
Fact Spaces: Coordination in the Face of
Disconnection

Stijn Mostinckx?, Christophe Scholliers, Eline Philips,
Charlotte Herzeel? and Wolfgang De Meuter

{smostinc | cfscholl | ephilips | caherzee | wdmeuter}@vub.ac.be

Programming Technology Laboratory
Vrije Universiteit Brussel, Belgium

Abstract. Coordination languages for ad hoc networks with a fluid
topology do not offer adequate support to detect and deal with device
disconnection. Such a disconnection is particularly relevant if the device
provided context information rather than emitting messages, as such
context information then becomes invalid. This paper proposes the Fact
Space Model which establishes a logic coordination language on top of
Lime’s federated tuple space. In the model, the federated space offers
applications a consistent view of their environment over which they can
reason using logic rules. These rules encode which conclusions may be
drawn from the presence of particular facts, and are similarly used to en-
sure the consistency of these conclusions when devices go out of range.
By allowing applications to add application-specific hooks to these rules,
the application programmer is offered a general-purpose mechanism to
respond to the discovery and disconnection of devices.

1 Introduction

The increasing popularity of cellular phones, PDAs and numerous other mobile
devices heralds the realisation of the ubiquitous computing and ambient intelli-
gence research visions [1, 2]. A crucial aspect of the various scenarios put forward
as part of these visions is that mobile users can reap the benefits of being sur-
rounded by a cloud of small, interconnected computing devices. These benefits
come in two distinct flavours: providing either additional or smarter behaviour.
An example of the former is offering printing facilities to users in the proximity
of a printer. A classical example of providing smarter behaviour is signalling a
user’s cellular phone that it is in a meeting room, allowing it to forward incoming
calls to the user’s voice mail.

As managing the interplay of services in an ad hoc network with a fluid topol-
ogy and transient connectivity can become quite complex, this task is typically
entrusted to a dedicated coordination language. A well-established coordination
language for mobile ad hoc networks is provided by the Lime [3] middleware.
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Lime allows publishing information that steers the coordination of a set of ap-
plications in a tuple space that is transiently shared between all devices that
are currently in range. Devices can respond to the appearance of such tuples by
registering reactions. Unfortunately, Lime keeps no record of the causal link be-
tween a tuple and the reactions the tuple provoked. For the examples described
above, this implies that there is no automatic mechanism to remove the printing
facilities nor to signal that the cellular phone should stop forwarding calls when
the user is no longer in the proximity of the printer respectively when he is no
longer in the meeting room.

This paper proposes the Fact Space Model which conceives the federated
space as a distributed knowledge base. The transiently shared facts describe the
current environment of a device and may be used to customize the behaviour
of applications accordingly. These customizations are achieved using a logic co-
ordination language whose rules record the causal link between (a set of) facts
and the conclusions that may be drawn from them. As facts are retracted when
the device that published them goes out of earshot, the strict enforcing of these
causal links – invalidating conclusions when the supporting facts are retracted –
is the basis for the fine-grained support to deal with the effects of disconnection
offered by the Fact Space Model.

The remainder of the paper is organised as follows: the next section intro-
duces the relevant elements of the Fact Space Model in more detail. Subsequently,
section 3 describes Crime (Consistent Reasoning in a Mobile Environment), a
prototypical implementation of the Fact Space Model in which we have con-
ducted our experiments. A selection of these experiments is then presented in
section 4. Finally, we provide an overview of related work and present our con-
clusions.

2 The Fact Space Model

The Fact Space Model is a coordination model offering applications deployed on
a mobile ad hoc network a consistent view on their environment. According to
this view of their environment, the application may offer additional or adapted
functionality to its user. An application’s view of its environment consists of facts
published in a federated fact space. Concretely every application can locally pub-
lish facts and transparently shares the facts of all nearby devices as long as they
remain within communication range. Applications may react to the appearance
of facts, using rules specified in a logic coordination language. These rules map (a
combination of) facts onto a conclusion, which may involve adding new facts to
the fact space or triggering application-specific actions. The Fact Space Model
allows applications to intercept the retraction of these actions, at which point
a compensating action will be performed. Given that facts are retracted auto-
matically when devices disconnect, this mechanism provides fine-grained control
over the effects of disconnection. The remainder of this section will explain both
the federated fact space and the logic coordination language in more detail.
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2.1 Federated Fact Spaces

Applications in the Fact Space Model contribute to the shared view of the en-
vironment by publishing facts. Such facts can uniformly represent various types
of information ranging from context information over service descriptions up to
tasks to be performed. Ensuring these facts are transparently distributed is done
using a federated space, as was originally proposed in Lime [3]. With regards
to the distribution architecture, the only difference with Lime is that the fed-
erated space represents a knowledge base containing facts. Consequently, both
the assertion and the retraction of facts are meaningful events which may have
repercussions on how the applications behave.

