Skip to main content

Generic Maximum Likely Scale Selection

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4485))

Abstract

The fundamental problem of local scale selection is addressed by means of a novel principle, which is based on maximum likelihood estimation. The principle is generally applicable to a broad variety of image models and descriptors, and provides a generic scale estimation methodology.

The focus in this work is on applying this selection principle under a Brownian image model. This image model provides a simple scale invariant prior for natural images and we provide illustrative examples of the behavior of our scale estimation on such images. In these illustrative examples, estimation is based on second order moments of multiple measurements outputs at a fixed location. These measurements, which reflect local image structure, consist in the cases considered here of Gaussian derivatives taken at several scales and/or having different derivative orders.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ter Haar Romeny, B.: Front-end vision and multi-scale image analysis. Computational Imaging and Vision Series, vol. 27. Kluwer Academic Publishers, Dordrecht (2003)

    Google Scholar 

  2. Lindeberg, T.: Feature detection with automatic scale selection. International Journal of Computer Vision 30(2), 79–116 (1998)

    Article  Google Scholar 

  3. Lindeberg, T.: Edge detection and ridge detection with automatic scale selection. International Journal of Computer Vision 30(2), 117–154 (1998)

    Article  Google Scholar 

  4. Majer, P.: A Statistical Approach to Feature Detection and Scale Selection in Images. PhD thesis, University of Göttingen (2000)

    Google Scholar 

  5. Pedersen, K.S., Nielsen, M.: The Hausdorff dimension and scale-space normalisation of natural images. Journal of Visual Communication and Image Representation 11(2), 266–277 (2000)

    Article  Google Scholar 

  6. Papandreou, G., Maragos, P.: Image denoising in nonlinear scale-spaces: Automatic scale selection through cross-validatory model selection. In: Proceeding of the International Conference on Image Processing (ICIP’05), Genova, Italy, September 2005, IEEE Computer Society Press, Los Alamitos (2005)

    Google Scholar 

  7. Bouman, C.A., Sauer, K.: Maximum likelihood scale estimation for a class of Markov random fields. In: Proceedings of ICASSP ’94. IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 537–540. IEEE Computer Society Press, Los Alamitos (1994)

    Google Scholar 

  8. Loog, M., Pedersen, K.S., Markussen, B.: Maximum likely scale estimation. In: Fogh Olsen, O., Florack, L.M.J., Kuijper, A. (eds.) DSSCV 2005. LNCS, vol. 3753, pp. 146–156. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  9. Pentland, A.P.: Fractal-based description of natural scenes. IEEE Transactions on Pattern Analysis and Machine Intelligence 6(6), 661–674 (1984)

    Article  Google Scholar 

  10. Pedersen, K.S.: Properties of brownian image models in scale-space. In: Griffin, L.D., Lillholm, M. (eds.) Scale-Space 2003. LNCS, vol. 2695, pp. 281–296. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  11. Mandelbrot, B.B., van Ness, J.W.: Fractional brownian motions, fractional noises and applications. SIAM Review 10(4), 422–437 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  12. Pesquet-Popescu, B., Vehel, J.L.: Stochastic fractal models for image processing. IEEE Signal Processing Magazine 19(5), 48–62 (2002)

    Article  Google Scholar 

  13. Lowe, D.: Object recognition from local scale-invariant features. In: Proc. of 7th ICCV, pp. 1150–1157 (1999)

    Google Scholar 

  14. Schmid, C., Mohr, R., Bauckhage, C.: Evaluation of interest point detectors. International Journal of Computer Vision 37(4), 151–172 (2000)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Fiorella Sgallari Almerico Murli Nikos Paragios

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Pedersen, K.S., Loog, M., Markussen, B. (2007). Generic Maximum Likely Scale Selection. In: Sgallari, F., Murli, A., Paragios, N. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2007. Lecture Notes in Computer Science, vol 4485. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72823-8_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72823-8_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72822-1

  • Online ISBN: 978-3-540-72823-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics