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Abstract. A well established heuristic approach for solving various bi-
criteria optimization problems is to enumerate the set of Pareto optimal
solutions, typically using some kind of dynamic programming approach.
The heuristics following this principle are often successful in practice.
Their running time, however, depends on the number of enumerated so-
lutions, which can be exponential in the worst case.

In this paper, we prove an almost tight bound on the expected number
of Pareto optimal solutions for general bicriteria integer optimization
problems in the framework of smoothed analysis. Our analysis is based
on a semi-random input model in which an adversary can specify an
input which is subsequently slightly perturbed at random, e.g., using a
Gaussian or uniform distribution.

Our results directly imply tight polynomial bounds on the expected run-
ning time of the Nemhauser/Ullmann heuristic for the 0/1 knapsack
problem. Furthermore, we can significantly improve the known results
on the running time of heuristics for the bounded knapsack problem and
for the bicriteria shortest path problem. Finally, our results also enable us
to improve and simplify the previously known analysis of the smoothed
complexity of integer programming.

1 Introduction

We study integer optimization problems having two criteria, say profit and
weight, which are to be optimized simultaneously. A common approach for solv-
ing such problems is generating the set of Pareto optimal solutions, also known
as the Pareto set. Pareto optimal solutions are optimal compromises of the two
criteria in the sense that any improvement of one criterion implies an impair-
ment to the other. In other words, a solution S* is Pareto optimal if there exists
no other solution S that dominates S*, i.e., has at least the profit and at most
the weight of S* and at least one inequality is strict. Generating the Pareto set
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is of great interest in many scenarios and widely used in practice. Unfortunately,
this approach fails to yield reasonable results in the worst case because even
integer optimization problems with a simple combinatorial structure can have
exponentially many Pareto optimal solutions. In practice, however, generating
the Pareto set is often feasible since typically the number of Pareto optimal
solutions does not attain its worst-case bound.

The discrepancy between practical experience and worst-case results moti-
vates the study of the number of Pareto optimal solutions in a more realistic
scenario. One possible approach is to study the average number of Pareto opti-
mal solutions rather than the worst case number. In order to analyze the average,
one has to define a probability distribution on the set of instances, with respect
to which the average is taken. In most situations, however, it is not clear how to
choose a probability distribution that reflects typical inputs. In order to bypass
the limitations of worst-case and average-case analysis, Spielman and Teng de-
fined the notion of smoothed analysis [15]. They consider a semi-random input
model in which an adversary specifies an input which is then randomly per-
turbed. One can hope that semi-random input models are more realistic than
worst-case and average-case input models since the adversary can specify an arbi-
trary input with a certain structure, and the subsequent perturbation generates
an instance which is still close to the adversarial one.

We consider integer optimization problems in a semi-random setting, in which
an adversary can specify an arbitrary set S C D" of feasible solutions and two
objective functions: profit p: & — R and weight w: § — R, where D C Z
denotes a finite set of integers. We assume that the profit is to be maximized
and the weight is to be minimized. This assumption is without loss of generality
as our results are not affected by changing the optimization direction of any
of the objective functions. In our model, the weight function w can be chosen
arbitrarily by the adversary, whereas the profit p has to be linear of the form
p(x) = prx1 + -+ + ppx,. The adversary can choose an arbitrary vector of
profits from [—1,1]™, but in the second step of the semi-random input model, the
profits p; are randomly perturbed by adding an independent Gaussian random
variable with mean 0 and standard deviation ¢ to each profit p;. The standard
deviation ¢ can be seen as a parameter measuring how close the analysis is to
a worst-case analysis: The smaller o is chosen, the smaller is the influence of
the perturbation and, hence, the closer is the analysis to a worst-case analysis.
Our probabilistic analysis is not restricted to Gaussian perturbations but is
much more general. In fact, it covers arbitrary probability distributions with a
bounded density function and a finite absolute mean value. In particular, if one
is interested in obtaining a positive domain for the profits, one can restrict the
adversary to profits p; € [0, 1] and perturb these profits by adding independent
random variables that are distributed uniformly over some interval [0, c].

We present a new method for bounding the expected number of Pareto opti-
mal solutions in the aforementioned scenario which yields an upper bound that
depends polynomially on the number of variables n, the integer with the largest
absolute value in D, and the reciprocal of the standard deviation . This imme-



diately implies polynomial upper bounds on the expected running time of several
heuristics for generating the Pareto set of problems like, e. g., the Bounded Knap-
sack problem. Previous results of this kind were restricted to the case of binary
optimization problems. For this special case, our method yields an improved up-
per bound, which matches the known lower bound. Furthermore, we show that
our results on the expected number of Pareto optimal solutions yield a signifi-
cantly simplified and improved analysis of the smoothed complexity of integer
programming.

1.1 Previous Results

Multi-objective optimization is a well studied research area. Various algorithms
for generating the Pareto set of various optimization problems like, e.g., the
(bounded) knapsack problem [11, 8], the bicriteria shortest path problem [4, 14]
and the bicriteria network flow problem [5, 10], have been proposed. The running
time of these algorithms depends crucially on the number of Pareto optimal
solutions and, hence, none of them runs in polynomial time in the worst case.
In practice, however, generating the Pareto set is tractable in many situations.
For instance, Miiller-Hannemann and Weihe [9] study the number of Pareto
optimal solutions in multi-criteria shortest path problems experimentally. They
consider examples that arise from computing the set of best train connections
(in view of travel time, fare, and number of train changes) and conclude that
in this application scenario generating the complete Pareto set is tractable even
for large instances. For more examples, we refer the reader to [6].

One way of coping with the bad worst-case behavior is to relax the require-
ment of finding the complete Pareto set. Papadimitriou and Yannakakis present
a general framework for finding approzrimate Pareto sets. A solution S is e-
dominated by another solution S’ if p(S)/p(S’) < 1+ and w(S")/w(S) < 1+-e.
We say that P, is an e-approximation of a Pareto set P if for any solution S € P
there is a solution S’ € P. that e-dominates it. Papadimitriou and Yannakakis
show that for any Pareto set P, there is an e-approximation of P with polyno-
mially many points (w.r.t. the input size and 1/¢) [12]. Furthermore they give
necessary and sufficient conditions under which there is an FPTAS to gener-
ate P.. Vassilvitskii and Yannakakis [16] show how to compute e-approximate
Pareto curves of almost minimal size.

Beier and Vocking analyze the expected number of Pareto optimal solu-
tions for binary optimization problems [2]. They consider the aforementioned
scenario with D = {0,1} and show that the expected number of Pareto opti-
mal solutions is bounded from above by O(n*/c). This result implies that the
Nembhauser/Ullmann algorithm [11] has polynomial expected running time. Fur-
thermore, they also present a lower bound of £2(n?) on the expected number of
Pareto optimal solutions for profits that are chosen uniformly from the interval
[0,1].

In [3] Beier and Vocking analyze the smoothed complexity of binary op-
timization problems. They consider optimization problems with one objective
function in which the set of feasible solutions is given as SNByN...NB,,, where



S C {0,1}" denotes a fixed ground set and B; denotes a halfspace induced by a
linear constraint of the form w; 121 + - - - +w; nTp < t;. Similar to the aforemen-
tioned model it is assumed that the coefficients w; ; are perturbed by adding
independent random variables to them. Based on the probabilistic analysis of
certain structural properties, Beier and Vocking show that a binary optimiza-
tion problem in this form has polynomial smoothed complexity if and only if
there exists a pseudo-polynomial (w.r.t. the w; ;) time algorithm for solving
the problem. The term polynomial smoothed complexity is defined analogously
to the way polynomial complexity is defined in average-case complexity theory,
adding the requirement that the running time should be polynomially bounded
not only in the input size but also in 1/0. This characterization is extended to
the case of integer optimization problems where D C Z is a finite set of integers
by Réglin and Vocking [13].

1.2 Owur Results

In this paper, we present a new approach for bounding the expected number
of Pareto optimal solutions for bicriteria integer optimization problems. This
approach yields the first bounds for integer optimization problems and improves
the known bound for the binary case significantly. We show that the expected
number of Pareto optimal solutions is bounded from above by O(n?k?log(k)/o)
if D={0,...,k—1}. We also present a lower bound of £2(n?k?), assuming that
the profits are chosen uniformly at random from the interval [—1, 1]. For the case
in which the adversary is restricted to linear weight functions, we present a lower
bound of 2(n?klog k). Furthermore, for the binary case D = {0, 1}, the upper
bound simplifies to O(n? /o), which improves the previously known bound by a
factor of ©(n?) and matches the lower bound in [2] in terms of n. Hence, our
method yields tight bounds in terms of n and almost tight bounds in terms of k
for the expected number of Pareto optimal solutions and, thereby, even simplifies
the proof in [2]. In the following, we list some applications of these results.

