
Towards a Better Understanding of the

Functionality of a Conflict-Driven SAT Solver ⋆

Nachum Dershowitz1,3, Ziyad Hanna2, and Alexander Nadel1,2

1 School of Computer Science, Tel Aviv University, Ramat Aviv, Israel
{nachumd, ale1}@tau.ac.il

2 Design Technology Solutions Group, Intel Corporation, Haifa, Israel
{ziyad.hanna, alexander.nadel}@intel.com

3 Microsoft Research, Redmond, WA

Abstract. We show that modern conflict-driven SAT solvers implicitly
build and prune a decision tree whose nodes are associated with flipped
variables. Practical usefulness of conflict-driven learning schemes, like
1UIP or AllUIP, depends on their ability to guide the solver towards
refutations associated with compact decision trees. We propose an en-
hancement of 1UIP that is empirically helpful for real-world industrial
benchmarks.

1 Introduction

Modern conflict-driven backtrack-search SAT solvers are widely used in applica-
tions in academia and industry. Each invocation can be associated with a deci-
sion tree, and tree pruning is a commonly used, intuitive concept for developing
and analyzing enhancements. But, since the introduction of Conflict-Directed
Backjumping (CDB) [4], it has become unclear how to characterize the decision
tree built in the process. The main difficulty arises from the fact that a CDB-
based solver may flip values of implied variables, rather than decision variables.
Also, it may skip decision levels when backtracking. As a result of this vague-
ness, modern solvers are more commonly understood as resolution engines, using
decision-tree construction as a heuristic, rather than as algorithms constructing
decision trees (e.g., [3]). Unfortunately, this provides little insight for reasoning
about the behavior of learning schemes and for developing new ones. Witness the
statement [5]: “The effectiveness of certain . . . schemes can only be determined
by empirical data for the entire solution process”.

We propose a framework that allows one to reason about a CDB-based solver
as a decision-tree construction based engine. We rely on the following hypoth-
esis: nodes in the decision tree, implicitly constructed by a CDB-based solver,
are associated with flipped variables, rather than with initially picked decision
variables. This approach allows us to explain why 1UIP [1] is empirically ad-
vantageous over other schemes (cf. [5, 3]). It also suggests a practically useful
enhancement, called “local conflict clause recording”.

⋆ This research was supported in part by the Israel Science Foundation (grant no.
250/05). The work of Alexander Nadel was carried out in partial fulfillment of the
requirements for a Ph.D.



D1

D2

L1

M D3

V1

N V2

L ⊤ ⊤ F1

M ⊤

1 → {I1}

1 → {I2}

0
1 → {I3}

1 → {I4}

0
1 → {B}

1 0 0
1 → {I5, I6}

0
1 → {I7,¬I7}

Fig. 1. Snapshot of a CDB-based solver run. The solid rightmost path is the current assignment
stack. There are three decision levels. Each flipped variable is associated with a left decision subtree,
denoted by dotted parts. Nodes correspond to decision or flipped variables and edges are marked
with the Boolean values assigned to these variables and, optionally, with implied literals.

2 Implicit Decision-Tree Construction and Pruning

An asserting conflict clause is a conflict clause containing the negation of one
and only one literal, called a pivot literal, assigned at the last decision level.
The 1UIP [1], 2UIP [5] and AllUIP [5] clauses are all asserting. After the pivot
variable is flipped, it is called a flipped variable. The parent clause of an implied
literal A, denoted Par(A), is the clause where the value of A is implied.

Decision-tree construction for plain backtracking can be understood as
adding a new node to the tree, labeled with a decision variable B, assigned
value σ = Val(B), and a new left edge, labeled σ, upon each decision. The
left subtree of B, denoted LTree(B), is constructed recursively. When the solver
backtracks to B and flips Val(B), the tree is updated with a new right edge,
labeled ¬σ, and a right subtree is constructed.

In our view, a CDB-based solver maintains a forest of left subtrees. Every
flipped variable is associated with a left subtree. The forest is merged into one
tree, comprising a refutation trace of the whole formula, only after the last
conflict. Upon conflict, when a pivot variable B is flipped, its left decision subtree
is constructed by merging left subtrees of a subset of flipped variables, assigned
after B. Suppose the solver is in a conflict situation, the conflicting clause is
γ and the decision level is k. We call a flipped variable that belongs to level
k an lf-variable, and a flipped variable that belongs to levels lower than k an
lu-variable. An lf-variable is active if it is connected to γ and is dominated by B

in the implication graph. In our example (Fig. 1 and Fig 2(a)), the only active
lf-variable is F1. Lf-variable V1 is not dominated by B. Lf-variable V2 is not
connected to the conflicting variable. Thus, both V1 and V2 are inactive.