Applications are equipped with at least two fact spaces, a private one to store
application-specific facts and one or more interface fact spaces for facts that
need to be disseminated. In the cell-phone example, the private fact space could
contain user preferences detailing which behaviour to adopt when in a particular
(kind of) room. The location of a device is typically derived by the proximity
to a predefined device, which published location information in an interface fact
space, as illustrated by figure 1. The federated fact space consists of all host
level fact spaces for devices which are currently in range. The aggregation of all
interface fact spaces on a single host allows reusing context information that was
previously computed by another application (e.g. a printer is available at a given
ip-address) as well as coordination within the boundaries of a single device.
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The Fact Space Model handles the discovery of devices in much the same
way as Lime; whenever a host discovers the presence of a new device, it will
engage the fact space of that device. This implies that all facts in the fact space
of that device are atomically and transparently asserted in the host’s fact space.
At this point each application may adapt to its new environment using the logic
coordination language described in the next section. When a device goes out of
earshot, its fact space is disengaged implying that the facts published by that
device are retracted from the host’s fact space. The Fact Space Model offers
applications provisions to respond to such disconnection, as will be explained in
the next section.

2.2 Logic Coordination Language

The federated fact space described in the previous section provides each ap-
plication with a consistent view of their environment. Applications can react to
changes in their environment using rules in the logic coordination language of the
Fact Space Model. A rule could specify for instance that upon detecting a printer
in the environment, it should be added to the list of available printers. Figure 2
illustrates how such a rule could be written in the Fact Space Model. The rule
can be read as follows: the application-specific action addToPrinterList should
be performed (with a given set of arguments) if and only if the public federated
fact space contains a printer fact (with the same arguments) whose dpi is at
least 300.

:addToPrinterList(?name, ?ip) :-

public -> printer(?name, ?dpi, ?ip),

?dpi >= 300.

Fig. 2. Rule to add printer functionality to an application.

For consistency, the rule in figure 2 uses the syntax of Crime, our implementa-
tion of the Fact Space Model. As can be seen from the example, logic variables in
the rules are prefixed with a question mark. Furthermore, a colon prefix is used
to differentiate between application specific actions and logic facts. The former
denote implicit method invocations on the Action subclasses described below.
Finally, facts can be quantified to denote the fact space in which they should be
found or asserted.

The main difference between the rule specified above and a similar reaction in
Lime, is that the former implicitly provides a hook to respond to the disappear-
ance of the fact. This is achieved by enforcing that any custom actions inherit
from a common abstract class Action. Subclassing from this class implies that
application developers need to implement an activate method which describes
how to respond when the action is derived, as well as a deactivate method
which describes a compensating action to be performed when the action is re-
tracted as a response to changes in the environment. Note that compensating
actions are not required to restore the application’s state prior to the execution
of the activate method.
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room(meetingRoom, silent).

room(office, general).

:switch(?profile), profile(?profile) :-

public -> location(myID, ?room),

room(?room, ?profile).

:switch(default) :- not profile(?p).

Fig. 3. Facts and rules to change the profile of a cellular phone.

Figure 3 exemplifies how the Fact Space Model can be used to switch the profile
of a cellular phone depending on its location. The example shows a set of private
room facts detailing the user’s preferred profile for a particular room. Further-
more, it contains a rule which triggers the switch application-specific action as
well as adding a private profile fact, upon detecting that the cellular phone is
located in a particular room for which the user has configured a preferred pro-
file. Finally, a rule is provided to switch to the default profile when no explicit
profile is prescribed1.

3 Crime : Implementing the Fact Space Model

Crime (Consistent Reasoning in a Mobile Environment) is an experimental im-
plementation in which we have explored the advantages of the Fact Space Model
in building context-aware software. This section highlights some of the key points
of the implementation before moving on to the examples presented in the next
section.

3.1 Federated Fact Spaces

Crime’s implementation of the federated fact space is achieved by building on
top of Lime, which is possible due to the fact that the underlying distribution
architecture of both systems are identical. This means that the interface fact
spaces of an application are in fact wrappers around interface tuple spaces in
Lime. Whenever a fact is added to an interface tuple space – either directly by
the application or through derivation – this corresponds to adding the fact to the
interface tuple space using the out operation. Similarly, the atomic engagement
and disengagement of fact spaces is transparently handled by the underlying
Lime implementation.

Achieving correct behaviour requires that the reasoning engine be informed
of the appearance and disappearance of facts which are relevant to its rule base.
This is achieved by installing once-per-tuple reactions whenever compiling a rule
1 The observant reader may notice that this rule is not strictly necessary as similar

behaviour could be achieved using the compensating action of switch.
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that depends on public facts. These reactions will trigger the reasoning engine
and inform it that new facts have become available. The disappearance of hosts
is observed in the system tuple space of Lime, which posts a host gone tuple
upon such an event. The reasoning engine is notified of this event (by means of
a reaction) and will subsequently handle the disconnection as described in the
next section.

3.2 Logic Coordination Language

In correspondence with the event-driven nature of the systems Crime caters for,
it uses a forward-chaining inference engine to trigger rules when fact are asserted
to and retracted from the federated fact spaces. The major benefit of forward-
chaining is that rather than answering queries, all valid conclusions from a given
set of facts are automatically derived. This implies that applications never have
to query their context explicitly, instead they are automatically notified of all
relevant changes in their environment.

Crime optimizes the derivation of valid conclusions for all available fact us-
ing the rete algorithm [4], which we briefly explain below. The gist of the rete
algorithm is to combine the actual derivation of conclusions with an optimized
caching of intermediate results in a so-called rete network. This caching strat-
egy minimizes the set of rules to be re-evaluated whenever new facts are asserted.
Dealing with the frequent retraction of facts – caused by devices which routinely
go out of earshot – requires additional support. Whereas the rete algorithm
can inherently deal with the retraction of facts, this requires the negated fact
to be propagated through the network. This process can be optimized by ex-
plicitly keeping track of the dependencies between conclusions and facts using a
justification-based truth maintenance system. The remainder of this section will
briefly describe both components which jointly implement the logic coordination
language prescribed by the Fact Space Model.

Inference Engine The rete algorithm allows for the efficient derivation of
valid conclusions given a set of facts by compiling these rules into a so-called
rete network [4] with built-in caches for intermediate results. We exemplify the
compilation of such a rule using the example given in figure 3, which dealt with
changing the profile of a cellular phone according to the room it was in. The
corresponding network for this rule is shown in figure 4.

Deciding when to change the profile of the cellular phone requires the presence
of multiple facts. First of all, context information from the public interface fact
space is needed to determine in which room the phone currently resides. Secondly,
a private fact is needed which states the user’s preferred profile for that room.
Compiling the right-hand side of the rule, involves two steps :

1. Every fact is represented in the network by a filter node which will be trig-
gered whenever a new fact is asserted with the correct name. When the fact
is qualified, the filter node ensures it will be notified by registering a reaction
for facts of that type in the underlying Lime distribution layer. As part of
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filtering out relevant events, the filter nodes also check simple constraints
with respect to constants. In the example, the left-most filter node is used
to filter out any location facts which are not related to the cellular phone.

2. Facts are subsequently combined pairwise using join nodes which ensure that
constraints spanning multiple facts are upheld. A typical example of such a
constraint is that variables with the same name have the same value. Simi-
larly, if a rule contains explicit constraints on two variables (using relational
operators such as <=, >= or =\=), these are checked by the first join node
which has access to both variables.

private fact
space

Type = location
arg[1] = myID Type = room

Cache

?room : 
location.arg[2] = room.arg[1]

Legend

FilterNode

Join Node

Input Node

profile(?profile)
:switch(?profile)ProductionNode

Cache

Cache

?room ?profile

?room ?profile

?room
meetingRoom
office

silent
general

Public:
federated fact

space 

Fig. 4. rete network to switch the profile of a cellular phone based on location.

Having built a network which filters out the relevant combinations of facts
that may trigger a rule, compiling its left-hand side is simply adding a produc-
tion node as the child of the lowest join node for that rule. Upon triggering a
production node, facts are added to their designated fact spaces (recall that if
no qualification is given the fact is considered private) and application-specific
actions need to be performed (invoking the do method). It is critical that a
production node encapsulates an atomic activation, implying that the inference
engine may only re-evaluate rules after the production node completed its task.
If this constraint is not upheld, inconsistent behaviour may be triggered by mu-
tually exclusive rules with negated clauses in the right-hand side (e.g. A and !B,
and A and B).

Truth Maintenance System The Fact Space Model introduces a logic coordi-
nation language which offers applications the ability to reason over a consistent
view of their environment. Given that this environment is a mobile ad hoc net-
work with a fluid topology and transient connectivity, this implies that suites
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of facts will be frequently retracted as devices move out of range. Such retrac-
tion cannot be delayed as this would compromise the consistency of the view an
application has of its environment. Moreover, as the connectivity between the
devices in a mobile ad hoc network is transient, it is quite likely that the same
suite of facts will be reasserted later on as the communication is restored. This
particular set of constraints necessitates the introduction of additional support
to handle the retraction of facts in an acceptable way.

The rete algorithm can handle the retraction of facts using rematch-based
removal which involves propagating the dual of the removed fact through the
network. However, this is a rather costly operation as all checks in the filter and
join nodes need to be recomputed, and more importantly, it also removes useful
information which could be used when the same fact is reasserted later on.

To optimize the retraction of facts, we use the scaffolding technique described
by Perlin [5]. Concretely, this implies that a truth maintenance system is used
which keeps track of the causal links between facts and conclusions. These causal
links are said to be the justification for believing the conclusion. When a fact is
subsequently retracted, it is straightforward to identify precisely those conclu-
sions that need to be undone. Moreover, rather than deleting the information
upon retracting, the causal link is preserved yet marked to be currently deacti-
vated. If the same fact is reasserted shortly afterwards, this information can be
used to reactivate the tuple.

4 Building Context-Aware Applications

We have employed Crime to build a suite of context-aware applications all
of which rely on location-based information. Throughout this paper we have
already illustrated a simple application which allows switching the profile of a
cellular phone. We have built similar light-weight applications such as an in/out
board and a messenger service [6] which are presented in more detail at our
website2. In this paper we present a slightly more involved application, namely
a context-aware jukebox [7, 8]. The precise scenario is described first, followed by
a discussion of the location-based support for the application before we describe
the rules which comprise the juke-box application itself.

4.1 A Context-Aware Jukebox

Alice, Bob and Carol are students which share an apartment. When they are
not attending classes or studying, a great deal of their life is all about music.
As a consequence, when one of them is relaxing in the joint living room of their
apartment, it is quite common to find their jukebox playing music. Unfortu-
nately, the students do not always share one another’s taste in music. Whereas
this might be a recipe for endless quarrels in any other situation, there is no
arguing over who is in charge of choosing the music being played. This is due

2 http://prog.vub.ac.be/amop/research/crime
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to the fact that the jukebox is in fact a small computer (a Mac Mini in our
setup) which combines information regarding the presence of its users with their
respective musical preference to construct a playlist which is acceptable for all
present users. Moreover, If Alice, Bob and Carol invite some friends, their musi-
cal preferences can be taken into account as well. Finally, the jukebox can also
stop playing automatically when it detects that no users are present.

A variety of issues are important to build a similar system. First of all, a
fairly reliable mechanism is needed to detect when users are in a particular
room. Second, when a user enters the room, his musical preferences should be
queried and possibly the jukebox should be turned on. Thirdly, when a guest
is invited, he may not have the appropriate software to cast his vote in the
music selection and this software should be offered to him. Finally, the music
selection should be designed to take into account the musical preferences of the
present users. We will present the necessary building blocks for this setup in the
remainder of this section.

4.2 Detecting a User’s Location

Over the past few years, a large quantity of systems to derive a person’s location
have been developed. Positioning users indoor is usually achieved by giving them
a small device which is tracked using wireless communication. The technology
used may vary from infrared signals (as used in the seminal work on the Ac-
tive Badge system [9]) up to the recently developed rfid tags [10]. Whereas the
choice of which technology to use may be critical as it influences the size and
battery consumption of the device that needs to be carried around, the effect
on the proposed application is rather minimal. While developing the context-
aware jukebox we have therefore adopted a conservative stance and employed
the bluetooth connectivity offered by the jukebox to detect users (by means of
their bluetooth-equipped cellphones).

