)

blowfis
h(dec

)
crc

dijk
str

a

NTP Alg. Frequency Based Partitioning Alg.

Fig. 4. Comparison of the number of partitions Fig. 5. Comparison of the efficiency factor

5 Case Study: Extending an Extensible Processor to Support
Conditional Execution

AMBER is an extensible processor introduced in [15] targeted for embedded systems
with the aim of accelerating application execution. Other tightly coupled accelerators
have been proposed in [3, 4, 13, 19, 21]. The reconfigurable functional unit (RFU) in
AMBER acts as an accelerator and can not support conditional execution. The basic
requirements represented in Section 3 are applied for extending the AMBER’s RFU to
support conditional execution.

5.1 General Overview of AMBER

AMBER has been developed by integrating a base processor with three other main
components [15]. The base processor is a general RISC processor and the other three
components are: profiler, sequencer and a coarse grain reconfigurable functional unit
(RFU). Fig. 6(a) illustrates the integration of different components in AMBER.

The base processor is an in-order RISC processor that supports MIPS instruction
set. The profiler does the profiling for running applications through looking for hot
portions which are usually in loops and functions. The sequencer mainly determines
the microcode execution sequence by selecting between the RFU and the processor
functional unit. The RFU is based on array of 16 functional units (FUs) with 8 input and
6 output ports. It is used in parallel with other processor’s functional units (Fig. 6(b)).
RFU reads (write) from (to) register file. In the RFU, the output of each FU in a row can
be used by all FUs in the subsequent row [15].

AMBER has two operational modes: the training and the normal mode. The training
mode is done offline. In this phase, target applications are run on an instruction set
simulator (ISS) and profiled. AMBER enters the training mode once and after detecting
start addresses of the hot portions, generating configuration bit-streams for extracted
DFGs and initiating sequencer tables it switches to the normal mode. In the normal
mode, using the RFU, its configuration data (from configuration memory) and
sequencer DFGs are executed on the RFU. More details on AMBER and its
components are out of scope of this paper and can be found in [15].

 Handling Control DFGs for a Tightly Coupled Reconfigurable Accelerator 353

(a) (b)

Fig. 6. Integration of main components in AMBER (a) RFU general architecture (b)

5.2 Extending AMBER RFU to Support Conditional Execution

In this section, we apply the basic requirements introduced in Section 3 to RFU used in
AMBER. First, we propose conditional data selection muxes for controlling selectors
of muxes used for FU inputs and outputs of the RFU. Fig. 7 shows an example of a RFU
(with 5 FUs) without supporting conditional execution. On the other hand, the
hardware has been modified as shown in bottom part of Fig. 7 to support conditional
data selection.

In the proposed architecture, the selector signals of muxes used for choosing data for
FU inputs (the Data-Selection-Mux), along with the RFU output and exit point (not
shown in the figure) are each controlled by another mux (the Selector-Mux). The inputs
of Selector-Mux (one-bit width) originate from the FUs (which execute branches) of
the upper rows and the configuration memory in order to control the selector signals
conditionally, as well as unconditionally. The selectors of Selector-Mux are controlled
by configuration bits. It should be noted the outputs of FUs are only applied to the
Selector-Muxes in the lower-level rows, not in the same or upper rows. A similar
structure is used for selecting the valid output data of the RFU.

Fig. 7. Equipping the RFU to support conditional execution

354 H. Noori et al.

For example, suppose a CDFG containing nodes 5, 6, 7, and 8 (Fig. 3) is to be
mapped on the modified RFU. The second input of node 8 uses the output of node 5
when node 6 is taken otherwise uses the output of node 7. Nodes 5, 7, 6, and 8 are
mapped to FU1, FU2, FU3, and FU5, respectively. Assuming that outputs of FU1, FU2,
FU3, and the immediate value have been assigned to inputs 1, 2, 3, and 0 of the Data
Selection Mux for the second input of FU5. The selector signals of Selector-Mux i.e.
Sel1 and Sel0 are configured to be driven by Not Branch result from FU3 and Branch
result from FU3, respectively, using configuration bits. When FU3 (node 6) is taken,
Sel1 is 0 and Sel0 is 1, therefore the output of FU1 (node 5) is selected. When FU3 is
not-taken Sel1 is 1 and Sel0 is 0, therefore the output of FU2 (node 7) is selected.

