Skip to main content

Bounds on the Minimizers of (nonconvex) Regularized Least-Squares

  • Conference paper
Scale Space and Variational Methods in Computer Vision (SSVM 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4485))

Abstract

This is a theoretical study on the minimizers of cost-functions composed of an ℓ2 data-fidelity term and a possibly nonsmooth or nonconvex regularization term acting on the differences or the discrete gradients of the image or the signal to restore. More precisely, we derive general nonasymptotic analytical bounds characterizing the local and the global minimizers of these cost-functions. We provide several bounds relevant to the observation model. For edge-preserving regularization, we exhibit a tight bound on the ℓ ∞  norm of the residual (the error) that is independent of the data, even if its ℓ2 norm is being minimized. Then we focus on the smoothing incurred by the (local) minimizers in terms of the differences or the discrete gradient of the restored image (or signal).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aubert, G., Kornprobst, P.: Mathematical problems in images processing. Springer, Berlin (2002)

    Google Scholar 

  2. Besag, J.E.: Digital image processing: Towards Bayesian image analysis. J. of Applied Statistics 16, 395–407 (1989)

    Article  Google Scholar 

  3. Blake, A., Zisserman, A.: Visual reconstruction. The MIT Press, Cambridge (1987)

    Google Scholar 

  4. Bouman, C., Sauer, K.: A generalized Gaussian image model for edge-preserving map estimation. IEEE Trans. on Image Processing 2, 296–310 (1993)

    Article  Google Scholar 

  5. Ciarlet, P.G.: Introduction à l’analyse numérique matricielle et à l’optimisation, 5th edn. Collection mathématiques appliquées pour la maîtrise. Dunod, Paris (2000)

    Google Scholar 

  6. Demoment, G.: Image reconstruction and restoration: Overview of common estimation structure and problems. IEEE Trans. on Acoustics Speech and Signal Processing 37, 2024–2036 (1989)

    Article  Google Scholar 

  7. Fessler, F.: Mean and variance of implicitly defined biased estimators (such as penalized maximum likelihood): Applications to tomography. IEEE Trans. on Image Processing 5, 493–506 (1996)

    Article  Google Scholar 

  8. Geman, D.: Random fields and inverse problems in imaging. In: École d’Été de Probabilités de Saint-Flour XVIII - 1988. Lecture Notes in Mathematics, vol. 1427, pp. 117–193. Springer, Heidelberg (1990)

    Chapter  Google Scholar 

  9. Geman, D., Reynolds, G.: Constrained restoration and recovery of discontinuities. IEEE Trans. on Pattern Analysis and Machine Intelligence 14, 367–383 (1992)

    Article  Google Scholar 

  10. Geman, S., McClure, D.E.: Statistical methods for tomographic image reconstruction. In: Proc. of the 46-th Session of the ISI. Bulletin of the ISI, vol. 52, pp. 22–26 (1987)

    Google Scholar 

  11. Hebert, T., Leahy, R.: A generalized EM algorithm for 3-D Bayesian reconstruction from Poisson data using Gibbs priors. IEEE Trans. on Medical Imaging 8, 194–202 (1989)

    Article  Google Scholar 

  12. Horn, R., Johnson, C.: Matrix analysis. Cambridge University Press, Cambridge (1985)

    MATH  Google Scholar 

  13. Leclerc, Y.: Constructing simple stable description for image partitioning. J. of Computer Vision 3, 73–102 (1989)

    Article  Google Scholar 

  14. Li, S.: Markov Random Field Modeling in Computer Vision, 1st edn. Springer, New York (1995)

    Google Scholar 

  15. Mumford, D., Shah, J.: Boundary detection by minimizing functionals. In: Proc. of the IEEE Int. Conf. on Acoustics, Speech and Signal Processing, pp. 22–26 (1985)

    Google Scholar 

  16. Nikolova, M.: Local strong homogeneity of a regularized estimator. SIAM J. on Applied Mathematics 61, 633–658 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Nikolova, M.: Weakly constrained minimization. Application to the estimation of images and signals involving constant regions. J. of Mathematical Imaging and Vision 21, 155–175 (2004)

    Article  MathSciNet  Google Scholar 

  18. Nikolova, M.: Analysis of the recovery of edges in images and signals by minimizing nonconvex regularized least-squares. SIAM J. on Multiscale Modeling and Simulation 4, 960–991 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. on Pattern Analysis and Machine Intelligence 12, 629–639 (1990)

    Article  Google Scholar 

  20. Rudin, L., Osher, S., Fatemi, C.: Nonlinear total variation based noise removal algorithm. Physica D 60, 259–268 (1992)

    Article  MATH  Google Scholar 

  21. Saquib, S., Bouman, C., Sauer, K.: ML parameter estimation for Markov random fields, with appications to Bayesian tomography. IEEE Trans. on Image Processing 7, 1029–1044 (1998)

    Article  Google Scholar 

  22. Vogel, C.R., Oman, M.E.: Iterative method for total variation denoising. SIAM J. on Scientific Computing 17, 227–238 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Fiorella Sgallari Almerico Murli Nikos Paragios

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Nikolova, M. (2007). Bounds on the Minimizers of (nonconvex) Regularized Least-Squares. In: Sgallari, F., Murli, A., Paragios, N. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2007. Lecture Notes in Computer Science, vol 4485. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72823-8_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72823-8_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72822-1

  • Online ISBN: 978-3-540-72823-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics