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Abstract. Consider the following Steiner Tree leasing problem. Given a
graph G = (V, E) with root r, and a sequence of terminal sets Dt ⊆ V for
each day t ∈ [T ]. A feasible solution to the problem is a set of edges Et for
each t connecting Dt to r. Instead of obtaining edges for a single day at
a time, or for infinitely long (both of which give Steiner tree problems),
we lease edges for say, { a day, a week, a month, a year }. Naturally,
leasing an edge for a longer period costs less per unit of time. What is a
good leasing strategy? In this paper, we give a general approach to solv-
ing a wide class of such problems by showing a close connection between
deterministic leasing problems and problems in multistage stochastic op-
timization. All our results are in the offline setting.

Keywords: Approximation algorithms, graph and network algorithms, stochastic

combinatorial optimization, randomized algorithms.

1 Introduction

Traditional network design problems require us to make decisions about how to
send data, and how to provision bandwidth on various links of the network. A
standard feature in most models for network design that have been considered,
and in the algorithms that have been developed, has been the permanence of
the bandwidth allocation—and this has been true even in cases where demands
arrive online: once some amount of bandwidth is allocated on an edge, this
bandwidth can be used at any time in the future (perhaps by paying some
additional incremental “routing cost” per unit of flow). Some works have also
considered the question of buying versus renting, but the simplifying assumption
again has been that buying gives permanent access to the commodity. But what
if we are allowed only to lease bandwidth on the links of the network for fixed
lengths of time: which leases on which network links should we obtain over time
to satisfy our demands?

Given a situation with multiple lease lengths, it is natural to assume that
a longer lease is a cheaper one (per day), and that we pay more dearly for the
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flexibility afforded by the short-term leases.3 Hence, if our traffic consists of some
stable parts and other bursty parts, we can use long-term leases to satisfy the
stable traffic, and the short-term leases to handle the more volatile demands: a
clever leasing strategy can reduce costs substantially over a näıve one. Note that
solving this problem requires us to simultaneously perform clustering over space
(in order to figure out which edges to allocate bandwidth on) and over time (to
figure out which traffic is stable and requires longer leases, and which is bursty
and is best served by shorter leases).

The question of finding good leasing strategies is relevant in the context of
other problems as well: in planning for demands arriving over multiple periods in
classical facility location problems, one might want to lease warehouses/plants
for varying lengths of time. Moreover, the idea that leases of varying lengths
are available is fairly natural: even in situations where there is a standard lease
length (say plants are usually leased for a year), the presence of a secondary
market for reselling or sub-letting might naturally give rise to the situation with
multiple lease lengths we consider in this paper.

In this paper, we initiate a systematic study of Leasing problems, and give
algorithms for several classic infrastructure design problems in the presence of
finite-duration leases. To illustrate our general model, we will use the Steiner

Tree Leasing problem as our running example.

We are given a graph G = (V, E) with a root r. For each day t, we are
given a set of terminals Dt and a set K of permissible lease lengths, where
the cost of leasing any edge e for length ` ∈ K is c(`): we ensure that for
any lengths `1 < `2 in K, c(`2) ≤ c(`1)×

`2
`1

. Note that an edge leased on
day t for duration ` can be used on any of the days t, t + 1, . . . , t + `− 1,
and is said to be active on all these days. Define Xt(`) ⊆ E to be the set
of edges leased for duration ` on day t, and Ft = ∪`∈K ∪j∈[t−`+1,t] Xj(`)
to be the set of active edges on day t. A solution (given by edge sets
Xt(`) for all t and `) is feasible if on each day t, the induced active edge
sets Ft connect the demand set Dt to the root r. The goal is to find a
feasible solution of minimum cost

∑

t,`[c(`) × |Xt(`)|].

One can follow this general idea and define other infrastructure design problems:
in Facility Location Leasing, we are given demand sets Dt for each day, and
may want to lease different facilities for different periods of time, with the goal
of minimizing the resulting cumulative facility opening costs plus the connection
costs for the clients on their respective days. (In this case, one may even imagine
a “non-uniform” scenario where the different facilities have different lease cost
functions.) And an even more general problem is that of Set Cover Leasing,
where we are given sets Dt ⊆ U of elements to cover on the tth day, and want to
lease sets such that the active sets at time t form a feasible cover of the set Dt.

