
Backdoor Sets of Quantified Boolean Formulas

Marko Samer · Stefan Szeider

Abstract We generalize the notion of backdoor sets from propositional formulas to

quantified Boolean formulas (QBF). This allows us to obtain hierarchies of tractable

classes of quantified Boolean formulas with the classes of quantified Horn and quantified

2CNF formulas, respectively, at their first level, thus gradually generalizing these two

important tractable classes. In contrast to known tractable classes based on bounded

treewidth, the number of quantifier alternations of our classes is unbounded. As a side

product of our considerations we develop a theory of variable dependency which is of

independent interest.
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1 Introduction

Many important computational tasks like planning, verification, and several questions

of knowledge representation and automated reasoning can be naturally encoded as the

evaluation problem of quantified Boolean formulas [10,24,27,29], a generalization of the

propositional satisfiability problem (SAT). In recent years quantified Boolean formulas

have become a very active research area. The evaluation of quantified Boolean formulas

constitutes a PSpace-complete problem and is therefore believed to be computationally

harder than the NP-complete propositional satisfiability problem [17,26,33]. In the

sequel we make the common assumption that for a given formula all variables are

quantified (i.e., there are no free variables) and that the formula is in prenex normal

form with the propositional part (the matrix) in conjunctive normal form; we will refer

to such formulas as QCNF formulas.
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Only a few tractable classes of quantified Boolean formulas are known where the

number of quantifier alternations is unbounded. For example, the time needed to solve

QCNF formulas of bounded treewidth grows non-elementarily in the number of quan-

tifier alternations, as recently shown by Pan and Vardi [25]. Two prominent tractable

classes with unbounded quantifier alternations are QHorn (clauses contain at most

one positive literal) and Q2CNF (clauses contain at most two literals). QHorn for-

mulas and Q2CNF formulas can be evaluated in polynomial time due to classic results

of Kleine Büning, Karpinski, and Flögel [16] and of Aspvall, Plass, and Tarjan [2],

respectively.

In this paper we define hierarchies of tractable classes of QCNF formulas of the

form C0 ⊆ C1 ⊆ C2 ⊆ · · · where the first class C0 is either QHorn or Q2CNF, and every

QCNF formula belongs to some Ck for k large enough. We develop algorithms which

render membership in Ck as well as evaluation of formulas in Ck feasible in polynomial

time where the order of the polynomial is the same for all values of k. In other words, our

algorithms are fixed-parameter algorithms (we will briefly review some basic concepts

of fixed-parameter algorithms in Section 2.2). Such time complexity admits an efficient

processing of large instances as long as the parameter k is kept reasonably small.

Backdoor Sets

Our approach is based on the generalization of the concept of backdoor sets from

propositional satisfiability to quantified Boolean formulas. Backdoor sets for SAT (and

similarly for constraint satisfaction) were introduced by Williams, Gomes, and Selman

as a tool for analyzing the performance of SAT algorithms [38,39]. Backdoor sets have

recently received a lot of attention in satisfiability research [13–15,19,22,23,28,35]. The

idea is to consider a base class C of CNF formulas for which membership and satis-

fiability are both decidable in polynomial time. A set B of variables of an arbitrary

CNF formula F is a strong C-backdoor set if all formulas that can be obtained from F

by instantiating the variables in B and simplifying the resulting formula F ′ belong to

the base class C (in the sequel we will also discuss the notion of a weak C-backdoor
set which is, however, less relevant for our considerations). If a strong backdoor set B

is known, we can efficiently decide the satisfiability of F by checking the satisfiability

of 2|B| CNF formulas that belong to the tractable class C. The parameterized com-

plexity of finding strong backdoor sets of CNF formulas has been studied for various

base classes including Horn and 2CNF formulas [22], formulas that can be decided

by polynomial-time DLL subsolvers [34], variable-disjoint unions of hitting formulas

(clustering formulas) [23], and formulas of small maximum deficiency [36].

In this paper we generalize the concepts of weak and strong backdoor sets to the

more general set-up of QCNF formulas. In the following we discuss some basic principles

of our approach, using the class (Q)Horn of (quantified) Horn formulas as base class.

Consider the CNF formula

F = (¬x ∨ y ∨ ¬w) ∧ (x ∨ ¬y ∨ w) ∧ (¬y ∨ z) ∧ (y ∨ ¬z).

The set B = {x} is a strong Horn-backdoor set of F since for x = 0 we obtain the

clauses (¬y ∨w), (¬y ∨ z), and (y ∨ ¬z) and for x = 1 we obtain the clauses (y ∨ ¬w),

(¬y ∨ z), and (y ∨¬z) which are all Horn. Now let us quantify the variables so that we

obtain the QCNF formula

F = ∀y ∀z ∃x∃w F.
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Obviously, the variable x cannot be isolated anymore in a backdoor set as above since

the truth value of x apparently depends on the truth values of y and z. In other

words, we cannot reduce the evaluation of F to the evaluation of some simpler QHorn

formula obtained by fixing the truth value of x while y and z remain universally

quantified. Hence, for QCNF formulas we require that strong backdoor sets are closed

with respect to the dependency of variables: if x belongs to a backdoor set B, also

all variables on which x depends belong to B. In Section 4 we present fixed-parameter

algorithms for finding strong backdoor sets with respect to the base classes QHorn and

Q2CNF. The algorithms take into account variable dependencies that are provided as

additional input (below we will address the problem of computing the dependencies).

Our algorithms make use of known fixed-parameter algorithms for vertex cover and

hitting set [7,21]. Once a strong backdoor set is found, the formula can be evaluated

by considering all truth assignments to the variables in the backdoor set. Thus, if we

take Ck as the class of QCNF formulas that have strong QHorn-backdoor sets (strong

Q2CNF-backdoor sets) of size at most k, then we have indeed an infinite hierarchy of

tractable classes of QCNF formulas with the base class QHorn (Q2CNF) at its first

level. Each QCNF formula belongs to some Ck for k large enough, and every class Ck

contains formulas with arbitrarily many quantifier alternations.

Thus, we have fixed-parameter tractability results for a problem that is PSpace-hard

in the non-parameterized sense. Here, the gain due to parameterization is even more

drastic than it is for most of the known fixed-parameter tractability results where the

non-parameterized problems are “only” NP-complete.

Variable Dependencies

So far we have left open the exact meaning of “x depends on y.” Clearly it would be safe

to assume that a variable x depends on all variables that are quantified on the left of x.

Thus, in the above example, {x, y, z} certainly constitutes a strong QHorn-backdoor

set of F . However, a closer look at the formula reveals that we can do better. Although

z is quantified left of x we can actually swap the quantification of x and z, revealing

that x does not depend on z. Namely, the matrix F can be split into two parts F1 =

(¬x ∨ y ∨ ¬w) ∧ (x ∨ ¬y ∨ w) and F2 = (¬y ∨ z) ∧ (y ∨ ¬z) such that x and w occur

only in F1 and z occurs only in F2. Thus, we can rewrite F equivalently as

∀y ∀z ∃x∃w (F1 ∧ F2) ⇔ ∀y
`
(∃x∃w F1) ∧ (∀z F2)

´
⇔ ∀y ∃x∃w ∀z (F1 ∧ F2),

thus shifting x to the left and so showing that x does not depend on z. Consequently, we

can actually form the smaller backdoor set {x, y}. With a more sophisticated reasoning

that we will describe in Section 3, we can shift x to the left of z even if x occurs in F2,

as long as it occurs only positively or only negatively. For the general case we need to

take into account whether variables are connected to each other in a certain way.