Our concrete setup consists of an event-driven application which is used to
detect all reachable bluetooth devices. Upon detecting a new device, it triggers an
embedded Crime process by asserting a private fact (e.g. observed ("Alice’s
Phone")). The application further consists of a trivial mapping of such facts
onto public location facts, as we have used in previous examples in the paper.

4.3 Deploying Applications

We have identified the deployment of applications, in this case to specify one’s
musical preference, as an essential aspect of the scenario at hand. Obviously, the
deployment of Crime applications requires the presence of a minimum of infras-
tructure. Therefore, every Crime engine is equipped with a minimal application
which listens for facts describing available applications. These applications are
presented to the user who can opt to deploy them. Figure 5 illustrates how
a simple rule can be used to notify the user interface (using a custom action
offer). The actual deployment (i.e. downloading the application from the url
and running it) is done by the underlying application.
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:offer(?name ?url) :-

application(?name ?url).

application(jukebox, "http://prog.vub.ac.be/amop/crime/jukebox.zip").

Fig. 5. Supporting the advertisement of available applications.

One notable property of this application is that the list of available appli-
cations can be dynamically updated as the topology of one’s mobile network
changes. As the service descriptions are represented as public facts, these facts
are automatically retracted from the fact space. In response, the undo method
of the offer action will be invoked. In our current implementation, this method
will simply remove the application from the list of available applications. It is
also possible to treat applications which were deployed separately using a small
set of additional rules. The gist of the system would be to let the deployment
application assert a private fact whenever it deploys an application, such that
the Crime engine can include this information in its reasoning.

4.4 Music Selection

One of the major advantages of using a coordination language is that it offers
a separate medium to specify the coordination and distribution aspects of an
application. Concretely this implies that a traditional, non-distributed applica-
tion can be adapted to provide additional or smarter behaviour when employed
in a mobile context, as long as it provides the adequate hooks. To illustrate the
potential of the Fact Space Model to be employed in this context, we have opted
to use an existing and highly scriptable music player in our jukebox example.
The iTunes music player3 is an established software artifact which provides a
rich set of hooks through its AppleScript support.

The Crime support for determining which music to play is described by the
rules in figure 6. The first rule uses an application-specific action toggle to
switch the jukebox on as soon as it detects a person in the living room. This
detection is based on the location facts which were published by the location
sensing support described in section 4.2. The second rule will use updateRating
to change the average preference attributed to a genre based on the amount
of people preferring a particular genre and the total amount of people in the
room. This is sufficient to ensure that the music played by the jukebox will
be appreciated by the users presented in the living room, as iTunes offers a
dedicated party shuffle playlist which plays a selection of highly-rated music.

The rating of a particular genre depends on the number of present users which
prefer a particular genre, as well the total amount of users in the living room.
To compute these numbers, Crime integrates support for two accumulation
techniques borrowed from Prolog, namely findall and bagof. The former is

3 Copyright 2000-2006 Apple Computer Inc.
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:toggle() :-

location(?person, "Living Room").

:updateRating(?genre, ?rating) :-

category(?genre, ?absolute),

total(?total),

rating is ?absolute / ?total.

total(?quantity) :-

findall(?person, (

location(?person, "Living Room")),

?persons),

length(?persons, ?quantity).

category(?genre, ?quantity) :-

bagof(?person, (

location(?person, "Living Room"),

prefers(?person, ?genre)),

?persons),

length(?persons, ?quantity).

Fig. 6. Rule set to customize jukebox playlist

used to find all values for the ?person variable who are located in the living room
and accumulate them in the ?persons variable. To find out how many people
like a particular genre, the bagof construct is used, which also accumulates all
values for the ?person variable, yet groups them according to the corresponding
values for other free variables (the ?genre variable in the example).

5 Related work

The main contribution of the Fact Space Model is that it introduces the notion
of causality in a coordination language as a fundamental mechanism to offer ap-
plications fine-grained control over the effects of device disconnection in mobile
ad hoc networks. The introduction of causality is achieved by using a logic lan-
guage which essentially reasons over a distributed fact base in order to coordinate
the different applications involved. Finally, we have illustrated the applicability
of the Fact Space Model to develop context-aware application. Therefore, the
Fact Space Model can be contrasted to previous work in three fields of research,
namely coordination languages, distributed reasoning systems and context-aware
computing middleware. Our discussion of related work will therefore highlight the
contributions in each of these research fields which are the most closely related
to the Fact Space Model.
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5.1 Coordination Languages

Coordination languages can be categorized according to the primitive commu-
nication support they offer: communication can be based on directed channels
which connect two processes (the endpoints of such channels may vary over
time), or it can be achieved using the notion of a shared blackboard which pro-
vides processes with an undirected communication model. The Fact Space Model
employs the latter model of communication, making it akin to tuple space-based
coordination languages.