While such problems of finite-period leases are related to the substantial body
of work on perishable commodities [29,13] in inventory theory, we are not aware

3 More formally, we assume leasing for length ` costs no more than two leases of length
`/2. This sub-additive cost structure also allows amortization of one-time costs.



of work that directly addresses the questions under consideration in this paper.
Loosely speaking, given supply of a perishable good—e.g., cartons of milk with a
lifetime of ` days—and demands over time, research on perishable commodities
has considered questions pertaining to inventory positions (in deterministic vs
stochastic settings, with several classes of customers, etc.), and to pricing such
perishable goods. At a high level, our leasing problems can be viewed as solving
multiple perishable goods problems to solve a global network design problem.

1.1 Our Results and Techniques

The main result of this paper is the following, showing a close connection between
leasing problems as described above, and stochastic optimization problems.

Theorem 1 (General Leasing Theorem). The offline leasing version of a
subadditive combinatorial optimization problem Π with |K| = k lease lengths can
be reduced to the stochastic optimization version of Π in the model of k-stage
stochastic optimization with recourse.

We feel this theorem is somewhat surprising: even though the leasing version
of the problem Π can be completely deterministic with a given input and no
stochastic component, this theorem shows that an algorithm to solve the (multi-
stage) stochastic version of the problem suffices to solve the (non-stochastic)
leasing problem. The proof of this theorem turns out to be fairly clean, and
appears in Section 4.1. Given this main theorem, we can use recently-developed
algorithms for multistage stochastic combinatorial optimization [34,37] to infer:

Corollary 1 (Optimal Algorithms for Leasing). There exist an O(1)-ap-
proximation algorithm for the Vertex Cover Leasing problem, an O(k)-approxi-
mation4 for the Facility Location Leasing problem, and an O(log n)-approxima-
tion for the Set Cover Leasing problem.

All these results are asymptotically optimal (up to constants). For the Steiner
Tree Leasing problem we were using as our running example, we get the following
result by combining Theorem 1 with known results [17,19].

Theorem 2 (Steiner Tree Leasing). There is an O(min{k, logn})-approxi-
mation algorithm for offline Steiner Tree Leasing with |K| = k lease lengths.

It seems improving the approximation to o(k) requires techniques that also im-
prove results for the Stochastic Steiner Problem, which remains an open question.

New Algorithms for Network Problems: We go on to study other network
leasing problems that generalize the Steiner Tree Leasing problem. In these prob-
lems, instead of just connecting up the terminals, we are now required to allocate
“sufficient” bandwidth on the connecting edges as well. However, the cost of al-
locating bandwidth is itself a concave function g(b) of the amount of bandwidth

4 Corrected from the proceedings version, which erroneously stated O(1).



b allocated on the edge: these are commonly known as buy-at-bulk problems. In
the leasing framework, this translates into problems where the cost of leasing b
units of bandwidth for a period of length ` is c(`) × g(b).

Theorem 3 (Buy-at-Bulk Theorems). There is an O(k) approximation for
the k-stage Stochastic versions of the single-sink Rent-or-Buy, and the single-
sink Buy-at-Bulk problems. Moreover, the Stochastic Buy-at-Bulk problem with
multiple sinks has an O(k log n) approximation algorithm.

By Theorem 1, we get the same approximation ratios for the corresponding
network leasing versions of these problems as well.

Related Work. There has been a tremendous amount of work on network
design where the the cost of bandwidth obeys natural economies of scale (often
called “buy-at-bulk” network design). It is beyond the scope of this paper to
survey this body of work, so we point the reader to [25,26,4,32,2,14,12,38,1,10]
and the many references therein. This line of work is related to our work both
in spirit, as well as in some of the technical methodology. In this paper, we also
show how we can extend some of the current algorithms for these “buy-at-bulk”
problems to the case when the bandwidth is leased and not bought permanently.

As mentioned above, leasing for finite periods is related to a large body of
work on perishable commodities [29,13] in inventory theory; however, to the
best of our knowledge, such problems have not been directly considered in the
literature.

The Steiner Tree Leasing problem was first explored in a paper on the “park-
ing permit problem” [27]. The paper noted that dynamic programming could be
used to solve the Steiner Tree Leasing problem when the graph was a single edge
(or to obtain an approximation scheme if the numbers are large), and gave an
O(log k) competitive algorithm in the online case where the terminal set Dt is
revealed only on day t. These results can be extended naturally to general graphs
using standard tree-approximation techniques [5,11] by losing an extra O(log n)
factor. However, it does not seem clear how to improve their techniques directly
in the offline case to avoid this loss of O(log n) and obtain an approximation
dependent only on k, or to extend them to the other problems we consider here.