Along these lines we develop a scheme of variable dependency that allows us to

limit the blow-up of strong backdoor sets caused by variable dependencies. Variable

dependencies have been studied in a slightly different context by Ayari and Basin [3],

Biere [5], and Bubeck and Kleine Büning [6]; of related interest is the work of Egly,

Tompits, and Woltran on quantifier shiftings [11] and Benedetti’s work on quanti-

fier trees [4]. For a variable dependency scheme one needs to compromise between

tractability and generality: we show in Section 3 that identifying minimal variable de-

pendencies is PSpace-hard. We propose two tractable dependency schemes that are
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reasonably general: the standard dependency scheme which is based on ideas of Ayari

and Basin [3], Biere [5], and Bubeck and Kleine Büning [6], and the triangle depen-

dency scheme which generalizes the standard dependency scheme without increasing

the asymptotic worst-case runtime.

We formulate our schemes strictly in terms of QCNF formulas, allowing a direct

implementation within the data structures used by QCNF-based solvers. The applica-

tion of our dependency schemes is not limited to backdoor set optimization; we think

that it is also useful for other aspects of the evaluation of quantified Boolean formulas.

In the works of Ayari and Basin [3], Biere [5], and Bubeck and Kleine Büning [6],

variable dependencies are used to identify clauses that have to be duplicated when

eliminating universal variables by expansion. In particular, those clauses that contain

variables that depend on the expanded variable (more precisely, variables for which it

is unknown whether they are independent) have to be duplicated. Since it is desirable

to keep the number of such duplications small in order to avoid memory overflow, it

is important to identify variable dependencies as accurately as possible. For example,

consider the formula

∀z ∀x∃y1 . . . ∃yn (x ∨ ¬y1) ∧ (y1 ∨ ¬y2) ∧ · · · ∧ (yn−1 ∨ ¬yn) ∧ (yn ∨ z).

Following the approaches of [3,5,6], as formalized in the standard dependency scheme,

one has to duplicate the whole matrix when expanding x, since the standard de-

pendency scheme is not able to identify any of the variables y1, . . . , yn as indepen-

dent from x. The triangle dependency scheme, on the other hand, identifies all vari-

ables y1, . . . , yn as independent from x and thus x can be shifted to the rightmost

position in the quantifier prefix. Since universal variables with no existential variables

in their scope can be eliminated, x can actually be eliminated without expansion.

Note, however, that this superiority of the triangle dependency scheme does not

necessarily hold if we want to expand universal variables that have other universal

variables in their scope. The reason for this are indirect dependencies that have to

be taken into account when shifting variables within the quantifier prefix but that

are irrelevant for expansion. A refined notion of the triangle dependency scheme that

overcomes this problem as well as a generalization have been recently developed [30].

2 Background

2.1 Quantified Boolean Formulas

We consider propositional formulas in conjunctive normal form (CNF). We identify

each CNF formula with the set of its clauses, e.g., the formula (¬x ∨ y ∨ z) ∧ (¬y ∨
¬z) ∧ (x ∨ ¬y) is identified with the set {{¬x, y, z}, {¬y,¬z}, {x,¬y}}. Moreover, we

consider quantified Boolean formulas in quantified CNF (QCNF), for example,

F = ∀x∃y ∀z F = ∀x∃y ∀z (¬x ∨ y ∨ z) ∧ (¬y ∨ ¬z) ∧ (x ∨ ¬y).

We refer to F as the matrix of F . We assume that all variables occurring in the matrix

are bounded by some quantifier, i.e., there are no free variables in F , and that all

variables bounded by some quantifier occur in the matrix. Each clause in F is a finite

set of literals, and a literal is a negated or unnegated propositional variable. For a

literal ` we denote by ` the literal of opposite polarity, i.e., x = ¬x and ¬x = x;
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moreover, for a set X of literals, we put X = { ` : ` ∈ X }. For a clause C we

assume that if ` ∈ C then ` /∈ C and we denote by var(C) the set of variables that

occur (negated or unnegated) in C. For a QCNF formula F and its matrix F we put

var(F) = var(F ) =
S

C∈F var(C).

For a CNF formula F and a variable x ∈ var(F ), we put F −x = {C \{x, x} : C ∈
F }; moreover, for a set X ⊆ var(F ), we put F − X = {C \ (X ∪ X) : C ∈ F }.
For a QCNF formula F = Q1x1 . . . Qnxn F and a variable xp ∈ var(F), we denote

by F−xp the QCNF formula obtained from F by replacing the matrix F by F−xp and

removing the superfluous quantification Qpxp; moreover, we generalize this notation

in a straight-forward way to F − X for sets X ⊆ var(F). We define the depth of xp

in F as δF (xp) = p and we put qF (xp) = Qp. Moreover, we define var∀(F) = {x ∈
var(F) : qF (x) = ∀} and var∃(F) = {x ∈ var(F) : qF (x) = ∃}. A QCNF formula F ′ is

obtained from F by quantifier reordering, if there is a permutation i1, . . . , in of 1, . . . , n

such that F ′ = Qi1xi1 . . . Qin
xin

F .

A truth assignment is a mapping τ : X → {0, 1} defined on some set X of vari-

ables. We extend τ to literals by setting τ(¬x) = 1 − τ(x) for x ∈ X. For a truth

assignment τ : {x} → {0, 1} we simply write “x = 0” and “x = 1” respectively. For

a truth assignment τ and a CNF formula F , we denote by F [τ ] the CNF formula ob-

tained from F by removing all clauses which contain a literal ` with τ(`) = 1 and by

removing literals ` with τ(`) = 0 from the remaining clauses; moreover, for a QCNF

formula F = Q1x1 . . . Qnxn F , we denote by F [τ ] the QCNF formula obtained from F
by replacing the matrix F by F [τ ] and removing all superfluous quantifications. A truth

assignment τ satisfies a CNF formula F if F [τ ] = ∅.
The evaluation function ν : F 7→ {0, 1} on QCNF formulas F is recursively defined

by ν(∃xF) = max(ν(F [x = 0]), ν(F [x = 1])), ν(∀xF) = min(ν(F [x = 0]), ν(F [x =

1])), and, if F has no variables, ν(F) = 1 if F = ∅ and ν(F) = 0 otherwise. A QCNF

formula F is true (or satisfiable) if ν(F) = 1; otherwise it is false (or unsatisfiable).

Two QCNF formulas F and F ′ are equivalent if ν(F) = ν(F ′).
A clause is called Horn if it contains at most one positive literal and it is called

binary if it contains at most two literals. A CNF/QCNF formula is called Horn or

binary if all its clauses are Horn or binary, respectively. The classes of Horn and binary

CNF formulas are denoted by Horn and 2CNF, respectively; the classes of Horn and

binary QCNF formulas are denoted by QHorn and Q2CNF, respectively.

2.2 Parameterized Complexity

An instance of a parameterized problem is a pair (I, k) where I is the main part and k

is the parameter ; the latter is usually a non-negative integer. A parameterized problem

is fixed-parameter tractable if it can be solved by a fixed-parameter algorithm, i.e., if

instances (I, k) can be solved in time O(f(k) nc), where f is a computable function

of k, c is a constant, and n is the size of I. FPT denotes the class of all fixed-parameter

tractable decision problems [9,12,20].

Parameterized complexity offers a completeness theory, similar to the theory of

NP-completeness, that allows the accumulation of strong theoretical evidence that a

parameterized problem is not fixed-parameter tractable. This completeness theory is

based on the weft hierarchy of complexity classes W[t], t ≥ 1. Each class contains

all parameterized decision problems that can be reduced to a certain parameterized

satisfiability problem under parameterized reductions. For example, for t = 2, the
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corresponding satisfiability problem asks whether a given CNF formula has a satisfy-

ing truth assignment that sets exactly k variables to 1. Parameterized reductions are

straightforward extensions of polynomial-time many-to-one reductions that ensure a

parameter of one problem maps into a parameter of another problem [9,12,20]. If we

know that a parameterized problem is W[t]-hard (under parameterized reductions) for

some t ≥ 1, then it is very unlikely that the problem is fixed-parameter tractable.

Fixed-parameter tractability of the problem would imply that the Exponential Time

Hypothesis fails [12] (i.e., the existence of a 2o(n) algorithm for n-variable 3SAT). For

example, Vertex Cover is fixed-parameter tractable, while Clique is W[1]-complete

and Set Cover is W[2]-complete with the size of the solution as parameter [9].

3 Dependency Schemes

As already mentioned in the introduction, we consider dependency schemes in order

to obtain smaller backdoor sets. Since we will define dependency schemes as binary

relations, we will need the following notations: For a binary relation R over some set V

we write R to denote the relation inverse to R, i.e., R = {(y, x) : (x, y) ∈ R}, and we

write R∗ to denote the reflexive and transitive closure of R, i.e., the smallest set R∗

such thatR∗ = R∪{(x, x) : x ∈ V }∪{(x, y) : ∃z such that (x, z) ∈ R∗ and (z, y) ∈ R}.
Moreover, we put R(x) = {y : (x, y) ∈ R} for x ∈ V and R(X) =

S
x∈X R(x)

for X ⊆ V .

For example, letR = {(w, w), (x, z), (y, x), (z, w)}. ThenR = {(w, w), (w, z), (x, y),

(z, x)} and R∗ = {(w, w), (x, w), (x, x), (x, z), (y, w), (y, x), (y, y), (y, z), (z, w), (z, z)}.
Moreover, R∗(x) = {w, x, z}.

We will also need the following binary relations RF and R�
F over var(F):

– RF = { (x, y) : x, y ∈ var(F), δF (x) < δF (y) }
– R�

F = { (x, y) : x, y ∈ var(F), ∃z ∈ RF (x), qF (z) 6= qF (x), δF (z) ≤ δF (y) }
In other words, RF assigns to each variable x the variables on the right of x in

the quantifier prefix and R�
F assigns to each variable x the variables on the right of x

starting at the first variable (from left to right) with different quantification. We will

also use the shorthands LF = RF and L�
F = R

�
F .

Definition 1 (Shifting) Let F be a QCNF formula and X ⊆ var(F). We say the

QCNF formula F ′ is obtained from F by down-shifting (up-shifting) X, in symbols

F ′ = S↓(F , X) (F ′ = S↑(F , X)), if F ′ is obtained from F by quantifier reordering

such that the following holds:

1. X = RF ′(x) (X = LF ′(x)) for some x ∈ var(F) = var(F ′) and

2. δF ′(x) < δF ′(y) if and only if δF (x) < δF (y) for all x, y ∈ X and

3. δF ′(x) < δF ′(y) if and only if δF (x) < δF (y) for all x, y ∈ var(F) \X.

For example, recall the QCNF formula F = ∀y ∀z ∃x∃w F from the introduc-

tion and let X = {x, y}. Then we have S↓(F , X) = ∀z ∃w ∀y ∃x F and S↑(F , X) =

∀y ∃x∀z ∃w F . Note that neither down-shifting nor up-shifting preserves equivalence,

in general, and that the result of shifting is always unique.

Definition 2 (Dependency scheme) A dependency scheme D assigns to each

QCNF formula F a binary relation DF ⊆ RF such that F and S↓(F , D∗
F (x)) are

equivalent. A dependency scheme D is tractable if DF can always be computed in time

that is polynomial in F .
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Intuitively, a dependency scheme assigns to each variable x the set of variables that

depend on x. Actually, the assigned sets contain those variables for which we cannot

prove independence. The following property of dependency schemes will be crucial for

our backdoor set algorithms in Section 4.

Definition 3 (Cumulative) A dependency scheme D is cumulative if for every

QCNF formula F and set X ⊆ var(F), F and S↓(F , D∗
F (X)) are equivalent.

In general, a dependency scheme does not need to be cumulative. For example,

consider the formula

F = ∀x∀y ∃u ∃v (x ∨ u ∨ ¬v) ∧ (¬x ∨ ¬u ∨ v) ∧ (y ∨ u ∨ v) ∧ (¬y ∨ ¬u ∨ ¬v),

and let D be a dependency scheme such that DF (x) = DF (y) = {v} and DF ′(z) =

RF ′(z) for all other combinations of QCNF formulas F ′ and z ∈ var(F ′). It is easy

to verify that F , S↓(F , D∗
F (x)), and S↓(F , D∗

F (y)) are all true, i.e., D is indeed a

dependency scheme. However, D is not cumulative as S↓(F , D∗
F ({x, y})) is false.

Since all dependency schemes that we will define in this paper are cumulative, we

are allowed to use them for up-shifting as shown next.

Proposition 1 Let D be a cumulative dependency scheme, F be a QCNF formula,

and X ⊆ var(F). Then F and S↑(F , D
∗
F (X)) are equivalent.

Proof Let F be a QCNF formula and X ⊆ var(F). Consider the set Y = var(F) \
D
∗
F (X). It holds that Y = D∗

F (Y ); otherwise, there exists y ∈ Y and z ∈
D∗
F (y) ∩ D

∗
F (X), which implies y ∈ D

∗
F (X). Consequently, since D is cumulative,

F and S↓(F , Y ) are equivalent. Since Y ∩D
∗
F (X) = ∅ and Y ∪D

∗
F (X) = var(F), it is

easy to verify that S↓(F , Y ) and S↑(F , D
∗
F (X)) are syntactically identical. Hence, F

and S↑(F , D
∗
F (X)) are equivalent. ut

Our aim in the following is to find tractable dependency schemes D such that

the sets DF are as small as possible. We say that dependency scheme D is more

general than dependency scheme D′ if always DF ⊆ D′
F and the inclusion is strict in

some cases.

A very simple example of a tractable dependency scheme is R as defined above,

since always F = S↓(F , R∗
F (x)). A slightly improved but still very simple tractable

dependency scheme is the following.

Definition 4 (Trivial dependency scheme) The trivial dependency scheme Dtrv

assigns to each QCNF formula F the binary relation Dtrv
F = R�

F .

It is easy to see that Dtrv is indeed a dependency scheme since the only difference

between F and S↓(F , Dtrv
F

∗
(x)) is that the position of x has changed within the same

quantifier block, which trivially preserves equivalence.

The following proposition shows that when we want a dependency scheme to be

tractable, we cannot expect it to be a most general one.

