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Abstract. In an embedded system including a base processor integrated with a 
tightly coupled accelerator, extracting frequently executed portions of the code 
(hot portion) and executing their corresponding data flow graph (DFG) on the 
accelerator brings about more speedup. In this paper, we intend to present our 
motivations for handling control instructions in DFGs and extending them to 
Control DFGs (CDFGs). In addition, basic requirements for an accelerator with 
conditional execution support are proposed. Moreover, some algorithms are 
presented for temporal partitioning of CDFGs considering the target accelerator 
architectural specifications. To show the effectiveness of the proposed ideas, we 
applied them to the accelerator of an extensible processor called AMBER. 
Experimental results represent the effectiveness of covering control instructions 
and using CDFGs versus DFGs. 

1   Introduction 

Using an accelerator for accelerating the execution of frequently executed portions of 
applications is an effective technique to enhance the performance of a processor in 
embedded systems. In this technique, data flow graphs (DFGs) extracted from critical 
portions of an application are executed on an accelerator. Similar technique has been 
presented in [3, 4, 9, 13, 15, 22, 2, 5, 17, 21]. The accelerator can be implemented as a 
reconfigurable hardware with fine or coarse granularity or as a custom hardware (such 
as Application Specific Instruction-set Processors or extensible processors) [7]. The 
integration of accelerator and the processor can be tightly or loosely coupled [7, 13]. 
For loosely-coupled systems, there is an overhead for transferring data between the 
base processor and the accelerator. When an accelerator is tightly coupled [9, 2, 5, 17, 
21], data is read and written directly to and from the processor’s register file, making 
the accelerator an additional functional unit in the processor pipeline. This makes the 
control logic simple, as almost no overhead is required in transferring data to the 
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programmable hardware unit, however, it increases the read/write ports of the register 
file. Our main focus in this paper is on a tightly coupled reconfigurable accelerator.  

DFG extraction can be done at high level or binary level of the source code. In our 
analysis, we focus on the latter one which means that the DFG nodes are the primitive 
instructions of the base processor. The DFG containing control instructions (e.g. branch 
instruction) are called Control Dataflow Graphs (CDFGs). Handling branches 
(conditional execution) is a challenge in CDFG acceleration, because, due to the result 
of a branch instruction, the sequence of execution changes. We consider two types of 
CDFGs:  

1. CDFGs which contain at most one branch instruction as its last instruction. In this 
case the accelerator does not need to support conditional execution. 

2. CDFGs containing more than one branch instructions. Accelerators used for 
executing CDFGs should have conditional execution support.  

As mentioned before, accelerators are used for executing hot portions of 
applications. Therefore, while generating CDFG we only follow hot directions of 
branches. For a control instruction, the only taken, or not-taken might be hot which 
means that they have a considerable execution frequency (more than a specified 
threshold). In some other cases, both directions can be hot. We propose adding only hot 
directions of branches into the CDFG without being limited to selecting just one or all 
of the directions. This brings about more instruction level parallelism (ILP) and can 
hide branch misprediction penalty.  

In this work, we intend to answer these two following questions. 

a) Does acceleration based on CDFG vs. DFG obtain higher performance?  
b) How can the conditional execution be supported on an accelerator? 

To answer the first question, we investigate the effect of extending DFGs and 
covering control instructions on the speedup and present some important motivations 
for extending DFGs over basic blocks (using CDFGs instead of DFGs). Moreover, as 
an answer to the second question, we introduce basic requirements for an accelerator 
with conditional execution support.  

Due to the limitations of hardware resources of the accelerator (e.g. the number of 
inputs, outputs, logics, connections and etc) and different size of extracted CDFGs 
from various applications, in most cases the whole CDFG can not be mapped on the 
accelerator.  As another contribution in this paper, we present CDFG temporal 
partitioning algorithms to partition large CDFGs to smaller and mappable ones. 
Mappable CDFGs satisfy the accelerator architectural constraints, hence, can be 
mapped and executed on the accelerator. 

2   Motivations 

In this section, basic arguments to extend DFGs over control instructions and 
supporting CDFGs are investigated. We follow a quantitative analysis approach and 
use some applications of Mibench [14] for these analyses. As mentioned above, DFGs 
are extracted from the frequently executed portions of an application and a control 
instruction (e.g. branch instruction) may cause the DFG generation to be stopped. 
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Therefore, short distance control instructions may result in generation of small size 
DFGs (SSDFG). In fact, SSDFGs are not suitable for improving performance in 
application execution and have to be run on the base processor [11] because they do not 
offer any more speedup.  