5.3 Performance Evaluation

The extended RFU was developed and synthesized using Synopsys tools [20] and
Hitachi 0.18μm. The area of the extended RFU is 2.1 mm2. Each CDFG needs 615 bits
in total for its configuration on the RFU. 375 out of 615 bits is used for control signals.
Profiling data was provided by executing applications on the Simplescalar as ISS [18].
Integrated Framework based on NTPT temporal partitioning algorithm is used to
generate mappable CDFGs. The required number of clock cycles for executing each
CDFG is determined according to depth of CDFG and base processor clock frequency.

We compared the effectiveness of CDFGs versus DFGs. The average number of
instructions included in DFGs is 6.39 instructions and for CDFGs is 7.85 instructions.
Fig. 8 shows the speedups obtained based on CDFG and DFG compared to the base
processor for some applications. The reason for the high speedup obtained by adpcm is
that it has a main loop with 56 instructions, including 12 branches. For 7 of these
branches, both taken and not-taken instructions are hot, so that 27% of branches are
mispredicted. Therefore, a big part of executed clock cycles belongs to penalty of the
mispredicted branches (18%). For those branches with both directions being hot, the
CDFGs include both directions, and hence, the extended RFU architecture eliminates
cycles of mispredicted branches. Also, since CDFGs are longer than DFGs, more ILP
can be extracted.

0

0.5

1

1.5

2

2.5

3

Speedup

ad
pcm

 (e
nc)

ad
pc

m
 (d

ec
)

blo
wfis

h (e
nc)

blo
wfis

h (d
ec

)
cr

c

dijk
st

ra

Ave
ra

ge

Speedup Comparison DFGs

CDFGs

Fig. 8. Speedup comparison of acceleration approaches based on DFGs and CDFGs

 Handling Control DFGs for a Tightly Coupled Reconfigurable Accelerator 355

6 Conclusion

In this paper, we presented motivation for handling branch instruction in DFGs and
extending them to CDFGs. In addition, basic requirements for developing an
accelerator featuring conditional execution were presented and some algorithms for
CDFG temporal partitioning and generating executable CDFGs on the accelerator were
proposed. NTPT is a temporal partitioning algorithm which tries to traverse not-taken
path of the branch instructions and partitions the input CDFG. On the other hand,
frequency-based temporal partitioning algorithm considers the taken and not-taken
frequencies to partition input CDFG. Using this approach it is possible to add both
taken and not-taken paths of a branch instruction to a partition. Comparison of these
algorithms shows that though NTPT is a simple partitioning algorithm but it generates
small number of CDFGs which bring about a comparable and even higher speedup.

To show the effectiveness of supporting conditional execution in hardware, we
applied our proposals to the accelerator of an extensible processor called AMBER.
RFU was a matrix of functional units which was extended to support the conditional
execution. We used an integrated framework based on NTPT algorithm to generated
mappable CDFGs on the RFU. These CDFGs are executed on the RFU to accelerate the
application execution. Experimental results show the effectiveness of covering branch
instructions and using CDFGs versus DFGs.

Acknowledgement

This research was supported in part by the Grant-in-Aid for Creative Basic Research,
14GS0218, Encouragement of Young Scientists (A), 17680005, and the 21st Century
COE Program.