During the discussion of the Fact Space Model in section 2, we have already
indicated that it borrows the notion of a federated space from Lime [3]. Moreover,
through the introduction of an inference engine, our model allows responding to
changes in the state of the federated space (rather than operations performed on
them) allowing behaviour similar to Lime’s reactions. At first sight, reacting to
disconnection can be introduced in Lime by allowing such reactions to include a
compensating action which is then triggered upon disconnection. To the best of
our knowledge, such support has not been introduced thus far. Even with such
support in place, some differences remain with respect the Fact Space Model.
First of all, the model has innate support for dealing with disconnection, requir-
ing no additional infrastructure to detect and propagate disconnection events.
More importantly, by keeping track of the causal connection between events,
hand-coding compensating actions is only necessary when the reaction is re-
lated to the application’s behaviour rather than with how it interacts with other
applications.

Tuple space-based communication can equally well be achieved without the
notion of a transiently shared tuple space, as is exemplified by tota [11]. Instead
of implicitly sharing tuples when the hosting devices come into one another’s
range, tota tuples are instrumented with behaviour dictating when they may
be copied (or moved) from one tuple space to the next. As tuples are copied,
these tuples are not automatically retracted when the emitting device goes out
of range. Using tota’s support to notify tuples of system events, tuples can
be removed after a certain period is elapsed. Broadcasting such tuples periodi-
cally would then allow to detect disconnection. Another possibility would be to
reify the transitive unreachability of a device as an event of its own. However,
even if the tuple can be removed when necessary, tota suffers from the same
problems as Lime, namely that for each reaction that needs to be undone the
corresponding compensating action needs to be hand-coded.

5.2 Distributed Reasoning Systems

The Fact Space Model goes beyond traditional coordination languages in that it
introduces the notion of an inference engine coupled to a truth maintenance sys-
tem. It therefore embodies a distributed reasoning engine, with explicit support
for dealing with a fluid topology of fact providers. Whereas abundant distributed
reasoning engines exist, most of them were introduced purely for the sake of
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parallelism [12, 13], rather than to support reasoning in and about a physically
distributed context.

UbiES is an expert system for modelling context-aware applications in a
nomadic network setting [14]. The lack of support for ad hoc networks shows in
various parts of the proposal: First of all, context information is managed in a
context database which is apparently centralized. Moreover, clients are equipped
only with a web browser leaving the actual functionality on a server. Finally,
UbiES focusses on a single application at a time rather than at coordinating the
interplay of various applications.

The Fact Space Model is closely related to DJess [15], a distributed variant of
the Jess forward chainer [16]. Similar to the Fact Space Model, DJess connects
different inference engines allowing them to share contextual information and
trigger one another’s reactive behaviours. However, the fundamental difference
between both systems is that DJess does not consider applications for a mobile
ad hoc network with a fluid topology. A first indication is that DJess features
a single centralized server which serves as an intermediate to communicate facts
between the individual clients. Furthermore, concurrency control is pessimistic
as all facts needs to be locked before executing the actions associated with a
rule. Finally, DJess provides no support to detect nor respond to disconnection.

Cooperative artefacts [23] sport a reasoning engine which is specifically tai-
lored for mobile ad hoc networks. Similar to the Fact Space Model, it offers
devices the means to reason about a distributed knowledge base representing
their immediate environment using Prolog-like rules. The chief difference be-
tween both systems lies in the type of applications they support. Cooperative
artefacts are embedded devices with very limited resources designed to address
one specific problem, whereas the Fact Space Model addresses the collaboration
of different idiosyncratic applications on high-end mobile devices. One aspect
where the difference in both the underlying hardware and the supported appli-
cations has a considerable influence is the inference strategy. Cooperative arte-
facts rely on a backward chaining inference engine whereas the Fact Space Model
emphasizes the importance of a forward chaining inference engine. Section 6.2
explains in more detail why this difference is relevant.