In Fig. 1, a piece of a main loop of adpcm(enc) has been shown. adpcm(enc) is an 
application program which includes a loop which consumes 98% of total execution 
time. The critical portion of application contains 3 loads and 12 branch instructions. 
According the location of branch instructions, 4 DFGs can be extracted from the piece 
of loop that has been shown in Fig 1. Three DFGs from four depicted DFGs in Fig. 1 
are SSDFGs (have the length less than or equal to 5 (we only execute DFGs which have 
more than 5 nodes on the accelerator). These SSDFGs do not bring about more speedup 
and have to be run on the base processor. 

 

Fig. 1. Control data flow graph of hot portion of adpcmc(enc) 

This kind of analysis was accomplished for 17 applications of Mibench [14]. Results 
of analysis motivate us to use CDFGs instead of DFGs for acceleration. Fig. 2 shows 
the overall percentage of frequently executed (hot) potion of each application. In 
addition, this figure shows the fraction of applications that can not be accelerated due to 
SSDFGs. For example, for bitcount application, almost 92% of application is hot. On 
the other hand, 32% out of 92% of hot portions do not worth to be accelerated due to the 
SSDFGs, therefore, they are dismissed from execution on the accelerator. However, 
analyses show for some applications like fft, fft(inv) and sha which includes few branch 
instructions, supporting conditional execution results in no considerable speedup, 
because a small portion of generated DFGs are removed due to SSDFGs.   
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Fig. 2. Fraction of hot portions and eliminated hot portions in applications 
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Extending DFGs to contain more than one branch instruction and generate the 
CDFGs vs. DFGs is one solution to prevent many SSDFGs generation. For a control 
instruction, in some cases only taken or not-taken might be hot and for some others both 
directions are hot. In latter case, covering both directions may help to the generation of 
larger CDFGs, hence more parallelism and elimination of branch misprediction 
penalties. In addition, architecture of the accelerator should be modified to execute the 
CDFGs. Indeed, appropriate algorithms are required to generate CDFGs considering 
the specifications of the accelerator. 

3   Basic Requirements for Architecture with Conditional Execution 
Support  

To support conditional execution in an accelerator, the capability of branch instruction 
execution should be added to the accelerator. It is assumed that the proposed 
accelerator is a coarse grain reconfigurable hardware which is a matrix of functional 
units (FUs) with specific connections between the FUs. Moreover, each FU like the 
processor’s ALUs can execute an instruction level operation.   

In a DFG, the nodes (instructions) receive their input from a single source whereas, 
in the CDFG, nodes can have multiple sources with respect to the different paths 
generated by branches. The correct source is selected at run time according to the 
results of branches. Fig. 3 shows the CFG (contains only control flow of instructions) 
and DFG for a section of an adpcm(enc) loop. Node 8 may receive one of its inputs 
from nodes 5 or 7. The result of the branch that located in node 6 determines which one 
should be selected. The nodes that generate output data of a CDFG are altered 
according to the results of branches as well. Therefore, the accelerator should have 
some facilities to support conditional execution and generate valid output data. 
Predicated execution is one technique [16].  

   

Fig. 3. Control flow (a) and data flow graphs (b) for a part of adpcm(enc) loop 

Predicated execution is an effective technique to remove control dependency of 
programs running on ILP (Instruction level parallelism) processors. Proposed 
architecture in [8] uses predicated instructions. With predicated execution, control 
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dependency is essentially turned into data dependency using predicates. A predicate is a 
Boolean variable used to represent the control information of a control instruction and 
to nullify the following instructions associated with it. The following instructions 
become no-ops if the predicated variable is evaluated to be false. The architecture 
featuring predicated execution should have radical changes, since every instruction can 
be predicated and a separated predicated register file is needed. Also, partial 
architectural support has also been studied [10]. In [10], Mahlke et al. proposed 
architecture with two new instructions added to the original instruction set to support 
predicated execution.  

In this section, we propose basic requirements of an architecture which can support 
conditional execution. In the general architecture with conditional execution features, 
following items are considered to support conditional execution: 

a) An FU in the accelerator can receive its inputs directly from accelerator 
primary inputs or from output of the other FUs.  

b) According to the condition of branch instructions, output of each node can be 
directed to the other nodes from different paths. For example, in Fig. 3 output of 
node 8 can be routed to nodes 16, 19 or 22. Node 19 will receive the output of node 
7 if branch instruction in node 7 is not-taken, otherwise it will be obtained by node 
22. Therefore, there may be several outputs for a CDFG and some of them may be 
valid as its output accelerator final outputs. 