In this paper, we show a concrete connection of network leasing to multistage
stochastic optimization problems. While the history of stochastic optimization
begins in the 1950s, this work is directly related to recent work on approxima-
tion algorithms for stochastic combinatorial problems [9,20,31,16,19,33,8,7]. We
draw most directly from the results of [19,17,34] on the multistage stochastic op-
timization problems, and on the results in [16,17] to convert algorithms for the
non-stochastic versions of problems to their multistage stochastic counterparts.

A standard tool in algorithms design today is the tree approximation tech-
nique of [5,11], as well as the general techniques for solving covering problems
from, e.g., [30,35,36,23]. These techniques will allow us to get some simple ap-
proximation bounds; one of the goals of this paper is to develop algorithms that
beat these näıve bounds by making use of the combinatorics of the problems,
and to explore connections to problems in multistage stochastic optimization.



As an aside, let us note that a problem called the “Network Leasing” problem
has been previously studied in the literature [3]; since that problem has come
to be better known as the “Rent-or-Buy” problem, we have taken the liberty of
claiming the term “leasing” to refer to an orthogonal concept in this paper.

2 Models and Notation

Consider a general subadditive optimization problem Π with k lease lengths.
Formally, we are given a set U of potential clients or demands, such that on
each day t ∈ {1, 2, . . . , T}, some subset Dt ⊆ U of these clients actually appear
and demand service. (We will soon discuss how these sets Dt are given to us.)
We also have a set of elements X that we can use to build solutions: for each
subset of clients D ⊆ U , we are given some set of solutions Sols(D) ⊆ 2X to the
client set D. On day t, we would like to own a set of elements Ft ∈ Sols(Dt).

If each element could only be leased for a single day at a time, then this
would just require us to solve T instances of the problem Π ; on the other hand,
if elements could only be leased indefinitely (i.e., “bought”), we would just solve
the problem on ∪tDt. The “leasing” aspect of the problem is reflected in the
fact that each of these elements e ∈ X can be leased for several periods: i.e.,
on any day t, given any duration ` ∈ K, one can obtain a lease of length ` on
element e ∈ X for cost ce(`) and use it on days t, t + 1, . . . , t + ` − 1. Formally,
let Xt(`) be the elements for which leases of length ` were obtained on day t,
and Ft = ∪`∈K ∪t

t′=t−`+1 Xt(`), then a feasible leasing strategy is a sequence of
sets Xt(`) which results in Ft ∈ Sols(Dt) for each day t.

Definition 1 (Uniform vs. Non-Uniform). A leasing problem is called uni-
form if the cost functions ce(·) for all elements e ∈ X are identical (here we will
drop the subscript and refer to it as c(·)), and is called non-uniform otherwise.

As may be expected, we will be able to obtain better results for uniform prob-
lems in some cases. One immediate advantage of uniform network design prob-
lems will be the applicability of tree-approximation techniques (see Lemma 3);
see also Section 4.1 for other advantages of uniformity.

Stochastic Optimization. The relevant stochastic model is k-stage stochastic
optimization with recourse: the demand set D is revealed on day-k drawn from
some known distribution π, but on each of days 1, 2, . . . , k − 1, we are given
additional information about the set D. (One can view this process as having a
joint distribution over “signals” s1, s2, . . . , sk−1, sk received on the various days,
with the actual demand set some known function of this signals.) One can see,
e.g., [34,17] for more details about the model. The costs of elements change over
time (usually getting more expensive over time): the uniform inflation model
assumes the cost costt(e) of element e ∈ X on day-t (or stage-t) to be σi ×
costt−1(e) (and hence cost1(e)

∏

1<j≤i σj). Note that the σi’s are uniform, and
independent of the element e. In the more powerful non-uniform model, the
costs of different elements can change differently as time progresses.
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Fig. 1. A solution, and the corresponding nested version (right), as in Lemma 2.

We use the Boosted Sampling framework to develop new algorithms for some
network design problems: these will require us to use terminology about cost
shares, which can be found in Appendix A.

3 Observations and Reductions

Before we give the main results of this paper, we give some observations which
will be helpful in the rest of the paper. We investigate how solutions can be
assumed to have a simple structure, what results tree-approximations can give
for Steiner Tree Leasing (giving us a baseline to compare to), and what tree-
approximation techniques can give for more complex network leasing problems.