Proposition 2 Let F be a QCNF formula and x, y ∈ var(F). The problem of deciding

whether there exists a dependency scheme D such that (x, y) /∈ DF is PSpace-complete.
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Proof The problem belongs to PSpace as polynomial space suffices to go through all

QCNF formulas F ′ obtained from F by quantifier reordering such that y /∈ RF ′(x) and

to check whether F and F ′ are equivalent. For showing PSpace-hardness, we reduce

the problem of deciding whether a given QCNF formula is true, which is known to

be PSpace-complete [33]. Let G = Q1v1 . . . Qnvn G be an arbitrary QCNF formula

and x, y /∈ var(G) be two new variables. Moreover, let F = G∧ (x∨ y)∧ (¬x∨¬y) and

F = Q1v1 . . . Qnvn ∀x∃y F . We define a mapping D in the following way: DF (x) = ∅
and DF ′(z) = RF ′(z) for all other combinations of QCNF formulas F ′ and z ∈ var(F ′).
Note that D is a dependency scheme if and only if there exists a dependency scheme D′

with y /∈ D′
F (x). This follows immediately from the definition of a dependency scheme.

Now we have S↓(F , D∗
F (x)) = Q1v1 . . . Qnvn ∃y ∀x F and S↓(F ′, D∗

F ′(z)) = F ′ for all

other combinations of QCNF formulas F ′ and z ∈ var(F ′). Since ∀x∃y (x∨y)∧(¬x∨¬y)

is true, we know that F is true if and only if G is true. Moreover, since ∃y ∀x (x∨ y)∧
(¬x ∨ ¬y) is false, we know that S↓(F , D∗

F (x)) is false. Hence, it follows immediately

that F and S↓(F , D∗
F (x)) are equivalent (i.e., our mapping D is a dependency scheme)

if and only if G is false. ut

We are now going to define our standard dependency scheme Dstd, which is

tractable and more general than the trivial dependency scheme Dtrv. The standard

dependency scheme is based on an approach of variable dependency used by Biere [5]

for expanding universally quantified variables. Biere defined two variables x, y ∈ var(F)

(y ∈ RF (x), qF (x) = ∀, qF (y) = ∃) to be locally connected if they occur in the same

clause; the relation connected is the transitive closure of locally connected when con-

sidering only variables in R�
F (x). Then y depends on x if x and y are connected. This

definition was motivated by the parse tree of the formula where the quantifiers are

shifted down as far as possible (corresponding quantifier shifting rules were investi-

gated by Egly et al. [11].) From this point of view, y depends on x if x occurs on the

path from y to the root of the parse tree.

We also include an observation of Bubeck and Kleine Büning [6] into our stan-

dard dependency scheme. Since universally quantified variables do not propagate the

change of truth values, the authors suggested to ignore all universally quantified vari-

ables when building the transitive closure of “locally connected” in Biere’s definition

of “connected”. Evidently this generalizes Biere’s approach.

Our definition in the following combines these ideas in a more general setting which

admits further generalizations. Let us first define some basic notions.

Definition 5 (Connected) Let F be a QCNF formula with matrix F . An X-path,

X ⊆ var(F), between two clauses C, C′ ∈ F is a sequence C1, . . . , Cn of clauses in F

with C = C1 and C′ = Cn such that var(Ci) ∩ var(Ci+1) ∩X 6= ∅ for all 1 ≤ i < n.

Two clauses C, C′ ∈ F are connected with respect to X ⊆ var(F) if there is an X-path

between them.

Definition 6 (Dependency pair) Let F be a QCNF formula with matrix F and

let x, y ∈ var(F) such that qF (x) 6= qF (y). An (x, y)-dependency pair with respect

to X ⊆ var(F) is a tuple (C1, C2) ∈ F × F of clauses such that (i) C1 and C2 are

connected with respect to X and (ii) x ∈ var(C1) and y ∈ var(C2).

To illustrate these definitions, consider the following QCNF formula F :

∀u ∃v ∀w ∃x∀y ∃z (u ∨ ¬v ∨ x) ∧ (u ∨ ¬x) ∧ (v ∨ z) ∧ (v ∨ ¬z) ∧ (w ∨ x ∨ y) ∧ (y ∨ ¬z)
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For example, the clauses u ∨ ¬v ∨ x and y ∨ ¬z are connected with respect to {v, z}
and with respect to {x, y}. Moreover, there is a (u, z)-dependency pair with respect

to {v} (by choosing C1 = u ∨ ¬v ∨ x and C2 = v ∨ z) and a (w, x)-dependency pair

with respect to ∅ (by choosing C1 = C2 = w ∨ x ∨ y).

Definition 7 (Standard dependency scheme) The standard dependency

scheme Dstd assigns to each QCNF formula F the relation Dstd
F = { (x, y) ∈ RF : F

contains an (x, y)-dependency pair with respect to RF (x) \ var∀(F) }.

For example, recall the QCNF formula F from above. It holds that Dstd
F (u) =

{v, x, z}, Dstd
F (v) = {w, y}, Dstd

F (w) = {x}, Dstd
F (x) = {y}, Dstd

F (y) = {z},
and Dstd

F (z) = ∅.

Theorem 1 The standard dependency scheme is indeed a dependency scheme and it

is even cumulative.

Proof Let F be a QCNF formula and X ⊆ var(F). Moreover, let F ′ denote

S↓(F , Dstd
F

∗
(X)). We have to show that F and F ′ are equivalent. To this aim, note

that F ′ is obtained from F by quantifier reordering, i.e., by a permutation of the quan-

tifications in the quantifier prefix. It is well known that every permutation of elements

can be achieved by successively swapping adjacent elements such that each pair is

swapped at most once [18]. In particular, this means that we can transform F into F ′

by successively swapping adjacent quantifications of variables v ∈ Dstd
F

∗
(X) with vari-

ables w ∈ RF (X) \Dstd
F

∗
(X), since the relative ordering of variables within these two

sets remains unchanged according to the definition of shifting. Thus, it suffices to show

that each such elementary transformation step preserves equivalence.

Let v ∈ Dstd
F

∗
(X) and w ∈ RF (X) \ Dstd

F
∗
(X) be two variables with adjacent

quantifications in the quantifier prefix that have to be swapped. If qF (v) = qF (w), the

equivalence follows trivially. Otherwise, if qF (v) 6= qF (w), let G denote the formula

before v and w are swapped, i.e., G = · · ·Qiv Qjw · · · G. Note that w /∈ Dstd
F (v); oth-

erwise, we obtain w ∈ Dstd
F

∗
(X), which contradicts our assumption. Thus, we know by

Definition 7 that there is no (v, w)-dependency pair with respect to RF (v)\var∀(F) ⊇
RG(v) \ var∀(F). This implies that the set G of clauses can be partitioned into

two subsets G1 and G2 such that v ∈ var(G1) \ var(G2), w ∈ var(G2) \ var(G1),

and var(G1) ∩ var(G2) ⊆ var∀(F) ∪ LG(v). Now consider a partial truth assignment

to the variables in LG(v) and let G′ be the resulting formula obtained from G after

such a partial truth assignment has been applied. Moreover, let G′
1 and G′

2 be the

corresponding sets of clauses obtained from G1 and G2 respectively. Thus, we know

that var(G′
1) ∩ var(G′

2) ⊆ var∀(F). Hence, since universal quantifiers are distributive

over conjunction, we can shift all remaining quantifiers of G′ in front of G′
1 and G′

2

respectively, which yields the formula G′1 ∧ G′2. Thus, the evaluation of G′ can be re-

duced to the evaluation of the two independent formulas G′1 and G′2, where v occurs

only in G′1 amd w occurs only in G′2. Consequently, swapping v and w in the original

quantifier prefix cannot effect the truth value of the formula. ut

Proposition 3 The standard dependency scheme is tractable. Given a QCNF for-

mula F of length n and x ∈ var(F), we can compute Dstd
F (x) in time O(n).