5.3 Context-aware Computing Middleware

As illustrated in section 4, the Fact Space Model lends itself quite well to the
development of context-aware applications. Its forward-chained rules could be
interpreted as a structured and declarative subscription to relevant context in-
formation publishers. However, comparing it to classical middleware such as the
Context Toolkit [6], JCAF [17] and WildCAT [18], a few differences are imme-
diately apparent. First of all, the distribution model underlying the Fact Space
Model is based on a federated space rather than on event channels. This is es-
sential as it permits detecting when facts are retracted, and to act upon this
observation. Secondly, the Fact Space Model relies on a separate logic language
to describe the influence of context, a trait it shares with the approaches dis-
cussed in the remainder of this section.
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Chisel is a system which primarily focusses on describing the concrete effects
of contextual changes by assigning meta-types to runtime objects [19]. As a
coordination language, the Fact Space Model was not designed to support such
advanced adaptation strategies. Nevertheless, Chisel and the Fact Space Model
are quite complementary as the latter offers a declarative language with support
to respond to a combination of events as well as a clear distribution model for
context information. Both features are lacking in Chisel’s event-condition-action
language to specify when adaptations should be plugged in.

Gaia’s active spaces [20] have been extended with a dedicated language
based on first order logic to describe how a system should adapt according to
context information [7]. The context model for Gaia’s Active Spaces uses first
order logic to describe how to adapt to context information. Whereas the use of
first order logic results in a similar expressive power to our proposal, quite a few
differences remain between Gaia and the Fact Space Model: First of all, Gaia
relies on context providers which publish information on channels managed by a
centralised infrastructure. Another notable difference is that Gaia uses a stan-
dard Prolog implementation, rather than a forward chainer, which necessitates
a manual triggering of rules upon context changes. Most importantly, Gaia as-
sumes reliable connections and does not specify how to respond when no context
information can be read, nor how this affects previously made decisions.

The Fact Space Model bears the most similarity to the Cortex middleware
[21] which uses clips [22], a production system to reason about context informa-
tion and to trigger reactions using clips’s foreign function interface. The chief
differences between Cortex and the Fact Space Model is that the latter is based
on the notion of a federated space to exchange information, rather than on the
publish/subscribe paradigm and most importantly, that the Fact Space Model
provides support to meaningfully deal with the retraction of information from
the said federated space.

6 Discussion

The Fact Space Model is a logic coordination language which allows reasoning
about a distributed knowledge base which functions as a view on the (physical)
environment. Moreover, the Fact Space Model requires this view to be kept con-
sistent to ensure that applications do not act upon stale facts. This requirement
has a direct influence on two important aspects of the Fact Space model which
will be the topic of discussion in this section.

Automatic Retraction We have adopted the stance that facts whose provider
has gone out of earshot are to be retracted from the knowledge base. This
paradigmatic decision is evaluated with respect to the opportunities it leaves
the programmer to encode persistent facts, i.e. facts which are not automati-
cally retracted when its provider goes out of earshot.



15

Inference Strategy The choice for a forward chaining inference engine also
follows from the requirement that applications should not act upon stale facts.
Its data-driven reasoning strategy aligns well with the fact that changes to the
knowledge base should be promptly reflected in the application’s behaviour. This
section provides a more thorough analysis of the differences with a goal-driven
backward chaining strategy such as the one used in cooperative artefacts [23].

6.1 Persistent Facts

A distinguishing characteristic of the Fact Space Model is that it reifies device
disconnection by retracting all facts published by that device. This is crucial to
ensure that applications have a consistent view of their environment where all
facts in the knowledge base are guaranteed to be true. Without the automatic
retraction of facts, applications could be presented with stale data which leads to
a variety of problems. Consider the following example: a location sensor detects
that Alice is in her office and publishes this information. Bob’s PDA receives
this information and subsequently goes out of range. If the location information
would not be retracted, the PDA would need to assume that Alice stays put,
as it is unable to receive any new information. Such assumptions are clearly a
source for unadjusted behaviour such as calling Alice’s office number rather than
her cellular phone since we presume to know her location. In this case, having
no information available is clearly better than having incorrect information.