Structure of Solutions. The following two lemmas allow us to impose a simple
structure on the instances we solve and solutions we seek. They are fairly stan-
dard (e.g., [27, Thms 2.1 & 2.2]) and are given for completeness. Recall that the
set of permissible lease lengths is K = {`1, `2, . . . , `k} with `1 < `2 < . . . < `k.

Lemma 1. Given any instance I of a leasing problem, we can convert it into
an instance I ′ in which the lengths of leases exactly divide each other (i.e., `i|`j

for i < j), and where the costs satisfy c(`j) < c(`i) × (`j/`i). Moreover, there is
an optimal solution to I ′ which has cost at most 2 times the optimal cost for I.

The above lemma can be proved, e.g., by rounding all the lease lengths down
to the closest powers of 2, and by discarding leases that do not satisfy the sub-
additivity property. The following lemma shows that we can focus our attention
only on “nested” solutions; i.e., solutions where we never have a short-term lease
still active when a longer-term lease begins or ends.

Lemma 2 (Nested Solutions). Given an instance I of a leasing problem,
there is a solution which has cost at most 2 times the optimum, where a lease of
length ` is obtained only for intervals of the form [t, t + `) with t a multiple of `.

See Fig. 1 for an example of a non-nested solution on the left, and a nested
solution whose cost is at most twice the cost of the former.

Reduction to Trees/Single-Edges. Given a graph G = (V, E), a theorem of
Fakcharoenphol et al. [11] (see also [5]) says that there is a distribution D over
dominating trees T (i.e., dG(u, v) ≤ dT (u, v) for any T in the support of D) such
that the expected stretch ET←D[dT (u,v)]

dG(u,v) ≤ O(log n). The following use of this
result is fairly standard by now (see [2]).



Lemma 3 (Reduction to Trees/Edges). Given an instance of Steiner Tree
Leasing which is uniform (where the cost functions ce(·) are the same for all
edges), an α-approximation for the single-edge case gives an α approximation
for trees, and an O(α log n) approximation for the general graph case.

The proof uses the fact that the reduction to a tree instance loses an O(log n);
once on a tree, the paths to be chosen are unique, and hence it suffices to run the
single-edge algorithm on each edge to determine when to lease it. (The simple
details are deferred to the final version of the paper.) Since we can solve the
leasing problem on a single edge exactly, we get an O(log n)-approximation for
the Steiner Tree Leasing problem.

General (Uniform) Leasing Strategies and CIPs. Consider a much more
general network design problem where at each time step t we are given a traffic
matrix Dt, and want to allocate enough bandwidth to route Dt. We are now
given a set L = {Lj = (Ij , bj , pj)}j of possible leases, where each lease Lj in L
is specified by a time interval Ij during which this lease is active, an amount bj

of bandwidth and a price pj for it. Moreover, for any lease Lj, we may have an
upper bound uj on the number of copies of this lease we can buy per edge. This
is a much more general model than the one we have been looking at, since we
allow “one-time-only” offers (a special deal valid only for some days at a special
price, limit one only), etc: this captures Buy-at-Bulk Leasing, and much more.

However, as long as the problem is uniform (i.e., each edge e has the same
set L of potential leases), we can use a reduction akin to Lemma 3 to ran-
domly reduce the problem to a tree and hence to a single edge, where it can
be solved using general theorems on CIPs, covering integer problems techniques
(e.g., see [30,35,6,36,23]). Applying these techniques to our problems give us ap-
proximation ratios that typically depend on log `max, and log bmax, where bmax is
the maximum bandwidth requirement. (See the full version for precise details.)
In this paper, we attempt to give algorithms that are better—i.e., independent
of `max; it is easy to see that log `max ≥ k, and we think of log `max � k.

4 Algorithms for Leasing Problems

In this section, we will prove the main result: that Leasing Problems can be cast
as Stochastic Optimization problems. This will allow us to get approximation
algorithms for a variety of leasing problems from the corresponding algorithms
for stochastic optimization. While we use many stochastic algorithms already
in the literature, we will give new algorithms for some problems like Stochastic
Rent-or-Buy and Stochastic Buy-at-Bulk, and hence for their leasing versions.

4.1 Reduction to Multistage Stochastic Optimization

Let us assume, without loss of generality, that `1 = 1, and denote the maximum
lease length by `max. By Lemma 2 we can assume that our solutions are nested.
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Fig. 2. A nested leasing instance (k = 4), and the resulting stochastic tree T

Theorem 4 (Reduction to k-stage Stochastic Optimization). Any (non-
uniform) offline problem Π in the above framework with |K| = k lease lengths
can be reduced to the standard k-stage stochastic optimization version of Π.

Proof. As in the proof of Theorem 2, let us consider tiling time by intervals of
length `k, each of which are divided into Nk−1 = `k

`k−1

consecutive intervals of

length `k−1, each of which are further subdivided into Nk−2 = `k−1

`k−2

intervals of

length `k−2, and so on. Note that this gives a different representation of time: we

can describe time t =
∑k

p=1 jp `p as a k-tuple of the form (jk, jk−1, . . . , j1)—and
we will denote this tuple by τ̄ (t). (Note that jp is simply bt/`pc (mod `p+1),
where we assume `k+1 = ∞). Corresponding to this notation, we will refer to
the set Xt(`i) also as X(jk,jk−1,...,j1)(`i), where t, `i and the jk’s are as above.

Recall that we are looking for nested solutions, and hence each lease of length
`i will be obtained at the beginning of some interval of length `i; hence Xt(`i) = ∅
for t 6≡ 0 (mod `i). Moreover, since the longest interval is of length `k, all permits
will have to be purchased afresh at the end of each length `k interval, and hence
we can focus on the time interval from 0 to T = `k−1. Using these facts, consider
a leasing solution that for each t ∈ [T ] and p ∈ [k], buys leases of length `p on
the elements in Xt(`p) at time t. The (expected) cost of this solution is5

E





∑

e∈X0(`k)

ce(`k) +
∑

t:`k−1|t

∑

e∈Xt(`k−1)

ce(`k−1) +
∑

t:`k−2|t

∑

e∈Xt(`k−2)

ce(`k−2) + . . .



 . (1)

We now define an instance of the k-stage stochastic optimization problem
Stock(Π) with the same optimal value as (1), and hence an α-approximation to
the stochastic problem gives an α-approximation to our network leasing problem.

The Stochastic Instance Consider the tree T in Fig. 2 where the root has
Nk−1 = `k

`k−1

children, each node at depth 1 has Nk−2 =
`k−1

`k−2

children, and so on.

This gives rise to `k leaves associated with the distributions π1, π2, . . . , π`t
from

5 We allow randomized leasing policies, and so expectation is over the coin tosses of
our algorithm, as well as over randomness in the choice of the sets St in case we are
working in the stochastic offline model where St is drawn from the distribution πt.



left to right. The k-stage stochastic problem now involves k stages of decision-
making. In the first stage, a particle is placed at the root, and we buy a set
Y1 ⊆ X , where element e ∈ X costs ce(`k). After this, the particle moves to
one of the children of the root at random; after we learn the identity of this
vertex of T, we can buy a “stage-2” set Y2 ⊆ X , but the cost of e now becomes
ce(`k−1) × Nk−1. In this way, after t steps, the particle reaches some node at
depth t, whence we buy some “stage-t+1” set Yt+1 ⊆ X with the costs ce(`k−t)×
∏

1≤p≤t Nk−p = ce(`k−t) ×
`k

`k−t
. Finally, when the particle reaches some leaf vk

(at depth k − 1, say it is the tth leaf), the algorithm finally gets a random set of
clients St ∈R πt, and must output a set Yk such that Y1∪Y2∪ . . .∪Yk ∈ Sols(St);
as above, the costs are now ce(`1) ×

∏

1≤p≤k Nk−p = ce(`1) ×
`k

`1
.

The Correspondence Note that a solution to this process associates a (poten-
tially) random set Y (v) with each vertex of tree T; the expected cost is

E





∑

e∈Y (root)

ce(`k) +

k−1
∑

p=1

∑

v at depth p

Pr[reach v]
∑

e∈Y (v)

ce(`k−p) ×
`k

`k−p



 (2)

Finally, we place the nodes at level p of T in correspondence with integers t
such that `k−p|t, associate Y (v) with Xt(`k−p), and observe the probability of

reaching any fixed node at level p is
`k−p

`k
to get that (2) and (1) are identical.

Costs and Inflations The instances of Stock(Π) created by the reduction above

have the property that when we go from stage p− 1 to stage p of the stochastic
problem, the cost of each element e increases by an inflation factor of

σe,p
.
=

ce(`k−p+1) × Nk−p+1

ce(`k−p+2)
, (3)

which by our assumptions is at least 1. If the leasing problem was uniform (the
functions ce(·) were the same for all e ∈ X), this inflation parameter depends
only on the stage p but not on the element e (the uniform inflation case). But, if
the leasing problem was non-uniform, we get a non-uniform inflation stochastic
problem. This distinction will be useful, since depending on the problem Π ,
different approximation guarantees exist for uniform and non-uniform versions.