Proof Consider the incidence graph of the formula, i.e., the graph with the variables and

clauses as vertices; a clause C and a variable x are joined by an edge if x ∈ var(C). For
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a variable x ∈ var(F) we traverse the graph starting at x while ignoring variables not

in RF (x) \ var∀(F). We put a variable y ∈ RF (x) with qF (y) 6= qF (x) into Dstd
F (x)

if it can be reached in this way. It is easy to see that the search procedure can be

accomplished in time linear in n. ut

Remark 1 Note that we only require from a dependency scheme that the set D∗
F (x)

can be shifted down without affecting the truth value of the formula. If we want to

identify dependencies in order to eliminate universal variables x by expansion (recall

the introduction), this implies that it suffices to consider only existential variables

in D∗
F (x), but, in general, it does not imply that we only need to consider variables

in DF (x) ⊆ D∗
F (x). However, in the case of the standard dependency scheme, it fol-

lows immediately from a result of Bubeck and Kleine Büning [6], that, for expansion, it

indeed suffices to consider only variables in Dstd
F (x). An intuitive reason for this is that

additional variables in Dstd
F

∗
(x) \ Dstd

F (x) are connected to x via universal variables;

a connection via existential variables only would have caused the variables to be put

into Dstd
F (x). Thus, since universal variables do not propagate changes of truth values,

such indirect dependencies do not need to be taken into account in the case of expan-

sion. We refer the interested reader to [30] for an explicit definition of independence,

which also makes the difference between shifting and expansion clearer.

Next we define our triangle dependency scheme that improves upon the standard

dependency scheme; in fact, we show that the improvement can be arbitrarily large.

Definition 8 (Dependency triple) Let F be a QCNF formula with matrix F and

let x, y ∈ var(F) such that qF (x) 6= qF (y). An (x, y)-dependency triple with respect

to X ⊆ var(F) is a triple (C1, C2, C3) ∈ F × F × F of clauses such that

1. If qF (x) = ∀ and qF (y) = ∃, then

– C1 and C2 as well as C1 and C3 are connected with respect to X ∪ {x}
– x ∈ var(C1), y ∈ C2, and ¬y ∈ C3

2. If qF (x) = ∃ and qF (y) = ∀, then

– C1 and C2 as well as C1 and C3 are connected with respect to X ∪ {y}
– y ∈ var(C1), x ∈ C2, and ¬x ∈ C3

For instance, consider again the following QCNF formula F :

∀u ∃v ∀w ∃x∀y ∃z (u ∨ ¬v ∨ x) ∧ (u ∨ ¬x) ∧ (v ∨ z) ∧ (v ∨ ¬z) ∧ (w ∨ x ∨ y) ∧ (y ∨ ¬z)

There is a (u, z)-dependency triple with respect to {v} (by choosing C1 = u ∨ ¬v ∨ x,

C2 = v ∨ z, and C3 = v ∨ ¬z) and a (u, x)-dependency triple with respect to ∅ (by

choosing C1 = C2 = u ∨ ¬v ∨ x and C3 = u ∨ ¬x).

Definition 9 (Triangle dependency scheme) The triangle dependency scheme D4

assigns to each QCNF formula F the relation D4
F = { (x, y) ∈ RF : F contains an

(x, y)-dependency triple with respect to RF (x) \ (var∀(F) ∪ {y}) }.

For example, recall the QCNF formula F from above. It holds that D4
F (u) = {x, z},

D4
F (v) = {y}, and D4

F (w) = D4
F (x) = D4

F (y) = D4
F (z) = ∅.

Theorem 2 The triangle dependency scheme is indeed a dependency scheme and it is

even cumulative.
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Proof Let F be a QCNF formula and X ⊆ var(F). Moreover, let F ′ denote

S↓(F , D4
F
∗
(X)). Similar as in the proof of Theorem 1, it suffices to show that

swapping adjacent quantifications preserves equivalence. Let v ∈ D4
F
∗
(X) and w ∈

RF (X) \ D4
F
∗
(X) be two variables with adjacent quantifications in the quantifier

prefix that have to be swapped. If qF (v) = qF (w), the equivalence follows trivially.

Otherwise, if qF (v) 6= qF (w), let us first assume that qF (v) = ∀ and qF (w) = ∃.
Let G denote the formula before v and w are swapped and let H denote the for-

mula after v and w have been swapped. In particular, that means G = · · · ∀v ∃w · · · G

and H = · · · ∃w ∀v · · · G. Thus, H trivially implies G. For the other direction, note that

w /∈ D4
F (v); otherwise, we obtain w ∈ D4

F
∗
(X), which contradicts our assumption.

Thus, we know by Definition 9 that there is no (v, w)-dependency triple with respect

to RF (v) \ (var∀(F)∪{w}) ⊇ RG(v) \ (var∀(F)∪{w}). This implies that the set G of

clauses can be partitioned into two subsets G1 and G2 such that v ∈ var(G1)\var(G2),

{w,¬w} *
S

G1, and var(G1) ∩ var(G2) ⊆ var∀(F) ∪ LG(v) ∪ {w}. Now assume for

the sake of contradiction that the truth value of w depends on the truth value of v

when evaluating G, i.e., there exists a partial truth assignment to the variables in LG(v)

such that the remaining formula evaluates to true if and only if w is assigned different

truth values for different truth values of v. Let G′ be the resulting formula obtained

from G after such a partial truth assignment has been applied. Moreover, let G′
1 and G′

2

be the corresponding sets of clauses obtained from G1 and G2 respectively. Thus, we

know that var(G′
1) ∩ var(G′

2) ⊆ var∀(F) ∪ {w}. Hence, since universal quantifiers are

distributive over conjunction, we can shift almost all remaining quantifiers of G′ in

front of G′
1 and G′

2 respectively, which yields the formula ∀v ∃w (G′1 ∧ G′2). Now, by

our assumption, we know that this formula evaluates to true if and only if the truth

value of w changes with the truth value of v. Hence, we know that G′2 must evaluate

to true for both truth values assigned to w, i.e, ∀w G′2 must be true. Thus, we can

rewrite G′ as (∀v ∃w G′1)∧ (∀w G′2). Moreover, since {w,¬w} *
S

G1 ⊇
S

G′
1, i.e., since

w is pure in G′
1, we know that the clauses in G′

1 must be satisfiable for a fixed truth

value assigned to w, i.e., if w ∈
S

G′
1 then w is assigned 1 and if ¬w ∈

S
G′

1 then w

is assigned 0. Thus, we know that ∀v ∃w G′1 and ∃w ∀v G′1 are equivalent. So we can

rewrite G′ as (∃w ∀v G′1) ∧ (∀w G′2), which implies ∃w ∀v (G′1 ∧ G′2). Hence, the truth

value of w can be chosen independently from the truth value of v, which contradicts

our assumption. Consequently, swapping v and w in the quantifier prefix of G does

not affect its truth value. Thus, we know that G implies H. The case qF (v) = ∃ and

qF (w) = ∀ is symmetric. ut

Since the search for a dependency triple is not significantly more expensive than

the search for a dependency pair, we obtain the same worst-case runtime complexity

as for the standard dependency scheme.