Knapsack Problem. The Nemhauser/Ullmann algorithm solves the knapsack
problem by enumerating all Pareto optimal solutions [11]. Its running time on
an instance with n items is ©(>__; ¢;), where ¢; denotes the number of Pareto
optimal solutions of the knapsack instance that consists only of the first ¢ items.
Beier and Vocking analyze the expected number of Pareto optimal solutions and
show that the expected running time of the Nemhauser/Ullmann algorithm is
bounded by O(n® /) if all profits are perturbed by adding Gaussian or uniformly
distributed random variables with standard deviation o [2]. Based on our im-
proved bounds on the expected number of Pareto optimal solutions, we conclude
the following corollary.

Corollary 1. For semi-random knapsack instances in which the profits are per-
turbed by adding independent Gaussian or uniformly distributed random variables
with standard deviation o, the expected running time of the Nemhauser/Ullmann
algorithm is O(n? /o)



For uniformly distributed profits Beier and Vocking present a lower bound on the
expected running time of 2(n3). Hence, we obtain tight bounds on the running
time of the Nemhauser/Ullmann algorithm in terms of the number of items n.
This lower bound can easily be extended to the case of Gaussian perturbations.

Bounded Knapsack Problem. In the bounded knapsack problem, a number k € N
and a set of n items with weights and profits are given. It is assumed that k
instances of each of the n items are given. In [7] it is described how an in-
stance with n items of the bounded knapsack problem can be transformed into
an instance of the (binary) knapsack problem with ©(nlog (k + 1)) items. Us-
ing this transformation, the bounded knapsack problem can be solved by the
Nembhauser/Ullmann algorithm with running time Q(Z?Zkl)g(kH) i), where g;
denotes the number of Pareto optimal solutions of the binary knapsack instance
that consists only of the first ¢ items. Based on our results on the expected
number of Pareto optimal solutions, we obtain the following corollary.

Corollary 2. The expected running time of the Nemhauser/Ullmann algorithm
on semi-random bounded knapsack instances in which the profits are perturbed
by adding independent Gaussian or uniformly distributed random variables with
standard deviation o is bounded from above by O(nk?(log® (k+1))/o) and
bounded from below by 2(nklog? (k +1)).

Hence, our results yield tight bounds in terms of n for the expected running time
of the Nemhauser/Ullmann algorithm.

Bicriteria Shortest Path Problem. Different algorithms have been proposed for
enumerating the Pareto set in bicriteria shortest path problems [4,14]. In [4] a
modified version of the Bellman/Ford algorithm is suggested. Beier shows that
the expected running time of this algorithm is O(nm?®/o) for graphs with n
nodes and m edges [1]. We obtain the following improved bound.

Corollary 3. For semi-random bicriteria shortest path problems in which one
objective function is linear and its coefficients are perturbed by adding indepen-
dent Gaussian or uniformly distributed random variables with standard devia-

tion o, the expected running time of the modified Bellman/Ford algorithm is
O(nm?/o)

Smoothed Complexity of Integer Programming. We were not able to bound the
expected number of Pareto optimal solutions for optimization problems with
more than two objective functions. One approach for tackling multicriteria prob-
lems is to solve a constrained problem in which all objective functions except
for one are made constraints. Our results for the bicriteria case can be used to
improve the smoothed analysis of integer optimization problems with multiple
constraints. In [13] we show that an integer optimization problem has polyno-
mial smoothed complexity if and only if there exists a pseudo-polynomial time
algorithm for solving the problem. To be more precise, we consider integer op-
timization problems in which an objective function is to be maximized over a



feasible region that is defined as the intersection of a fixed ground set S C D"
with halfspaces By, ..., B,, that are induced by m linear constraints of the form
wi 121+ -+ W p @, < i, where the w; ; are independently perturbed by adding
Gaussian or uniformly distributed random variables with standard deviation o
to them.