4.2 Leasing Algorithms from Existing Stochastic Algorithms

There has been much recent work on designing algorithms for multistage stochas-
tic optimization with provable guarantees; see [34,17,19]; some are in the uniform
inflation model, whereas others are more general. Using Theorem 4, we get:6

6 The proceedings version erroneously claimed O(1)-approximations for facility lo-
cation due to Srinivasan. No such approximations are currently known; his paper
provides improved results for k = 2.



Problem Inflation Approximation Ratio Stochastic

type for Leasing problem Citation

Steiner Tree uniform 8k 2k [17,19]

Facility Location non-uniform 6.84k 1.71k [34]

Vertex Cover non-uniform 8 2 [28,37]

Set Cover non-uniform 4 ln n ln n [37]

We note that as presented, the algorithms for the k-stage stochastic problems
specify which elements to buy in an “online-like” fashion; given the observations
of what has happened in the past, the stochastic algorithms prescribe the el-
ements to buy at the current time instant. In particular, they do not give an
explicit representation of the sets Y (v) of elements to buy for each node v of the
distribution tree T. However, the above algorithms can easily be altered to give
all these sets; the details are deferred to the final version of the paper.

5 New Stochastic/Leasing Approximations

In this paper, we give new results for k-stage stochastic optimization (and hence
for Network Leasing) on a group of network design problems, all of which lie
under the umbrella of “buy-at-bulk”-type problems. In these problems, the de-
mand Dt for day t is not just a set of clients that have to be connected (as in
Steiner Tree), but instead is a traffic matrix specifying how much traffic flows
between various pairs of nodes in the network. In addition to the lease-cost func-
tion c : K → R+ given earlier, we are also given a “bandwidth-cost” function
g : R+ → R+. The cost of leasing b bandwidth on an edge for ` length of time
is now Cost(b, `) = g(b)× c(`). (We consider these problems only in the uniform
model, and hence both the functions c(·) and g(·) are the same for each edge.)

We will give the following results for some buy-at-bulk type problems, using
the Boosted Sampling approach and defining “strict” cost-shares to prove these
results; a quick overview is provided in Appendix A.

Problem Inflation Approximation Ratio Citation

Buy-at-Bulk uniform O(k log n) Theorem 5

Single-Sink Rent-or-Buy uniform O(k) Theorem 6

Single-Sink Buy at Bulk uniform O(k) Theorem 7

5.1 Multiple-Sink Buy-at-Bulk

There are many ways to specify the Buy-at-Bulk problem which are all equivalent
to within a factor of 2 (see, e.g., [38]), so let us fix one. We are given a demand
matrix D ∈ R

n×n where Dij gives the traffic from vi to vj . We have a monotone
subadditive cost function g(·), where the cost of bandwidth b is g(b). By well-



known properties of subadditive functions, we can find a concave cost function
h(·) such that g(b) ≤ h(b) ≤ 2g(b) for all b 6= 0. We assume that the cost of
bandwidth allocation is h(b) for all non-zero values of b; this only changes the
problem by a factor of 2.

The best-known algorithm for the Buy-at-Bulk problem is by Awerbuch and
Azar [2]. We approximate the graph by a random tree (as in Lemma 3), and
given the Buy-at-Bulk problem on the tree, we can solve it on an edge-by-edge
basis. We now show how to get an algorithm for the stochastic version.

Theorem 5. The k-stage stochastic version of the Buy-at-Bulk problem on the
tree has an O(k) approximation, and hence Buy-at-Bulk on general graphs has
an O(k log n) approximation.

Proof. Let us give an algorithm for a single edge in the tree that separates V into
A and V \A: we can calculate the traffic crossing this edge e as De =

∑

ij∈∂A Dij .
For this edge, we allocate capacity De and divide the cost h(De) equally among
each of the De units of demand. Clearly the cost shares are cross-monotone:
if more demand passes through the edge, the cost only decreases because h is
concave. Moreover, the algorithm is a 1-approximation with respect to these
cost-shares, since we share the exact cost of the algorithm amongst the players.