Proposition 4 The triangle dependency scheme is tractable. Given a QCNF for-

mula F of length n and x ∈ var(F), we can compute D4
F (x) in time O(n).

Proof Let G = (V, E) be the graph whose vertices are the clauses and the literals of F ;

each literal ` is adjacent to its complementary literal ¯̀and to all clauses that contain `.

Note that |V | + |E| = O(n), and so G can be constructed in time O(n). In order to

compute D4
F (x), we distinguish between the following two cases:

(i) If x is existential, observe that D4
F (x) consists of all variables y ∈ RF (x) ∩

var∀(F) such that G contains a path between x and y that avoids ¬x, and a path

between ¬x and y that avoids x; both paths also have to avoid literals with variables
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in X = LF (x) ∪ (var∀(F) \ {y}), i.e., we consider paths in G − (X ∪ X). We com-

pute D4
F (x) by traversing G on such paths twice, first starting at x and then starting

at ¬x. Evidently, y ∈ D4
F (x) if and only if y can be reached in this way from both x

and ¬x. Hence, we can compute D4
F (x) in time O(n).

(ii) If x is universal, observe that D4
F (x) consists of all variables y ∈ RF (x) \

var∀(F) such that G contains a path between x and y that avoids ¬y, and a path

between x and ¬y that avoids y; both paths also have to avoid literals with variables

in X = LF (x) ∪ (var∀(F) \ {x}), i.e., we consider paths in G− (X ∪X). We compute

D4
F (x) as follows: Starting from x we perform depth-first search (dfs) in G; let T

be the corresponding search-tree with root x. Whenever we visit a literal ` whose

complement ¯̀ has not yet been visited, we visit ¯̀ next (if it exists). This ensures that

complementary literals (if reachable from x) are adjacent in T . If v ∈ V is the i-th

vertex visited, then we put n(v) = i; we put n(v) = ∞ if v never gets visited. Now

let u, v be nodes of T . We say that u is the low point of v and write lp(v) = n(u)

if u is the node with smallest n(u) that can be reached from v by traversing zero or

more edges downwards in T followed by at most one edge of G that is not in T . The

concept of low points is due to Tarjan [37] who showed that one can compute the

numbers lp(v) for all nodes v in time O(n), and that the following property holds:

If u 6= x is a node of T and v is a child of u, then lp(v) ≥ u if and only if the

removal of u separates v from x in G. It follows that y ∈ D4
F (x) if and only if either

(a) n(y) = n(¬y) − 1 and lp(¬y) < n(y) or (b) n(¬y) = n(y) − 1 and lp(y) < n(¬y).

Hence, we can compute D4
F (x) in time O(n). ut

Remark 2 Note that in the case of the triangle dependency scheme we need for both

shifting and expansion the closure D4
F
∗
(x). In particular, for expansion we have to

duplicate all existential variables in D4
F
∗
(x) and the clauses containing these variables.

The equivalence of the resulting formula follows then immediately from our proofs. The

following example demonstrates that it is not sufficient to duplicate variables in D4
F (x).

To this aim, consider the following formula F [30]:

∀x∃u ∀y ∃v (x∨y∨¬v)∧(¬x∨¬y∨¬v)∧(u∨y∨v)∧(¬u∨y∨¬v)∧(¬u∨¬y∨v)∧(u∨¬y∨¬v)

It is easy to verify that this formula is true and that D4
F (x) = {u} (while D4

F
∗
(x) =

{x, y, u, v}). Thus, expansion of x based on D4
F (x) results in F ′ = ∃u ∃u′ ∀y ∃v Fx=0 ∧

Fx=1 with Fx=0 = (y∨¬v)∧(u∨y∨v)∧(¬u∨y∨¬v)∧(¬u∨¬y∨v)∧(u∨¬y∨¬v) and

Fx=1 = (¬y∨¬v)∧(u′∨y∨v)∧(¬u′∨y∨¬v)∧(¬u′∨¬y∨v)∧(u′∨¬y∨¬v). However, F ′ is

false, thus not equivalent to F . Consequently, we actually need time O(n2) to compute

the required set D4
F
∗
(x). In fact, in time O(n2) we can compute the sets D4

F
∗
(x)

for all x ∈ var(F). For the standard dependency scheme, on the other hand, the

sets Dstd
F (x) are sufficient in the case of expansion (recall Remark 1).

Remark 3 Moreover, note that the proof of Theorem 1 still goes through if we replace

the set RF (x) \ var∀(F) in Definition 7 by R�
F (x) \ var∀(F). However, the proof

of Theorem 2 does not work if we replace RF (x) \ (var∀(F) ∪ {y}) in Definition 9

by R�
F (x) \ (var∀(F) ∪ {y}) as the following example demonstrates: Let D denote the

dependency scheme obtained from Definition 9 by such a replacement and consider

the formula F = ∃u ∃v ∀x (¬u ∨ ¬v) ∧ (u ∨ ¬x) ∧ (v ∨ x). It is easy to verify that F is

false and that DF (u) = DF (v) = ∅ since R�
F (u) = R�

F (v) = {x}. However, D is not

cumulative as S↓(F , D∗
F ({u, v})) = ∀x∃u ∃v (¬u ∨ ¬v) ∧ (u ∨ ¬x) ∧ (v ∨ x) is true.
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Next we will show that the triangle dependency scheme is indeed more general than

the standard dependency scheme. In particular we will also show that the difference

of the sizes of the sets assigned to each variable by the dependency schemes can be

arbitrarily large.

Proposition 5 Let F be a QCNF formula and x ∈ var(F). The difference in size of

the sets Dstd
F (x) and D4

F (x) can be arbitrarily large, and the difference in size of the

sets Dstd
F

∗
(x) and D4

F
∗
(x) can be arbitrarily large.

Proof Let n be an arbitrarily large non-negative integer and let F =

∀z ∀x∃y1 ∃y2 · · · ∃yn (x ∨ ¬y1) ∧ (y1 ∨ ¬y2) ∧ · · · ∧ (yn−1 ∨ ¬yn) ∧ (yn ∨ z). Then

Dstd
F (x) = {y1, y2, . . . , yn} and D4

F (x) = ∅, as well as Dstd
F

∗
(x) = {x, y1, y2, . . . , yn}

and D4
F
∗
(x) = {x}. Hence, |Dstd

F (x)| − |D4
F (x)| = |Dstd

F
∗
(x)| − |D4

F
∗
(x)| = n. ut

Proposition 6 The triangle dependency scheme is more general than the standard

dependency scheme.