References

[1] Auguin, M, Bianco, L, Capella, L, Gresset, E. Partitioning conditional data flow graphs for
embedded system design, Proc. of ASAP 2000 (2000) 339-348

[2] Carrillo, J. E, Chow, P. The effect of reconfigurable units in superscalar processors, Proc.
of the ACM/SIGDA FPGA (2001) 141-150

[3] Clark, N, Blome, J, Chu, M, Mahlke, S, Biles, S, Flautner, K. An architecture framework
for transparent instruction set customization in embedded processors, Proc. ISCA (2005)
272-283

[4] Clark, N, Zhong, H, Mahlke, S. Processor acceleration through automated instruction set
customization, MICRO-36 (2003)

[5] Hauck, S, Fry, T, Hosler, M, Kao, J. The Chimaera reconfigurable functional unit, IEEE
Symp. on FPGAs for Custom Computing Machines (1997) 206-217

[6] Karthikeya M and Gajjala P and Bhatia D, Temporal partitioning and scheduling data flow
graphs for reconfigurable computers, IEEE Transactions on Computers, 48 (6) (1999)
579-590

[7] Kastner, R, Kaplan, A, Sarrafzadeh, M. Synthesis techniques and optimizations for
reconfigurable systems, Kluwer-Academic Publishers (2004)

356 H. Noori et al.

[8] Lee, J.E, Kim, Y, Jung, J, Choi, K. Reconfigurable ALU array architecture with conditional
execution, International SoC Design Conference (2004) 222-226

[9] Lodi, A, Toma, M, Campi, F, Cappelli, A, Canegallo, R, Guerrieri, R. A VLIW processor
with reconfigurable instruction set for embedded applications, IEEE Journal of Solid-State
Circuits, Vol. 38, No. 11 (2003) 1876–1886

[10] Mahlke, S. A, Hank, R. E, McCormick, J.E, August, D. I, Hwu, W. W. A comparison of
full and partial predicated execution support for ILP processors. In Proc. ISCA (1995)
138-150

[11] Mehdipour, F, Noori, H, Saheb Zamani, M, Murakami, K, Sedighi, K, Inoue, K. Custom
instruction generation using temporal partitioning techniques for a reconfigurable
functional unit, Int. Conference on Embedded and Ubiquitous Computing (2006)

[12] Mehdipour, F, Saheb Zamani, M, Sedighi, M. An integrated temporal partitioning and
physical design framework for static compilation of reconfigurable computing systems,
Int. J. of Microprocessors and Microsystems, Elsevier, Vol. 30, No. 1 (2006) 52-62

[13] Mei, B, Vernalde, S, Verkest, D, Lauwereins, R. Design methodology for a tightly coupled
VLIW/Reconfigurable matrix architecture, DATE (2004) 1224-1129

[14] Mibench, www.eecs.umich.edu/mibench
[15] Noori, H, Mehdipour, F, Murakami, K, Inoue, K, Saheb Zamani, M. A reconfigurable

functional unit for an adaptive dynamic extensible processor, Proc. of IEEE International
Conference on Field Programmable Logic and Applications (2006) 781-784

[16] Park, J.C, Schlansker, M.S. On predicated execution. Technical Report HPL-91-58.
Hewlett Packard Laboratories (1991)

[17] Razdan, R, Smith, M.D. A high-performance microarchitecture with
hardware-programmable functional units, MICRO-27 (1994)

[18] Simplescalar, www.simplescalar.com
[19] Smith J.E, Sohi, G.S. The microarchitecture of superscalar P. In Proc. IEEE, Vol. 83,

(1995) 1609- 1624
[20] Synopsys Inc. http://www.synopsys.com/products/logic/design_compiler.html
[21] Vassiliadis, S, Gaydadjiev, G, Kuzmanov, G. The MOLEN polymorphic processor, IEEE

Transactions on Computers, Vol. 53, No. 11 (2004) 1363-1375
[22] P. Yu and T. Mitra, Characterizing embedded applications for instruction-set extensible

processors, In Proc. Design Automation Conference (2004) 723-728

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