Moreover, we can check that these cost shares are 1-c-strict (as defined in (5)):
indeed, if we divided the traffic De into two parts S and T , and allocated S units
of bandwidth first, then the cost shares ξ(X/A(S), T, T ) = h(S+T )−h(S) would
be at most the cost-shares ξ(X, S ∪T, T ) = h(S + T )× T

S+T
ascribed to T when

both S and T were in the fray; this follows from the concavity of h.

Given that we have 1-c-strict and cross-monotone cost shares ξ and a 1-
approximation algorithm A with respect to ξ, we can apply Theorem 8 to in-
fer a k-approximation (with respect to the cost function h), and hence a 2k-
approximation with respect to the original cost function g. Finally, since we
moved to a random tree, we lose another O(log n) in translating the solution
back to the original graph G. This concludes the proof.

5.2 Single-Sink Buy-at-Bulk Problems

In the Single-Sink Rent-or-Buy problem (a special case of the Buy-at-Bulk prob-
lem), we are given a graph G = (V, E) with a distinguished root vertex r. Each
vertex j wants to send dj amount of traffic to r. The bandwidth cost function
is g(b) = min{b, M} for some parameter M . We show the following result:

Theorem 6. The Single-Sink Rent-or-Buy problem has an O(1)-approximation
algorithm with respect to 1-c-strict cost sharing functions; moreover, these cost-
shares are cross-monotone.

Combined with Theorem 8, this gives an O(k)-approximation for stochastic
Single-Sink Rent-or-Buy, and hence an O(k)-approximation for the Single-Sink

Rent-or-Buy Leasing problem, where buying b bandwidth for ` costs g(b) · c(`).



Proof. The algorithm A is the SimpleCFL algorithm from [15]. This algorithm
starts off with F = {r}, and add each vertex j to F independently with prob-
ability dj/M . It then builds an approximate Steiner tree on F using the MST
heuristic, and allocates unlimited capacity on its edges (hence paying M on each
such edge). It then sends dj units of flow from j to its closest vertex in F (which
may be j itself, in case j ∈ F ); for this it pays cost 1 per unit of flow.

Define the cost-share for node j as ξRoB(v) = E[M ξMST (v)] + E[dj l(v, F )].
(Here ξMST is a cross-monotonic cost-sharing function ξMST for the minimum
spanning tree problem—e.g., given in [22,21], and l(v, F ) is the distance from
v to the nearest vertex in F .) It is known that ξRoB is cross-monotone, and
moreover that A is a 4-approximation for Single-Sink Rent-or-Buy with respect
to these cost-shares ξRoB [24,18].

We claim ξRoB is 1-c-strict with respect to A. By the definition of 1-c-strict-
ness, we want to show that given S, T ⊆ V , ξ(G, S∪T, T ) ≥ E[ξ(G/A(S), T, T )];
here the expectation on the right hand side is over the coins flipped by A(S).7 Of
course, to compute both the cost shares ξ’s, we also have to take expectations.
Since the expressions on the left and the right both involve flipping an indepen-
dent coin for each of the nodes in S ∪ T , let us couple the two random processes
in the natural way by making the same set of coin tosses in both expressions.

Consider a particular choice of coin flips for S∪T , which chooses FS ⊆ S and
FT ⊆ T ; set F = {r} ∪ FS ∪ FT . The cost-shares on the right involve paying for
the MST on FT (in the graph G/A(S)), and paying for connections from each
j ∈ T \ FT to F . Charging for the latter is easy, since we pay for the distance
from j to F in the left expression too. To pay for the former, we look at the
primal-dual process that generates ξMST . In the run on G/A(S) with terminals
FT , a node j in FT obtains cost-shares as long as its moat does not contain the
root of the graph G/A(S). Since all nodes in FS are contracted to the root in
G/A(S), in the process for the left hand side the moat of j must not have hit any
moat of FS ∪ {r}, and hence must get at least as much cost-share. This implies
that for any particular set of coin flips, the cost-share on the right is bounded
above by the cost-share on the left, and hence this holds in expectation as well.

This can be extended to give the following theorem:

Theorem 7. The Single-Sink Buy-at-Bulk problem has an O(1)-approximation
algorithm with respect to 1-c-strict cross-monotone cost sharing functions.