Proof We have to show that (i) D4
F ⊆ Dstd

F for all QCNF formulas F and that (ii) the

inclusion is strict in some cases. Part (ii) follows immediately from part (i) and Propo-

sition 5. For the proof of part (i), let y ∈ D4
F (x), i.e., there is an (x, y)-dependency

triple with respect to RF (x) \ (var∀(F) ∪ {y}). By definition, this immediately im-

plies that there is an (x, y)-dependency pair with respect to RF (x) \ var∀(F), i.e.,

y ∈ Dstd
F (x). ut

Note that the sets assigned to each variable by the triangle dependency scheme

may still be larger than necessary. Of course, this is not surprising in consideration

of Proposition 2. However, we believe that there is a considerable potential for future

research to determine dependency schemes which can be computed in a reasonable

amount of time and which are more general than the triangle dependency scheme.

In the following section we will have to shift up several variables when computing

backdoor sets of QCNF formulas. For this purpose we will use a cumulative dependency

scheme (recall Definition 3) to identify variables that have also to be shifted up in order

to preserve equivalence.

4 Backdoor Sets

In the remainder of this paper, we consider an arbitrary but fixed cumulative depen-

dency scheme D; the definitions of partial assignment trees and backdoor sets are

subject to the choice of D.

Partial truth assignments are key features for defining backdoor sets of proposi-

tional CNF formulas. In the following we introduce the concept of assignment trees

which allows us to extend the notions of partial truth assignments and backdoor sets

to the quantified setting. We roughly follow a concept of Samulowitz and Bacchus [32].

An assignment tree T = (T, λ) is a pair of a rooted binary tree T and a node

labeling λ with the following properties. The labeling λ assigns to every node t (except

the root) of T a pair λ(t) = (x, ε), where x is a variable and ε ∈ {0, 1}. Every node

has at most two children. Nodes at the same depth (i.e., distance from the root) are

labeled with the same variable and have the same number of children. A variable does
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not appear at different levels. If a node has two children t1 and t2, then λ(t1) = (x, ε)

and λ(t2) = (x, 1− ε). This completes the definition of an assignment tree.

Let T = (T, λ) be an assignment tree. We denote by var(T ) the set of variables

occurring in labels of T , and for x ∈ var(T ) we denote by δT (x) the depth of x

in T . A variable x ∈ var(T ) is existential or universal in T if the nodes of T at

depth δT (x) − 1 have one or two children, respectively. Every leaf t of T corresponds

to a truth assignment τ : var(T ) → {0, 1} consisting of the assignments made along

the path from the root to t. We simply write τ ∈ T if τ is such a truth assignment.

Definition 10 (Partial assignment tree) Let F be a QCNF formula and T an

assignment tree. Then T is a partial assignment tree of F if (i) var(T ) ⊆ var(F) and

existential (universal) variables of T are existentially (universally) quantified variables

in F , (ii) δT (x) < δT (y) if and only if δF (x) < δF (y) holds for every pair x, y ∈ var(T ),

and (iii) var(T ) = D
∗
F (var(T )).

We define backdoor sets with respect to some base class C of QCNF formulas.

We think of C as a class that can be recognized in polynomial time and for which

satisfiability can be decided in polynomial time.

Definition 11 (Weak backdoor set) Let F be a QCNF formula. The set B =

D
∗
F (X) for some X ⊆ var(F) is a weak backdoor set of F with respect to C (or a

weak C-backdoor set, for short) if there exists a partial assignment tree T of F with

var(T ) = B such that F [τ ] is true and belongs to C for all τ ∈ T .

Proposition 7 Assume that the dependency scheme under consideration is tractable.

Let C ∈ {QHorn,Q2CNF} and k ≥ 0 be a constant. For a given QCNF formula F we

can decide in polynomial time whether F has a weak C-backdoor set of size at most k.

If the answer is affirmative, then F is true.

Proof We go through all sets X ⊆ var(F) of size at most k; for |var(F)| = n there

are O(nk) such sets. For each X we can check in polynomial time whether it gives

rise to a weak C-backdoor set B = D
∗
F (X) of F for the following reasons: (i) since

the dependency scheme is tractable, we can compute B in polynomial time; (ii) the

number of partial assignment trees T with var(T ) = B is a function of k and therefore

a constant; (iii) whether F [τ ] ∈ C can obviously be checked in polynomial time; (iv) if

F [τ ] ∈ C, we can check if F [τ ] is true in polynomial time by means of the known

algorithms [2,16]. Finally note that in general if a QCNF formula has a weak backdoor

set, then the formula is true. ut

The runtime of the algorithm outlined in the previous proof is polynomial, but the

order of the polynomial depends on the size of the backdoor set. Thus, the algorithm

is not a fixed-parameter algorithm.

Weak C-Backdoor

Instance: A QCNF formula F and a non-negative integer k.

Parameter: k.

Question: Does F have a weak C-backdoor set of size at most k?

The problem Weak C-Backdoor for CNF formulas is just a special case of the cor-

responding problem for QCNF formulas. Hence, the W[2]-hardness result of Nishimura

et al. [22] establishes the following proposition.
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Proposition 8 Let C ∈ {QHorn,Q2CNF}. The problem Weak C-Backdoor is

W[2]-hard and thus unlikely to be fixed-parameter tractable.

For the definition of strong backdoor sets, we do not need partial assignment trees

as in the case of weak backdoor sets.

Definition 12 (Strong backdoor set) Let F be a QCNF formula. The set B =

D
∗
F (X) for some X ⊆ var(F) is a strong backdoor set of F with respect to C (or a

strong C-backdoor set, for short) if for all truth assignments τ : B → {0, 1} it holds

that F [τ ] belongs to C.

Lemma 1 Let F be a QCNF formula and let B = D
∗
F (X) for some X ⊆ var(F) be a

strong C-backdoor set of F . Then the following holds:

1. For all partial assignments trees T of F with var(T ) = B it holds that F [τ ] belongs

to C for all τ ∈ T .

2. F is true if and only if there exists a partial assignment tree T of F with var(T ) =

B such that F [τ ] is true for all τ ∈ T .

By taking the size of the backdoor set as the parameter, we obtain the following

parameterized decision problem for an arbitrary base class C of QCNF formulas.

Strong C-Backdoor

Instance: A QCNF formula F and a non-negative integer k.

Parameter: k.

Question: Does F have a strong C-backdoor set of size at most k?

For certain important base classes it suffices to consider the following variant of

backdoor sets.

Definition 13 (Deletion backdoor set) Let F be a QCNF formula. The set B =

D
∗
F (X) for some X ⊆ var(F) is a deletion backdoor set of F with respect to C (or a

deletion C-backdoor set, for short) if F −B ∈ C.

The next result follows analogously to the corresponding result for propositional

CNF formulas shown by Crama et al. [8] and Nishimura et al. [22].

Lemma 2 Let F be a QCNF formula and C ∈ {QHorn,Q2CNF}. Then a set B ⊆
var(F) is a strong C-backdoor set of F if and only if B is a deletion C-backdoor set of F .

We state the corresponding parameterized problem:

Deletion C-Backdoor

Instance: A QCNF formula F and a non-negative integer k.

Parameter: k.

Question: Does F have a deletion C-backdoor set of size at most k?

Note that the various definitions of backdoor sets in this section coincide with their

propositional analogs. The problems of detecting (weak or strong) backdoor sets can

also be considered as traditional “non-parameterized” problems by taking the parame-

ter as part of the input. These non-parameterized problems are NP-complete, justifying

our parameterized approach. Membership follows immediately from Lemma 2 and hard-

ness follows by trivial reduction from the non-quantified propositional versions, which

have been shown by Crama et al. [8] and Nishimura et al. [22] to be NP-complete.
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Using a similar construction as for Proposition 5, we can show that the difference

between the sizes of the smallest strong backdoor set based on the standard dependency

scheme and the smallest strong backdoor set based on the triangle dependency scheme

can be arbitrarily large.

Theorem 3 Let C ∈ {QHorn,Q2CNF} and assume that the dependency scheme D

under consideration is cumulative and tractable. The evaluation of QCNF formulas is

fixed-parameter tractable with the size of a smallest strong C-backdoor set as parameter.

The reminder of this section is devoted to proving this result. The following con-

siderations will allow us to apply known vertex cover and hitting set algorithms to the

detection of backdoor sets.

Let S = {X1, . . . , Xm} be a set of finite sets over a universe V (S) =
Sm

i=1 Xi of

elements. We will refer to S as a set system. A set H ⊆ V (S) is a hitting set of S if

H ∩Xi 6= ∅ for all 1 ≤ i ≤ m. A hitting set is minimal if none of its proper subsets is

a hitting set. If |Xi| = 2 for all 1 ≤ i ≤ m then the set system represents a graph and

a hitting set of S is a vertex cover of this graph.

To a QCNF formula F with matrix F we associate the following two set systems:

– SHorn(F) = { {u, v} : u, v ∈ C with u 6= v for some clause C ∈ F },
– S2CNF(F) = {X : X ⊆ var(C) with |X| = 3 for some clause C ∈ F }.

The following is a direct consequence of Lemma 2 and Definition 13. Note that in

the remainder of this section we write for simplicity D(x) and D(X) to denote D
∗
F (x)

and D
∗
F (X), respectively.

Lemma 3 Let C ∈ {QHorn,Q2CNF}. For each QCNF formula F , a set B ⊆ var(F)

is a strong C-backdoor set of F if and only if B = D(B) and B is a hitting set of the

set system SC(F).

By means of the following construction we can encode the condition B = D(B)

directly in the hitting set instance: Given a set system S and for each x ∈ V (S) a

subset D(x) ⊆ V (S). We obtain a set system SD with V (SD) = V (S) by applying the

following saturation rule as often as possible:

Let X ∈ S, x ∈ X, x′ ∈ D(x) \X, and X ′ = (X \ {x}) ∪ {x′}.
If X ′ /∈ S, then add X ′ to S.

Lemma 4 Let S and SD be as above. For each B ⊆ V (S), the following two properties

are equivalent:

1. B is a hitting set of S such that D(x) ⊆ B for all x ∈ B, and each proper subset B′

of B is either not a hitting set of S or contains an element x with D(x) * B′.
2. B is a minimal hitting set of SD.

Proof (a) Assume B satisfies Property 1 of the lemma. Let S′ be obtained from S

by one application of the saturation rule, i.e., S′ = S ∪ {X ′} for X ∈ S, x ∈ X,

x′ ∈ D(x) \X, and X ′ = (X \ {x}) ∪ {x′}. Assume for the sake of contradiction that

B is not a hitting set of S′. Consequently, B ∩ X ′ = ∅; thus x′ /∈ B. However, since

B ∩X 6= ∅, x ∈ B. Since x′ ∈ D(x) we have derived a contradiction. Thus B is indeed

a hitting set of S′. It follows by induction on |SD \ S| (i.e., the number of times the

saturation rule has been applied) that B is a hitting set of SD.
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(b) Assume B satisfies Property 2 of the lemma. Clearly B is a hitting set of S, since

S ⊆ SD. Assume for the sake of contradiction that there are elements x, x′ ∈ V (S)

such that x ∈ B, x′ /∈ B, and x′ ∈ D(x). We observe that there is some X ∈ SD such

that X ∩B = {x}, since otherwise B \ {x} were a hitting set of SD but B is assumed

to be minimal. By construction of SD, we have X ′ = (X \ {x})∪ {x′} ∈ SD. However,

X ′ ∩ B = ∅, thus B is not a hitting set of SD, a contradiction. Thus, D(x) ⊆ B for

all x ∈ B.

(a′) Assume B satisfies Property 1 of the lemma. By (a) there is a set B0 ⊆ B

that is a minimal hitting set of SD. By (b) it follows that B0 is a hitting set of S and

D(x) ⊆ B0 for all x ∈ B0. Since B satisfies the minimality condition of Property 1, it

follows that B = B0, hence B satisfies Property 2.

(b′) Assume B satisfies Property 2 of the lemma. By (b) there is a set B0 ⊆ B

that satisfies Property 1. By (a) it follows that B0 is a hitting set of SD. Since B is a

minimal hitting set of SD, B = B0 follows, hence B satisfies Property 1. ut

We are now in the position to complete the proof of Theorem 3. Let C ∈
{QHorn,Q2CNF} and assume that we are given a QCNF formula F with n variables

and an integer k ≥ 0. We obtain in polynomial time the set system S = SC(F ) (recall

the definitions given directly above Lemma 3). As the dependency scheme D under

consideration is assumed to be tractable, all the sets D(x) can be computed in polyno-

mial time. Next we obtain the set system SD. This can be accomplished in polynomial

time as well since SD has at most
`n
2

´
(for C = QHorn) or

`n
3

´
(for C = Q2CNF)

elements. Now we search for a minimal hitting set B of SD with |B| ≤ k. For this

task we can use known fixed-parameter algorithms for Vertex Cover or 3-Hitting

Set, respectively. Currently, the fastest known fixed-parameter algorithm for the for-

mer problem is due to Chen, Kanj, and Xia [7] and runs in time O(1.2738k + kn).

The fastest known fixed-parameter algorithm for the latter problem is due to Nieder-

meier and Rossmanith [21] and runs in time O(2.270k + n); an alternative algorithm

is due to Abu-Khzam [1]. If no hitting set of size at most k is found, then we know by

Lemmas 3 and 4 that F has no strong C-backdoor set of size at most k, and we can

reject the instance. Otherwise, let B be a minimal C-backdoor set of SD as produced

by the applied fixed-parameter algorithm. Again, by Lemmas 3 and 4, it follows that

B is a strong C-backdoor set of F . The second part of Lemma 1 allows us to reduce the

satisfiability of F to the satisfiability of at most 2|B| ≤ 2k QCNF formulas F [τ ] ∈ C.
The satisfiability of each F [τ ] ∈ C can be decided in polynomial time by the known

results [2,16]. This completes the proof of Theorem 3.

5 Conclusion

In this paper we introduced the notion of backdoor sets for quantified Boolean formu-

las, generalizing the notion from propositional formulas. To this aim, we introduced the

notion partial assignment trees, a generalization of partial truth assignments of propo-

sitional formulas. An essential part in this paper was devoted to the investigation of

dependency schemes which indicate the dependency among quantified variables. We

proposed a dependency scheme that is both tractable and more powerful than depen-

dency schemes that can be obtained by known methods. We presented fixed-parameter

algorithms for detecting strong backdoor sets with respect to quantified Horn and quan-

tified 2CNF formulas. As a consequence, we obtained infinite hierarchies of classes of

17



QCNF formulas that can be recognized and evaluated in polynomial time, with quan-

tified Horn and quantified 2CNF formulas, respectively, at their first level.
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