The term polynomial smoothed complexity is defined such that it is robust
under different machine models analogously to the way polynomial average-case
complexity is defined. One disadvantage of this definition is that polynomial
smoothed/average-case complexity does not imply expected polynomial run-
ning time. For the binary case it is shown in [3] that problems that admit a
pseudo-linear algorithm, i.e., an algorithm whose running time is bounded by
O(poly(N)W), where N denotes the input size and W the largest coefficient
|w; ;| in the input, can be solved in expected polynomial time in the smoothed
model. Based on our analysis of the expected number of Pareto optimal solutions,
we generalize this result to the integer case.

Theorem 4. FEvery integer optimization problem that can be solved in time
O(poly(N)W), where N denotes the input size and W = max; ; |w; ;|, allows an
algorithm with expected polynomial (in N and 1/c) running time for perturbed
instances, in which an independent Gaussian or uniformly distributed random
variables with standard deviation o is added to each coefficient.

In the following section, we introduce the probabilistic model we analyze,
which is more general than the Gaussian and uniform perturbations described
above. After that, in Sections 3 and 4, we present the upper and lower bounds on
the expected number of Pareto optimal solutions. Finally, in Section 5, we present
the applications of our results to the smoothed analysis of integer programming.

2 Model and Notations

For the sake of a simple presentation, using the framework of smoothed analy-
sis, we described our results in the introduction not in their full generality. Our
probabilistic analysis assumes that the adversary can choose, for each p;, a prob-
ability distribution according to which p; is chosen independently of the other
profits. We prove an upper bound that depends linearly on the maximal density
of the distributions and on the expected distance to zero. The maximal density
of a continuous probability distribution, i.e., the supremum of the density func-
tion, is a parameter of the distribution, which we denote by ¢. Similar to the
standard deviation o for Gaussian random variables, ¢ can be seen as a mea-
sure specifying how close the analysis is to a worst-case analysis. The larger ¢,
the more concentrated the probability mass can be. For Gaussian and uniformly
distributed random variables, we have ¢ ~ 1/0.

In the following, we assume that p; is a random variable with density f;
and that f;(x) < ¢; for all z € R. Furthermore, we denote by p; the expected
absolute value of p;, i.e., i = E[|pi|] = [, op [2]fi(x) dz. Let ¢ = max;cp,) ¢ and
p = maX;e[] fi- We denote by [n] the set {1,...,n}, and we use the notations
d=1|D| and D = max{a — b | a,b € D}.



3 Upper Bound on the Expected Number of Pareto
Optimal Solutions

While the profit function is assumed to be linear with stochastic coefficients,
the weight function w : § — R can be chosen arbitrarily. We model this by
assuming an explicit ranking of the solutions in &, which can be chosen by the
adversary. This way, we obtain a bicriteria optimization problem that aims at
maximizing the rank as well as the profit. Observe that the weight function can
map several solutions to the same value whereas the rank of a solution is always
unique. This strict ordering, however, can only increase the number of Pareto
optimal solutions.

Theorem 5. Let S C D™ be a set of arbitrarily ranked solutions with a finite
domain D C Z. Define d = |D| and D = max{a — b | a,b € D}. Assume that
each profit p; is a random variable with density function f; : R — R>q. Suppose
wi = E[|p;|]] and ¢; = sup,cp fi(z). Let g denote the number of Pareto optimal
solutions. Then

E[¢] <2DdH, (Zn: ¢i> <zn:,uz> +O(dn) ,

i=1 i=1

where Hy is the d-th harmonic number. For D = {0,...,k — 1} and pu =
maX;c(y) fi and ¢ = max;c,) ¢; the bound simplifies to

E [¢] = O(upn’k*logk) .

Note that the number of Pareto optimal solutions is not affected when all
profits are scaled by some constant ¢ # 0. This property is also reflected by
the above bound. The random variable c¢p; has maximal density ¢;/c and the
expected absolute value is cu;. Hence, the product ¢u is invariant under scaling
too.

Proof (Theorem 5). We use the following classification of Pareto optimal solu-
tions. We say that a Pareto optimal solution z is of class ¢ € D if there exists an
index i € [n] with 2; # ¢ such that the succeeding Pareto optimal solution y satis-
fies y; = ¢, where succeeding Pareto optimal solution refers to the highest ranked
Pareto optimal solution that is lower ranked than x. The lowest ranked Pareto
optimal solution, which does not have a succeeding Pareto optimal solution, is
not contained in any of the classes. A Pareto optimal solution can be in several
classes but it is at least in one class. Let ¢. denote the number of Pareto optimal
solutions of class c. Since ¢ <1+ . qc it holds Efq] <1+ p E|qg.].
Lemma 6 enables us to bound the expected number of class-0 Pareto opti-
mal solutions. In order to bound E [¢.] for values ¢ # 0 we analyze a modified
sequence of solutions. Starting from the original sequence S = z' 22, ...,z
(z7 € D"), we obtain a modified sequence 8¢ by subtracting (c, ..., c) from each
solution vector z7. This way, the profit of each solution is reduced by ¢ >~ p;. Ob-
serve that this operation does not affect the set of Pareto optimal solutions. A
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(in decreasing order)

Fig. 1. If  is an ordinary class-0 Pareto optimal solution, then there must be an index
¢ with 7 =0 and &; # 0.

solution z is class-c¢ Pareto optimal in S if and only if the corresponding solution
x—(c,...,c)is class-0 Pareto optimal in §¢. Hence, the number of class-c Pareto
optimal solutions in S corresponds to the number of class-0 Pareto optimal so-
lutions in §¢. We apply Lemma 6 for the solution set S¢ with a corresponding
domain D¢ = {z — ¢ : z € D}. Since the difference between the largest and the
smallest element of the domain does not change, applying Lemma 6 yields that
E [q] is bounded from above by

vyewe <Y (o 3w (Sa) (Su) )

ceD ceD veDe\{0}
and the theorem follows. O

Lemma 6. Let S C D™ be a set of arbitrarily ranked solutions with a finite
domain D C Z with 0 € D. Let D denote the difference between the largest and
the smallest element in D. Let qy denote the number of class-0 Pareto optimal
solutions. Then

Elpl<D| Y [ <Z¢z> (ZM) +n .

veD\{0}

Proof. The key idea is to prove an upper bound on the probability that there
exists a class-0 Pareto optimal solution whose profit falls into a small interval
(t —e,t), for arbitrary t and e. We will classify class-0 Pareto optimal solutions
to be ordinary or extraordinary. Considering only ordinary solutions allows us to
prove a bound that depends not only on the length ¢ of the interval but also on
t], the distance to zero. This captures the intuition that it becomes increasingly
unlikely to observe solutions whose profits are much larger than the expected
profit of the most profitable solution. The final bound is obtained by observing
that there can be at most n extraordinary class-0 Pareto optimal solutions.
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Fig. 2. In this case z is an extraordinary class-0 Pareto optimal solution.

We want to bound the probability that there exists an ordinary class-0 Pareto
optimal solution whose profit lies in the interval (¢t — ,t). Define 2* to be the
highest ranked solution from S satisfying pTa > t. If #* exists then it is Pareto
optimal. Let Z denote the Pareto optimal solution that precedes x*, i.e., & has
the largest profit among all solutions that are higher ranked than =* (see Fig. 1).
We aim at bounding the probability that & is an ordinary class-0 Pareto optimal
solution and falls into the interval (¢ — ¢, t).

We classify solutions to be ordinary or extraordinary as follows. Let = be
a class-0 Pareto optimal solution and let y be the succeeding Pareto optimal
solution, which must exist as the lowest ranked Pareto optimal solution is not
class-0 Pareto optimal. We say that z is extraordinary if for all indices ¢ € [n]
with z; # 0 and y; = 0, z; # 0 holds for all Pareto optimal solutions z that
preceed x. In other words, for those indices 7 that make z class-0 Pareto optimal,
y is the highest ranked Pareto optimal solution that is independent of p; (see
Fig. 2). For every index i € [n] there can be at most one extraordinary class-0
Pareto optimal solution. In the following we will restrict ourselves to solutions
Z that are ordinary. Define

At) = t —pT# if 2* and & exist and & is ordinary class-0 Pareto optimal
L otherwise.