Algorithm 1 constructs the left decision subtree of a pivot variable B. A
recursive function TNewTree is invoked. It receives four parameters: (1) root

2



b b

I1 I7

D1 F1

¬I7

I4 B

D3

b V1
b

UIP-2 1UIP

(a) Implication Graph

D1

D2

B

F1 ?

M ⊤

1 → {I1}

1 → {I2}

1 0

0 1

(b) Resulting Tree

Fig. 2. Implication graph and decision tree for Fig. 1 with 1UIP and UIP-2 cuts and the resulting
tree after applying Algorithm 1 and conflict-driven backjumping for 1UIP scheme.

Algorithm 1 On conflict, returns LTree(B) of the pivot variable B

1: Let F1 . . . Fn be active lf-variables. Suppose LTree(Fn+1) and Tree(F1) are leaves.
2: for i := n downto 1 do

3: Tree(Fi) := TNewTree(Fi;¬Val(Fi);LTree(Fi);Tree(Fi+1))
4: return Tree(F1)

variable; (2) first value of the root variable; (3) left subtree; and (4) right sub-
tree. See Fig. 2(b) for the result of applying Algorithm 1 and conflict-driven
backjumping for 1UIP scheme in our example.

Applying Algorithm 1 allows a CDB-based solver to skip some flipped vari-
ables. Skipping a flipped variable means excluding its left subtree from the final
decision tree characterizing the run of a solver. Skipped variables fall into three
categories: (1) lu-variables, skipped during backtracking (L1 in our example); (2)
inactive lf-variables, connected to the conflicting clause vertices, but not dom-
inated by the pivot variable (V1 in our example); (3) inactive lf-variables, not
connected to the conflicting clause vertices (V2).

We distinguish between two types of decision-tree pruning: backward tree
pruning is carried out upon conflict detection by skipping existing subtrees; for-
ward tree pruning is performed by recording conflict clauses useful in terms of
frequent participation in Boolean constraint propagation (BCP) during the sub-
sequent search. Algorithm 1 carries out backward tree pruning implicitly by not
including the left decision subtrees of inactive lf-variables in the left decision
subtree of the pivot variable. To the best of our knowledge, this kind of decision-
tree pruning has not been highlighted in the literature. A more prominent kind
of backward tree pruning is carried out by the solver while backtracking non-
chronologically [4]. We underscore the fact that the effectiveness of this kind of
pruning depends on the size of the left decision subtrees of skipped flipped vari-
ables, rather than on the number of skipped decision levels, as usually presumed.

3



A

D

⊤ ⊤

1UIP: 0 → {B, C, D, G,¬G}
AllUIP: 0 → {B, C}

1 → {B, C}

1 → {E,¬E} 0 → {F,¬F}

Fig. 3. Example of superiority of 1UIP over AllUIP. Suppose we invoke a CDB-based SAT solver
on an input formula (A ∨ D ∨ G) ∧ (A ∨ D ∨ ¬G) ∧ (A ∨ C) ∧ (A ∨ B) ∧ (¬A ∨ B) ∧ (¬A ∨ C) ∧
(¬B ∨ ¬C ∨ ¬D ∨ E) ∧ (¬B ∨ ¬C ∨ ¬D ∨ ¬E) ∧ (¬A ∨ D ∨ F ) ∧ (¬A ∨ D ∨ ¬F ). The solver first
picks the literal A, propagates its value, then picks D, propagates and encounters a conflict. The
1UIP clause is ¬B ∨ ¬C ∨ ¬D; the AllUIP clause is ¬A ∨ ¬D. After flipping D, both the AllUIP
and the 1UIP conflict clauses are ¬A. After propagating, 1UIP would yield a conflict, meaning that
the formula is unsatisfiable. In contrast, AllUIP would not result in a conflict, since all previously
recorded conflict clauses are satisfied

3 Usefulness of Conflict-Clause Recording Schemes

The UIP-2 scheme for conflict learning takes UIP number 2 of the last decision
level as the pivot variable. We compared the best known scheme, 1UIP [1], with
AllUIP [5] and UIP-2, which we feel are representative enough to explain the
advantages of 1UIP over other schemes, too. (We do not discuss conflict clause
minimization due to space restrictions.)