The proof of Theorem 7 extends the proof of Theorem 6. While we defer it until
the final version of the paper, we sketch it here: the algorithm is essentially the
SimpleSSBB algorithm from [15], which uses the above SimpleCFL algorithm re-
peatedly to collect the traffic, which is then aggregated at some randomly chosen
locations. Each time the aggregation is done using cables of larger capacity, and
results in fewer and fewer locations, until finally all the traffic is at one location,
whence it is sent to the root. Since we repeatedly use the algorithm SimpleCFL,
the cost-share of a node u is just the expected cost-share of u accumulated over

7 The added expectation sign over the definition (5) is required since A is randomized.



the various runs of SimpleCFL (where its cost-share is zero when there is no more
traffic at u). The proof of strictness again proceeds by coupling the run on S∪T
to the run where we build a solution on S, and then augment it to T .

6 Conclusions

In this paper, we defined several natural “Leasing” problems, in which an op-
timization problem is solved repeatedly over time (each time with a different
set of clients), and the elements chosen to serve the clients can be leased for
extended periods of time to take advantage of temporal trends in the sets of
clients. The costs of these leases satisfy standard economies of scale, and hence
longer leases cost less per unit of time. We study leasing problems in an offline
setting, and give approximation algorithms for them via a connection with mul-
tistage stochastic optimization. We also give new algorithms for some network
design problems in the multistage stochastic framework.

Many future directions of research suggest themselves: an important one is
to extend the results to online or stochastic versions of leasing problems. In
this paper, the demands Dt were given up front, but one can also consider cases
where the demands Dt appear only on day t, chosen adversarially (i.e., the online
model) or from some probability distribution (i.e., the stochastic model). While
some of these problems can be solved by solving associated LPs and rounding
them online (as in [27]), obtaining general results for these online problems
is a direction we are exploring in ongoing work. There seem to be interesting
questions involved in pricing these leases as well. It would be good to extend the
“buy-at-bulk” results to cases where the cost function is not separable g(b)f(`).
Finally, getting o(k)-approximations for the Steiner Tree Leasing problem is an
intriguing question—it seems that the ideas for such an improvement would be
useful for the multistage stochastic versions as well.
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A Cost Shares and Stochastic Algorithms

We will draw on some techniques developed in recent work on converting ap-
proximation algorithms for standard (non-stochastic) versions of optimization
problems into those for the stochastic versions of the problems [16,17]. In par-
ticular, we use the following theorem.

Theorem 8 ([17]). Given a problem Π, if A is an α-approximation algorithm
w.r.t. a 1-c-strict cost-sharing function ξ, and if ξ is cross-monotone, then there
is an αk-approximation algorithm for the k-stage stochastic version of Π.

Let us briefly discuss the basics of the cost-sharing concepts we will use in
this paper; we refer the reader to [17] for a detailed discussion of the concepts.
Loosely, a cost-sharing function ξ divides the cost of a solution among the client
set S. We use the notation ξ(G, S, j) to denote the share of the client j when
the input is the graph G and the set of clients is S. (By convention, we will
assume that ξ(G, S, j) > 0 =⇒ j ∈ S.) The function ξ is cross-monotone if
for every pair of client sets S ⊆ T and a client j such that j ∈ S, we have
ξ(G, T, j) ≤ ξ(G, S, j). (I.e., if more clients join the system, the share of any
individual client does not increase.)

Competitiveness. We will try to relate algorithms A to cost-sharing functions
ξ, and hence ξ will conceptually behave like a “dual”. Hence a crucial property
is that ξ give a lower bound on the cost of the optimal solution: A cost-sharing
function ξ is competitive if for every client set S, it holds that

∑

j∈S ξ(G, S, j) ≤ OPT(X, S). (4)

We will focus only on competitive cost-sharing functions. (Henceforth, we will
use the notation ξ(G, S, S′) to denote

∑

j∈S′ ξ(G, S, j).)



Strictness. Let S, T ⊆ V be sets of users. Suppose G is the original graph, and
G/A(G, S) is the graph after the client set S has already been served by running
the algorithm A on it. Then the cost-sharing function ξ is β-c-strict if

ξ(G/A(G, S), T, T ) ≤ β × ξ(G, S ∪ T, T ). (5)

In other words, the total cost shares for the set T of users in the reduced instance
G/A(G, S) is at most β times the cost-shares for T if the users in S were present
as well. In this paper, we will deal only with the case when β = 1; i.e., cases
where the cost shares for T when it appears with S are at least as much as when
S is served earlier, and then T has to be served by itself.

Finally, we call A an α-approximation algorithm with respect to the cost-
sharing function ξ

c(A(G, S)) ≤ α ξ(G, S, S). (6)

Note that chaining the inequalities (6) and (4) implies that A is an α-approxi-
mation algorithm in the conventional sense as well.
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