According to above mentioned properties, the accelerator architecture must have 
these following requirements: 

a) Capability of selective receiving of inputs from both accelerator primary 
inputs and output of other instructions (FUs) for each node.  

b) Possibility of selecting the valid outputs from several outputs generated by 
accelerator according to conditions made by branch instructions. In this case, 
no need to modify the FUs. 

c) Accelerator should be equipped by control path besides to data path which 
provides the correct selection of inputs and outputs for each FU and entire 
accelerator. 

We will give more details on the architecture specifically proposed for an extensible 
processor in Section 5. 

4   Algorithms for CDFG Temporal Partitioning  

CDFG extracted from various applications are in different sizes and for some of the 
CDFGs the whole of it can not be mapped on the accelerator due to the limitations of 
hardware resources of the accelerator (e.g. number of inputs, outputs, logics and 
specifically routing resource constraints). Even if the logic resource limitations are 
considered, some constraints like the routing resource constraints are not applicable in  
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CDFG generation phase. Satisfying or violating routing resource constraints can be 
specified after trying to map a CDFG on the accelerator. Therefore, we investigate 
some algorithms for partitioning CDFGs under the different hardware resources 
constraints of the accelerator and introduce a mapping-aware framework which 
considers the routing resource constraints in CDFG generation process. Temporal 
partitioning can be stated as partitioning a data flow graph (DFG) into a number of 
partitions such that each partition can fit into the target hardware and also, 
dependencies among the nodes are not violated [6]. 

Integrated Framework presented in [11] (based on design flow proposed in [12]) 
performs an integrated temporal partitioning and mapping process to generate 
mappable DFGs. This framework takes rejected DFGs and attempts to partition them to 
appropriate ones with the capability of being mapped on the accelerator. The DFGs 
which are called rejected (vs. mappable) DFGs are ones that are not mappable on the 
accelerator due to hardware constraints [11]. Moreover, the partitions obtained from the 
integrated temporal partitioning process are the same appropriate DFGs which are 
mappable on the accelerator. 

Extending the CDFGs to cover hot directions of branch instructions will result in 
larger CDFGs. Using temporal partitioning algorithms considering the accelerator 
constraints is a solution to this issue. As the authors knowledge there are small number 
of algorithms for CDFG partitioning, though a lot of works have been done around the 
DFG temporal partitioning [1, 6, 12].  

In [1] a temporal portioning algorithm has been presented that partitions a CDFG 
considering target hardware with non-homogenous architecture. Setting control signal 
values determines a specific path of the data and converts a CDFG to sub-graphs that do 
not include control instructions. This algorithm considers all states of the control 
instructions in application to convert corresponding CDFG to a set of DFGs and then it 
tries to reduce the number of generated DFGs. Using this algorithm the large number of 
DFGs may be obtained during CDFG to DFG conversion. In addition, the knowledge to 
different states in application is required to reduce the number of DFGs. In this section, 
we propose some CDFG temporal partitioning algorithms. The proposed algorithms 
can also be used as general CDFG temporal partitioning algorithms.  

4.1   TP Based on Not-Taken Paths (NTPT) 

This algorithm adds instructions from not-taken path of a control instruction to a 
partition until violating the target hardware architectural constraints (e.g. the number of 
logic resources, inputs and outputs) or reaching to a terminator control instruction. A 
terminator instruction is an instruction which changes execution direction of the 
program, e.g. procedure or function call instructions and also backward branches (to 
prevent cycles in CDFG). In fact, a terminator instruction is an exit point for a CDFG. 
Therefore, in our methodology a CDFG can include one or more exit-points according 
the different paths achieved based on control instructions conditions. Generating a new 
partition is started with branch instructions which at least one of their taken or not-taken 
instructions has not been located in the current partition.   
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4.2   Execution Frequency-Based Algorithms 

In NTPT algorithm, instructions were selected only from not-taken paths of branches, 
whereas execution frequency of taken and not-taken instructions may be different. Our 
second temporal partitioning algorithm considers the execution frequency (obtained 
through profiling) of taken and not-taken instructions as an effective factor for selecting 
the instruction and adding them to the current partition. A frequency threshold is 
defined to determine that whether instruction is critical or not. Critical instruction 
means an instruction with a frequency more than the defined threshold. For a branch 
instruction one of its taken or not-taken instructions or both of them can be critical.   