Choosing the first UIP, rather then UIP number 2 of the last decision level,
is optimal for backward pruning. Indeed, the first UIP is the closest to the
conflict; thus it tends to dominate fewer lf-variables. Also, the first UIP allows
backtracking to the highest possible decision level, maximizing the number of
uf-variables skipped during backtracking.

Why is 1UIP better than AllUIP? Replacing literals of other decision levels
by their dominator does not impact backward tree pruning. Indeed, the number
of inactive lf-variables and the backtrack level remain the same. We claim that
1UIP clauses tend to contribute more to BCP than AllUIP clauses, so are more
useful for forward pruning. Let B be the pivot variable and k the decision level at
the moment of a conflict. Denote by Fr+(B) the fraction of the conflict clauses
that contain the variable B out of all conflict clauses recorded since B was last
assigned. The key observation, confirmed empirically in Sect. 5, is that Fr+(B)
tends to be much higher for AllUIP than for 1UIP. Indeed, 1UIP conflict clauses
tend to contain literals implied from B at k, rather than B itself. AllUIP clauses
tend to contain B, since B dominates all the literals at k. Hence, after flipping
B, more of the AllUIP conflict clauses, recorded before the flip, will be satisfied
and will not contribute to BCP (compared with 1UIP conflict clauses). See Fig. 3
for an example.

4 Local Conflict-Clause Recording

A Local Conflict-Clause (LCC) is a non-asserting conflict clause, recorded in
addition to the 1UIP conflict clause if the last decision level contains some active
lf-variables. To record it, the last active lf-variable is considered to be a decision

4



variable, defining a new decision level. An LCC is the 1UIP clause with respect
to this new decision level.

A clause α is inconsistent with a decision-tree path P if α contains the
negation of one of the literals of P . Consider a conflict situation, with pivot
variable B and active lf-variables F1, F2, . . . , Fn. Suppose the leftmost path of
LTree(B) is P1 = (G1, . . . , Gl). The rightmost path of LTree(B) must be Pf =
(F1, . . . , Fn). The key observation is that there is an asymmetry between P1 and
Pf in that P1 tends to be inconsistent with more clauses than Pf . Indeed, each
of the clauses Par(Gi) is inconsistent with P1, since it must contain ¬Gi. This
is not the case with Pf . It is not guaranteed that there exist clauses containing
¬Fj , since parent clauses of Fj ’s contain Fj rather than ¬Fj . Denote the number
of left edges in a path by ℓ(P ). An arbitrary path P in LTree(B) is guaranteed
to be inconsistent with at least ℓ(P ) clauses. In general, the greater ℓ(P ), the
greater the chance is that there will be aggressive propagation, once the literals
of P are assigned.

The main goal of adding LCCs is to improve forward tree pruning when
literals, corresponding to a path with small ℓ(P ), are assigned. In addition, LCCs
tend to contribute more to BCP than 1UIP clauses immediately after flipping
the pivot variable. Indeed, after flipping the pivot variable, the 1UIP clause is
always satisfied, whereas the local conflict clause may contribute to BCP, since
it may not contain the pivot variable.

5 Experimental Results

We implemented 1UIP, UIP-2 and AllUIP within the industrial CDB-based
solver, Eureka [2] (but without decision-stack shrinking). All experiments were
carried out on a machine with 4GB memory and two Intel Xeon CPU 3.06 pro-
cessors. We used instances from 11 well-known industrial benchmark families.
These three schemes are compared in Table 1 on 8 instances.