The semantics of the Fact Space Model align with those of the underly-
ing distribution model of federated spaces, and may seem quite natural in the
location-based example given above. However, the retraction of facts is not al-
ways the desired semantics. For instance, when a specific printer is out of reach,
the fact representing its availability should be retracted, yet it can be useful to
keep a fact representing information about the printer such as its maximal res-
olution. At present, Crime offers no direct support to achieve such behaviour,
though this behaviour can be conceived in the following way:

Persistent Facts One can conceive a :persistent custom action which adds
a fact in its activate method, yet does not remove the fact in its deactivate
method. As exemplified in figure 6.1, this mechanism can be used in the example
to add a fact which represents the information about a printer, whenever a
(public) fact representing the availability of a printer is first detected in the
environment. Using a similar custom action, such persistent facts can then also
be removed from the system, for instance at the user’s request.

:persistent(knownPrinter(?name, ?dpi)) :-

public -> printerAvailable(?name, ?dpi, ?ip),

not knownPrinter(?name, ?dpi).
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6.2 Inference Strategy

At the heart of the Fact Space Model lies a logic-based coordination language
reasoning over a distributed knowledge base. The inference engine which inter-
prets the rules in the coordination language can employ two distinct inference
strategies: namely backward and forward chaining. Backward chaining is a goal-
driven strategy which attempts to prove queries supplied by the users, whereas
forward chaining is a data-driven strategy which derives all valid conclusions
from a given data set. This section briefly discusses the merits of both strategies
and motivates Crime’s use of a forward chaining inference engine.

Backward chaining is a commendable strategy to reason over a stable dis-
tributed knowledge base which is dedicated to a single application. The under-
lying reason for this restriction is that in order to respond to the availability
of new data, the inference engine needs to be triggered explicitly. For instance,
Strohbach et al. issue a new attempt to prove a predefined set of goals whenever
a change in the distributed knowledge base is observed [23]. Each such attempt
completely reconstructs the proof which can be both costly and time-consuming
(e.g. it may require remote communication). It is therefore important to ensure
that such attempts are only made when the result produced by the inference
engine is likely to have changed. Hence, the use of backward chaining inference
engines for the coordination of different device should be restricted to cases where
all facts in the knowledge base are related to a single application. In these cases,
the addition of facts in the knowledge base (which in turn triggers the inference
engine) is the most likely to affect the outcome of the reasoning process.

Forward chaining on the other hand is a useful strategy to reason over a
fluctuating distributed knowledge base which is shared by different idiosyncratic
applications. Forward chaining is a data-driven reasoning strategy which implies
that the inference engine is triggered whenever new data becomes available. The
chief difference with the strategy outline above is that when new data becomes
available, the inference engine builds its proofs bottom-up. This implies that
only those parts which are affected by the appearance of the new data need to
be derived anew. This strategy is particularly beneficiary when changes to the
knowledge base (which may originate from different applications) may not be
relevant, as such changes can be filtered out in the first step of reasoning.

7 Conclusion

Starting from a traditional coordination language based on a Lime-like federated
tuple space, this paper has explored how applications can be presented with a
consistent view of their environment, allowing them to adapt their behaviour
according to their current context. Crucial in such applications is that they are
notified of all relevant changes in the environment, including when information
becomes unavailable as a consequence of user mobility or transient disconnec-
tion. This has led us to propose the Fact Space Model, which differs from a
classical tuple space in two regards: First of all, the federated space is treated as
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a knowledge base where both the assertion and the retraction of facts are rele-
vant. Secondly, to provide a minimal and reasonable behaviour when retracting
facts, the Fact Space Model is a fully reactive system where the causal relations
between reactions and the triggering of facts is documented using logic rules.

The Fact Space Model combines a particular set of features, which clearly
sets it apart from existing work on coordination languages, distributed reasoning
engines and context-aware computing. First of all, using a federated space to
manage context information rather than a publish-subscribe mechanism allows
detecting the retraction of information. This feature allows the Fact Space Model
to respond to the disconnection of a context provider, a meaningful event when
dealing with mobile ad hoc networks with a fluid topology. Furthermore, the
Fact Space Model is a fully reactive coordination language based on a forward
chained logic language. This language offers a similar programming model as
reactive tuple spaces, with the added benefit of delimiting the causal relation
between facts and the resulting actions. This causal link allows undoing the
effects of a context-dependent adaptation when the context is no longer valid.
This feature is currently not offered by coordination languages for mobile ad
hoc networks. Finally, the Fact Space Model differs from existing distributed
reasoning systems as it uses a distribution model which does not rely on reliable
communication or a centralized architecture.
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