Let P° denote the set of ordinary class-0 Pareto optimal solutions. Whenever
A(t) < g, then there exists a solution z € P° with pTz € (t — ¢,t), namely 2.
The reverse is not true because it might be the case that & ¢ PY but that there
exists another solution x € P with pTz € (t—¢,t). If, however, ¢ is smaller than
the minimum distance between two Pareto optimal solutions, then the existence
of a solution z € PV with pTx € (t —,t) implies & = x and hence A(t) < e. Let
A(t,e) denote the event that there is at most one Pareto optimal solution with



a profit in the interval (¢ — &, t). Then
Pr[A(t) <e] > Pr[(A(t) <e) A A(t, )]
=Pr[3zeP’:pze(t—ct) ANAlte)]
>Pr(dzeP’:pla € (t—e,t)] — Pr[~Ate)],
and therefore

0.,T _ -
i BT [A(t) < €] > lim Pr[dz e P’ :pTz e (t—ct)] . Pr| A(t,e)].
e—0 £ e—0 I3 e—0 £

In the full version we show that for every ¢ # 0 the probability of that two
solutions lie in the interval (t — e, t) decreases like 2 for ¢ — 0. Hence, for every

£ £ 0, lim,_o LXEACG] ¢
Since the expected number of ordinary class-0 Pareto optimal solutions can
be written as

/°° 5 Pr[3dz e P?:pTa € (t —¢,t)] dtg/oo Pr[A(t) < €]

im lim dt

00 e—0 £ 0o e—0 £

it remains to analyze the term Pr [A(¢) < ¢]. In order to analyze this probability
we define a set of auxiliary random variables such that A(t) is guaranteed to
always take a value also taken by one of the auxiliary random variables. Then
we analyze the auxiliary random variables and use a union bound to conclude
the desired bound for A(t).

Define D' = D\{0} and §*=* ={x € S | x; = v} for all i € [n] and v € D.
Let 2*(* denote the highest ranked solution from S*=C with profit at least ¢.
For each i € [n] and v € D’ we define the set £("*) as follows. If 2*() does not
exist or *(* is the highest ranked solution in S**=° then we define £4?) = ().
Otherwise £(%) consists of all solutions from S*=" that have a higher rank than
z*(_ Let (%) denote the lowest ranked Pareto optimal solution from the set
L) e, #(4) has the largest profit among all solutions in £(-%). Finally we
define for each i € [n] and v € D’ the auxiliary random variable

(1) = t — pT2v) if 7000) exists,
i 4L otherwise.

If AY(t) € (0,¢) (which excludes AY(¢) =1) then the following three events must
co-occur:

1. & : There exists an z € S%=0 with pTa > ¢.
2. & : There exists an z € S*=C with pTz < t.
3. & : (1Y) exists and its profit falls into the interval (t — ¢, ).

The events & and & only depend on the profits p;, j # i. The exis-
tence and identity of #(»*) is completely determined by those profits as well.
Hence, if we fix all profits except for p;, then (%) is fixed and its profit is
¢ + vp; for some constant ¢ that depends on the profits already fixed. Observe



that the random variable ¢ + vp; has denslty at most ¢;/|v|. Hence we obtain
Pr [pT2(®) € (t —e,t)| 20 exists | < 5‘ . Define

ij and P~ = ij.

7ip; >0 7:p; <0

Moreover let d™ and d~ denote the largest and the smallest element in D.
For t > 0, the event & implies ¢ < d*P* 4+ d~P~, and hence Pr[£;] <
Pr[dt™PT +d P~ >t]. For t < 0, the event & implies ¢ > dTP~ + d~P*
and hence Pr[&] < Pr[dtP~ 4+ d~ Pt < t]. By combining these results we get

Pr[d*PT +d P~ 2t]5| ‘7fort>0 and

v <
Pr[A7(t) € (0,¢)] < {Pr[d+p+dp+§t] for t <0.

‘ )

Next we argue that A(t) < e implies AY(t) € (0,¢) for at least one pair
(t,v) € [n] x D'. So assume that A(t) < e. By definition, z* and & exist and &
is an ordinary class-0 Pareto optimal solution. Since & is class-0 Pareto optimal
and z* is the succeeding Pareto optimal solution, there exists an index i € [n]
such that

(a) zf =0 and &; = v # 0 for some v € D', and
(b) x* is not the highest ranked solution in S%i=°.