In our frequency-based temporal partitioning algorithm, instructions are added one 
after another until observing a terminator or a branch instruction. For each instruction, 
list of all instructions located on its taken and not-taken paths stopping at a terminator 
are created. All instructions of two lists are added to the current partition if enough 
space is available. Otherwise the list with higher execution frequency is selected. In this 
case, the other list is used to create a new partition. If two lists are terminating in a 
unique instruction, it is attempted to add them to the current partition, so, there is no 
need to reconfiguration during execution of the current partition instructions.  

4.3   Evaluating Proposed Algorithms 

The proposed algorithms were compared according to a) the number of generated 
partitions and b) efficiency factor. The former is a factor that determines the number of 
reconfigurations required during run-time. The latter has been defined as a factor to 
show the efficiency of executing CDFGs on the accelerator. Efficiency factor is ratio of 
the number of clock cycles spent for DFG execution on the base processor to the 
number of clock cycles on the accelerator. Because of the space limitation we omitted 
the details of efficiency factor calculation. Larger amount of this factor means lower 
delay and correspondingly higher speedup. Six applications of Mibench [14] were 
selected for evaluation of the two proposed algorithms. These applications have 
considerable number of branch instructions and high potential to get enhanced 
performance using the conditional execution supporting features (Fig. 2). In addition, 
in these applications the large numbers of SSDFGs are generated due to the many short 
distance branch instructions. Comparison of two NTPT and execution frequency-based 
temporal partitioning algorithms was accomplished with respect to the average number 
of partitions (CDFGs) generated and the efficiency factor. According to Fig. 4, using 
NTPT algorithm, small number of partitions is obtained for all of the benchmark 
applications. We removed all small length CDFGs (SSDFGs) from the CDFG set 
generated by the temporal partitioning algorithms.  

On the other hand, results obtained show that the NTPT algorithm has more or 
equivalent efficiency in comparing with frequency-based algorithm (Fig. 5). Though, 
the NTPT algorithm is a simpler approach for temporal partitioning, but it may bring 
about more efficiency comparing with the frequency-based algorithm which is more 
complicated. Some compilers which are used for VLIW processors move hot 
instructions to the not-taken part of branch instructions to avoid the pipeline flushing 
[9, 19]. For the applications have been modified by this kind of compliers, using NTPT 
algorithm is suggested. However, we do not claim that the NTPT algorithm does better 
for all critical portions of applications.  
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Fig. 4. Comparison of the number of partitions Fig. 5. Comparison of the efficiency factor 

5   Case Study: Extending an Extensible Processor to Support 
Conditional Execution 

AMBER is an extensible processor introduced in [15] targeted for embedded systems 
with the aim of accelerating application execution. Other tightly coupled accelerators 
have been proposed in [3, 4, 13, 19, 21]. The reconfigurable functional unit (RFU) in 
AMBER acts as an accelerator and can not support conditional execution. The basic 
requirements represented in Section 3 are applied for extending the AMBER’s RFU to 
support conditional execution.  

5.1   General Overview of AMBER 

AMBER has been developed by integrating a base processor with three other main 
components [15]. The base processor is a general RISC processor and the other three 
components are: profiler, sequencer and a coarse grain reconfigurable functional unit 
(RFU). Fig. 6(a) illustrates the integration of different components in AMBER. 

The base processor is an in-order RISC processor that supports MIPS instruction 
set. The profiler does the profiling for running applications through looking for hot 
portions which are usually in loops and functions. The sequencer mainly determines 
the microcode execution sequence by selecting between the RFU and the processor 
functional unit. The RFU is based on array of 16 functional units (FUs) with 8 input and 
6 output ports. It is used in parallel with other processor’s functional units (Fig. 6(b)). 
RFU reads (write) from (to) register file. In the RFU, the output of each FU in a row can 
be used by all FUs in the subsequent row [15].  

AMBER has two operational modes: the training and the normal mode. The training 
mode is done offline. In this phase, target applications are run on an instruction set 
simulator (ISS) and profiled. AMBER enters the training mode once and after detecting 
start addresses of the hot portions, generating configuration bit-streams for extracted 
DFGs and initiating sequencer tables it switches to the normal mode. In the normal 
mode, using the RFU, its configuration data (from configuration memory) and 
sequencer DFGs are executed on the RFU. More details on AMBER and its 
components are out of scope of this paper and can be found in [15]. 
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(a)     (b)  

Fig. 6. Integration of main components in AMBER (a) RFU general architecture (b) 

5.2   Extending AMBER RFU to Support Conditional Execution 

In this section, we apply the basic requirements introduced in Section 3 to RFU used in 
AMBER. First, we propose conditional data selection muxes for controlling selectors 
of muxes used for FU inputs and outputs of the RFU. Fig. 7 shows an example of a RFU 
(with 5 FUs) without supporting conditional execution. On the other hand, the 
hardware has been modified as shown in bottom part of Fig. 7 to support conditional 
data selection.  

In the proposed architecture, the selector signals of muxes used for choosing data for 
FU inputs (the Data-Selection-Mux), along with the RFU output and exit point (not 
shown in the figure) are each controlled by another mux (the Selector-Mux). The inputs 
of Selector-Mux (one-bit width) originate from the FUs (which execute branches) of 
the upper rows and the configuration memory in order to control the selector signals 
conditionally, as well as unconditionally. The selectors of Selector-Mux are controlled 
by configuration bits. It should be noted the outputs of FUs are only applied to the 
Selector-Muxes in the lower-level rows, not in the same or upper rows. A similar 
structure is used for selecting the valid output data of the RFU.  

 

Fig. 7. Equipping the RFU to support conditional execution 
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For example, suppose a CDFG containing nodes 5, 6, 7, and 8 (Fig. 3) is to be 
mapped on the modified RFU. The second input of node 8 uses the output of node 5 
when node 6 is taken otherwise uses the output of node 7. Nodes 5, 7, 6, and 8 are 
mapped to FU1, FU2, FU3, and FU5, respectively. Assuming that outputs of FU1, FU2, 
FU3, and the immediate value have been assigned to inputs 1, 2, 3, and 0 of the Data 
Selection Mux for the second input of FU5. The selector signals of Selector-Mux i.e. 
Sel1 and Sel0 are configured to be driven by Not Branch result from FU3 and Branch 
result from FU3, respectively, using configuration bits. When FU3 (node 6) is taken, 
Sel1 is 0 and Sel0 is 1, therefore the output of FU1 (node 5) is selected. When FU3 is 
not-taken Sel1 is 1 and Sel0 is 0, therefore the output of FU2 (node 7) is selected. 

5.3   Performance Evaluation 

The extended RFU was developed and synthesized using Synopsys tools [20] and 
Hitachi 0.18μm. The area of the extended RFU is 2.1 mm2. Each CDFG needs 615 bits 
in total for its configuration on the RFU. 375 out of 615 bits is used for control signals. 
Profiling data was provided by executing applications on the Simplescalar as ISS [18]. 
Integrated Framework based on NTPT temporal partitioning algorithm is used to 
generate mappable CDFGs. The required number of clock cycles for executing each 
CDFG is determined according to depth of CDFG and base processor clock frequency.  

We compared the effectiveness of CDFGs versus DFGs. The average number of 
instructions included in DFGs is 6.39 instructions and for CDFGs is 7.85 instructions. 
Fig. 8 shows the speedups obtained based on CDFG and DFG compared to the base 
processor for some applications. The reason for the high speedup obtained by adpcm is 
that it has a main loop with 56 instructions, including 12 branches. For 7 of these 
branches, both taken and not-taken instructions are hot, so that 27% of branches are 
mispredicted. Therefore, a big part of executed clock cycles belongs to penalty of the 
mispredicted branches (18%). For those branches with both directions being hot, the 
CDFGs include both directions, and hence, the extended RFU architecture eliminates 
cycles of mispredicted branches. Also, since CDFGs are longer than DFGs, more ILP 
can be extracted.  
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6   Conclusion 

In this paper, we presented motivation for handling branch instruction in DFGs and 
extending them to CDFGs. In addition, basic requirements for developing an 
accelerator featuring conditional execution were presented and some algorithms for 
CDFG temporal partitioning and generating executable CDFGs on the accelerator were 
proposed. NTPT is a temporal partitioning algorithm which tries to traverse not-taken 
path of the branch instructions and partitions the input CDFG. On the other hand, 
frequency-based temporal partitioning algorithm considers the taken and not-taken 
frequencies to partition input CDFG. Using this approach it is possible to add both 
taken and not-taken paths of a branch instruction to a partition. Comparison of these 
algorithms shows that though NTPT is a simple partitioning algorithm but it generates 
small number of CDFGs which bring about a comparable and even higher speedup.  

To show the effectiveness of supporting conditional execution in hardware, we 
applied our proposals to the accelerator of an extensible processor called AMBER. 
RFU was a matrix of functional units which was extended to support the conditional 
execution. We used an integrated framework based on NTPT algorithm to generated 
mappable CDFGs on the RFU. These CDFGs are executed on the RFU to accelerate the 
application execution. Experimental results show the effectiveness of covering branch 
instructions and using CDFGs versus DFGs. 
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