The main conclusions of our experiments are: (1) 1UIP is indeed more pow-
erful and robust than other schemes. It is always faster than UIP-2, and out-
performs AllUIP by orders of magnitude on 4 instances, appearing in the left
column of Table 1. (2) Fr+ is double for AllUIP than for 1UIP. This explains
1UIP’s superiority over AllUIP by confirming the hypothesis of Sect. 3. (3) Of
all schemes, UIP-2 skips the fewest nodes/flipped variables. Additional empiri-
cal findings, omitted here, show that this happens mainly due to the fact that
there are fewer inactive lf-variables not dominated by the pivot variable in the
implication graph. This agrees with the theoretical analysis in Sect. 3. (4) Sur-
prisingly, AllUIP allows one to skip more nodes and flipped variables than 1UIP
on some examples. We found that it happens mainly due to the fact that many
lf-variables are not connected to the conflicting clause for AllUIP. According to
the analysis in Sect. 3, the number of skipped nodes and variables should be
about the same for both schemes. This expected behavior is indeed observed on
the 4 instances of the left column of Table 1, where AllUIP is outperformed by
several orders of magnitude. Studying the reasons for the unexpected behavior

5



Table 1. Comparing 1UIP, UIP-2 and AllUIP on selected instances. The rows display: (Tm) exe-

cution time in seconds; (Con) number of conflicts; (Fr+) average Fr+; (NSk) average number of
decision-tree nodes skipped per conflict

Instance Res 1UIP UIP-2 AllUIP Instance Res 1UIP UIP-2 AllUIP

4pipe Tm 51 148 11930 longmult10 Tm 485 513 590
Con 101277 308946 29985706 Con 237814 261669 379737

Fr+ 0.41 0.38 0.83 Fr+ 0.37 0.34 0.84
NSk 0.19 0.14 0.24 NSk 0.13 0.11 0.24

5pipe Tm 50 347 > 14400 longmult11 Tm 559 756 690
Con 85119 562304 28185547 Con 273200 346414 471626
Fr+ 0.40 0.33 0.84 Fr+ 0.37 0.35 0.83
NSk 0.18 0.14 0.21 NSk 0.14 0.11 0.25

8pipe k Tm 2426 > 14400 > 14400 rotmul Tm 578 1186 992
Con 1478419 10129202 13192438 Con 615314 1371339 1576324

Fr+ 0.37 0.26 0.81 Fr+ 0.52 0.48 0.84
NSk 0.21 0.13 0.19 NSk 0.16 0.13 0.27

9pipe k Tm 1493 > 14400 > 14400 term1mul Tm 2173 5213 2975
Con 640559 6040439 6548156 Con 1585135 3750774 3059096

Fr+ 0.37 0.27 0.85 Fr+ 0.55 0.54 0.86
NSk 0.20 0.16 0.20 NSk 0.15 0.11 0.26

Table 2. Effect of LCC recording (time is in sec.; t/o is the number of instances that timed out)

Default Def. + LCC
Family Threshold Time t/o Time t/o

sat04 ind maris03 gripper sat 3 hours 2238 0 986 0
sat04 ind goldberg03 hard eq check 3 hours 30336 2 15353 0
sat04 ind maris03 gripper unsat 4 hours 30135 4 17842 2
velev fvp unsat.3.0 3 hours 18199 2 10928 2
velev fvp sat.3.0 3 hours 9041 0 7155 0
velev vliw sat 2.0 3 hours 5970 0 4715 0
barrel 3 hours 260 0 226 0
velev pipe unsat 1.0 3 hours 15880 0 13094 0
velev vliw unsat 4.0 3 hours 17260 0 14810 0
longmult 3 hours 5413 0 5076 0
velev vliw sat 4.0 3 hours 5116 0 6882 0

on the other 4 instances, where the gap between 1UIP and AllUIP is not large,
is left for future research.

Table 2 shows the effect on 11 families of local conflict-clause recording within
the default version of Eureka. The technique is helpful overall on 10 of them. Ac-
cordingly, LCC recording can be recommended as a default strategy for modern
CDB-based solvers.

References

1. M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: engi-
neering an efficient SAT solver. In DAC’01, pages 530–535, 2001.

2. A. Nadel, M. Gordon, A. Palti, and Z. Hanna. Eureka-2006 SAT solver. http:

//fmv.jku.at/sat-race-2006/descriptions/4-Eureka.pdf.
3. L. O. Ryan. Efficient algorithms for clause learning SAT solvers. Master’s thesis,

Simon Fraser University, Burnaby, Canada, 2004.
4. J. P. M. Silva and K. A. Sakallah. GRASP-a new search algorithm for satisfiability.

In ICCAD’96, pages 220–227. IEEE Computer Society, 1996.
5. L. Zhang, C. F. Madigan, M. H. Moskewicz, and S. Malik. Efficient conflict driven

learning in a boolean satisfiability solver. In ICCAD’01, pages 279–285. IEEE Press,
2001.

6