The second condition is a consequence of the assumption, that & is not extraor-
dinary, i. e., there exists a Pareto optimal solution z with z; = 0 that has higher
rank than Z. Recall that z*() is defined to be the highest ranked solution in
§%=0 with pTz > t. As z* € §%=0, z* = 2*(). Moreover, L) consists of
all solutions from S*=" that have a higher rank than z*. Thus, & € £0%). By
construction, & has the largest profit among the solutions in £(»*) and, therefore
#0v) = & and AY(t) = A(t). Applying a union bound yields, for all ¢ > 0,

PrA <s§zn:ZPrA” t) < €]

=1 veD’
Sizpr d*Pt+d P~ >t]e ri’|
i=1veD’
Pr[d"PT +d P~ >t ZZ—

=1 UED’

For t < 0 we get analogously

Pr[A(t) <e] <Pr[d"P™ +d Pt <t 522 |l| .
i=1 veD’



Now we can bound the expected number of class-0 Pareto optimal solutions,
taking into account that at most n of them can be extraordinary.

E[Q()]Sn—i—/oo limw

00 €0 I3

dt

x  PrldtPtd P 2 eSS,
<n+ / lim
0

e—0 e

$i
|’U‘ dt

lim
oo €0 €

/0 Pr[dtP=+d Pt <fey ¥, &
+

<n+ <Z|U1|> (Zj;qs) (/OOOPr [dTPt +d~ P~ >t]dt
- /OOO Pr [—d"P~ —d P" > dt)

As 0 € D, it holds dt > 0 and d~ < 0. Hence we have dt P +d~P~ > 0,
—dTP~ —d P >0, and

/ Pr[d*Pt +d P~ >t] dt +/ Pr[—d*P~ —d P >1t] dt
0 0
=E[d"P"+d P |+E[-d"P™ —d P"]

leill =D i . O
=1 i=1

=(d*—d )E[Pt—P | =d"-d")E

4 Lower Bounds on the Expected Number of Pareto
optimal Solutions

In this section we present a lower bound of 2(n?klog(1 + k)) on the number of
Pareto optimal solutions for D = {0,.. ., k}, generalizing a bound for the binary
domain presented in [2]. In Theorem 8 we prove the stronger bound 2(n?k?)
under slightly stronger assumptions. The weaker bound provides a vector of
weights w1, . .., Wy, such that the bound holds for a linear weight function w™x.
For the stronger bound we can only prove that there is some weight function
w: S — R for which the bound holds but this function might not be linear.
In combinatorial optimization, however, many problems have linear objective
functions. The proofs of the theorems in this section will be contained in the full
version of this paper.

Theorem 7. Let D = {0,...,k}. Suppose profits are drawn independently at
random according to a continuous probability distribution with non-increasing
density function f : R>9 — R>q. Let ¢ denote the number of Pareto optimal
solutions over & = D"™. Then there is a vector of weights w1, ..., w, € Rsq for
which

Hy,

E[q] > Tk(n2—n)+kn+1,



where Hy, is the k-th harmonic number. If the profits are drawn according to the
uniform distribution over some interval [0, ¢] with ¢ > 0 then the above inequality
holds with equality.

Similarly, a lower bound of £2(n?klogk) can be obtained for the case that f is
the density of a Gaussian random variable with mean 0. Since all weights w; are
larger than 0, a solution with a negative profit cannot be contained in a Pareto
optimal solution. Hence, we can ignore those items. Restricted to the interval
[0,00) the density of a Gaussian random variable with mean 0 is non-increasing
and, hence, we can apply Theorem 7.

Now we consider general weight functions and show a lower bound of 2(n?k?)
on the expected number of Pareto optimal solutions for D = {0,...,k} and
S = D". We assume that k is a function of n with (5(c+ 1) 4+ 1)logn < k < n¢
for some constant c. We use the probabilistic method to show that, for each
sufficiently large n € N, a ranking exists for which the expected number of Pareto
optimal solutions is lower bounded by n?k?/k for some constant x depending
only on ¢, that is, we create a ranking at random (but independently of the
profits) and show that the expected number of Pareto optimal solutions (where
the expectation is taken over both the random ranking and the random profits)
satisfies the desired lower bound. This implies that, for each sufficiently large
n € N, there must exist a deterministic ranking on {0,...,k}" for which the
expected number of Pareto optimal solutions (where the expectation is now
taken only over the random profits) is at least n%k?/k.

Theorem 8. Let (5(c+ 1)+ 1)logn < k < n° for some ¢ > 2 and assume that
n is a multiple of ¢ + 2. There exists a constant x depending only on ¢ and a
ranking on {0, ..., k}"™ such that the expected number of Pareto optimal solutions
is lower bounded by n?k?/k if each profit p; is chosen independently, uniformly
at random from the interval [—1,1].

5 Smoothed Complexity of Integer Programming

In [13], we analyze the smoothed complexity of integer programming. We con-
sider integer programs in which an objective function is to be maximized over a
feasible region that is defined as the intersection of a fixed ground set S C D"
with a halfspace B that is induced by a linear constraint wixy + - - - +wpx, < t,
where the w; are independent random variables which can be represented by
densities that are bounded by ¢. We show that an integer optimization problem
in this form has polynomial smoothed complexity if and only if there exists a
pseudo-polynomial algorithm (w.r.t. the w;) for solving it.

The main technical contribution in [13] is the analysis of the random variables
loser gap and feasibility gap. The feasibility gap I" is defined as the slack of the
optimal solution from the threshold ¢. To be more precise, let x* denote the
optimal solution, that is, * denotes the solution from S N B that maximizes the
objective function. Then the feasibility gap can be defined as I' =t — wTz*. A
solution = € S is called a loser if it has a higher objective value than z* but is



infeasible due to the linear constraint, that is, wTz > ¢t. We denote the set of all
losers by L. Furthermore, we define the minimal loser T € £ to be the solution
from £ with minimal weight, that is, # = argmin{w™x | x € L£}. The loser gap
A denotes the slack of the minimal loser from the threshold ¢, i.e., A = wTZ —¢.

If both the loser and the feasibility gap are not too small, then rounding
all weights w; with sufficient accuracy does not change the optimal solution.
Rounding the weights can only affect the optimal solution if either =* becomes
infeasible or a loser x becomes feasible. The former event can only occur if the
feasibility gap is small; the latter event can only occur if the loser gap is small.
In a rather technical and lengthy analysis we show the following lemma on the
probability that the loser or the feasibility gap is small.

Lemma 9. (Separating Lemma [13]) Let S C D™ with 0™ ¢ S be chosen arbi-
trarily, let p = max;cp,) E[|wi|], d = |D|, and dmax = max{|a| | a € D}. Then,
for all e € [0, (32un’®d" dmax9?) 1,

Pr (" < ¢] < 2(-32un’d" daxd®)Y? and Pr[A < e] < 2(e-32un’d" diayxd?) /.

In the full version of this paper we present a much simpler proof for the
following improved version of the previous lemma.

Theorem 10. Let S C D™ with 0™ ¢ S be chosen arbitrarily, and let D =
max{a — b | a,b € D} < 2dyax. There exists a constant k such that, for all
e >0,

Pr (I < €] < enp?un®Ddlog® d and Pr[A < €] < er¢?un®Ddlog®d .

In [13] we show that Lemma 9 can also be used to analyze integer optimization
problems with more than one linear constraint. We consider integer optimization
problems in which an objective function is to be maximized over a feasible region
that is defined as the intersection of a fixed ground set S C D™ with halfspaces
Bi,...,B, that are induced by m linear constraints of the form w; 121 +--- +
Wi nTn < t;, where the w;; are independent random variables which can be
represented by densities that are bounded by ¢.

The feasibility gap I for multiple constraints is defined to be the minimal
slack of the optimal solution z* from one of the thresholds, i. e., I" = min; ¢y, (t;—
(wiax1+- - 4w; nxy)). The loser gap A for multiple constraints is defined as A =
Minge s MaX;e[m] (Wi 21+ - + Wi n Ty —t;). In [13] we show how Lemma 9 gives
rise to bounds on the sizes of loser and feasibility gap for multiple constraints.
Based on this observation we show that an integer optimization problem with
multiple constraints has polynomial smoothed complexity if and only if there
exists a pseudo-polynomial algorithm (w.r.t. the w; ;) for solving it. By applying
the same arguments, our bounds in Theorem 10 yield the following corollary.

Corollary 11. Let S C D™ with 0™ ¢ S be chosen arbitrarily, let D = max{a —
b| a,b € D} < 2dmax, and let the set of feasible solutions be given as S N By N
...N By,. There exists a constant k such that, for all € > 0,

Pr (I < €] < ek’ umn®Ddlog® d and Pr[A < e] < erg?umn®Ddlog? d .



The main improvement upon our previous analysis is that the bounds in

Corollary 11 depend only linearly on ¢ instead of €'/3. Due to this improvement
we can prove Theorem 4 in the same way as its binary version in [3]|, which is
not possible with the bounds derived in [13].
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