Skip to main content

The Set Connector Problem in Graphs

  • Conference paper
Book cover Integer Programming and Combinatorial Optimization (IPCO 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4513))

Abstract

Given a graph G = (V,E) with an edge cost and families \(\mathcal{V}_i\subseteq 2^V\), i = 1,2,...,m of disjoint subsets, an edge subset F ⊆ E is called a set connector if, for each \(\mathcal{V}_i\), the graph \((V,F)/\mathcal{V}_i\) obtained from (V,F) by contracting each \(X\in \mathcal{V}_i\) into a single vertex x has a property that every two contracted vertices x and x′ are connected in \((V,F)/\mathcal{V}_i\). In this paper, we introduce a problem of finding a minimum cost set connector, which contains several important network design problems such as the Steiner forest problem, the group Steiner tree problem, and the NA-connectivity augmentation problem as its special cases. We derive an approximate integer decomposition property from a fractional packing theorem of set connectors, and present a strongly polynomial 2α-approximation algorithm for the set connector problem, where \(\alpha=\max_{1 \leq i \leq m}(\sum_{X \in \mathcal{V}_i}|X|)-1\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arkin, E.M., Halldórsson, M.M., Hassin, R.: Approximating the tree and tour covers of a graph. Information Processing Letters 47, 275–282 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bateman, C.D., Helvig, C.S., Robins, G., Zelikovsky, A.: Provably good routing tree construction with multi-port terminals. In: Proceedings of the 1997 International Symposium on Physical Design, pp. 96–102 (1997)

    Google Scholar 

  3. Charikar, M., Chekuri, C., Goel, A., Guha, S.: Rounding via trees: deterministic approximation algorithms for group Steiner trees and k-median. In: Proceedings of the thirtieth Annual ACM Symposium on Theory of Computing, pp. 114–123 (1998)

    Google Scholar 

  4. Chekuri, C., Even, G., Kortsarzc, G.: A greedy approximation algorithm for the group Steiner problem. Discrete Applied Mathematics 154, 15–34 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chekuri, C., Shepherd, F.B.: Approximate integer decompositions for undirected network design problems. Manuscript (2004)

    Google Scholar 

  6. Drake, D.E., Hougardy, S.: On approximation algorithms for the terminal Steiner tree problem. Information Processing Letters 89, 15–18 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Frank, A.: On a theorem of Mader. Discrete Mathematics 191, 49–57 (1992)

    Article  Google Scholar 

  8. Fujito, T.: On approximability of the independent/connected edge dominating set problems. Information Processing Letters 79, 261–266 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fujito, T.: How to Trim an MST: A 2-Approximation Algorithm for Minimum Cost Tree Cover. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 431–442. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Garg, N., Konjevod, G., Ravi, R.: A polylogarithmic approximation algorithm for the group Steiner tree problem. Journal of Algorithms 37, 66–84 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM Journal on Computing 24, 296–317 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gusfield, D.: Connectivity and edge-disjoint spanning trees. Information Processing Letters 16, 87–89 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  13. Halperin, E., Kortsarz, G., Krauthgamer, R., Srinivasan, A., Wang, N.: Integrality ratio for group Steiner trees and directed steiner trees. In: Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 275–284 (2003)

    Google Scholar 

  14. Halperin, E., Krauthgamer, R.: Polylogarithmic inapproximability. In: Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing, pp. 585–594 (2003)

    Google Scholar 

  15. Ishii, T., Hagiwara, M.: Augmenting Local Edge-Connectivity between Vertices and Vertex Subsets in Undirected Graphs. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 490–499. Springer, Heidelberg (2003)

    Google Scholar 

  16. Ito, H.: Node-to-area connectivity of graphs. Transactions of the Institute of Electrical Engineers of Japan 11C, 463–469 (1994)

    Google Scholar 

  17. Ito, H., Yokoyama, M.: Edge connectivity between nodes and node-subsets. Networks 31, 157–164 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Könemann, J., Konjevod, G., Parekh, O., Sinha, A.: Improved approximations for tour and tree covers. Algorithmica 38, 441–449 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lin, G., Xue, G.: On the terminal Steiner tree problem. Information Processing Letters 84, 103–107 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lu, C.L., Tang, C.Y., Lee, R.C.-T.: The full Steiner tree problem. Theoretical Computer Science 306, 55–67 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mader, W.: A reduction method for edge-connectivity in graphs. Annals of Discrete Mathematics 3, 145–164 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  22. Miwa, H., Ito, H.: Edge augmenting problems for increasing connectivity between vertices and vertex subsets. Technical Report of IPSJ, vol. 99-AL-66, pp. 17–24 (1999)

    Google Scholar 

  23. Nutov, Z.: Approximating connectivity augmentation problems. In: Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 176–185 (2005)

    Google Scholar 

  24. Reich, G., Widmayer, P.: Beyond Steiner’s problem: a VLSI oriented generalization. In: Nagl, M. (ed.) WG 1989. LNCS, vol. 411, pp. 196–210. Springer, Heidelberg (1990)

    Google Scholar 

  25. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  26. Slavík, P.: Approximation algorithms for set cover and related problems. PhD thesis, University of New York (1998)

    Google Scholar 

  27. Tardos, E.: A strongly polynomial algorithm to solve combinatorial linear programs. Operations Research 34, 250–256 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zosin, L., Khuller, S.: On directed Steiner trees. In: Proceedings of the thirteenth annual ACM-SIAM symposium on Discrete algorithms, pp. 59–63 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Matteo Fischetti David P. Williamson

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Fukunaga, T., Nagamochi, H. (2007). The Set Connector Problem in Graphs. In: Fischetti, M., Williamson, D.P. (eds) Integer Programming and Combinatorial Optimization. IPCO 2007. Lecture Notes in Computer Science, vol 4513. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72792-7_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72792-7_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72791-0

  • Online ISBN: 978-3-540-72792-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics