Skip to main content

Detecting Regions of Dynamic Texture

  • Conference paper
Scale Space and Variational Methods in Computer Vision (SSVM 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4485))

Abstract

Motion estimation is usually based on the brightness constancy assumption. This assumption holds well for rigid objects with a Lambertian surface, but it is less appropriate for fluid and gaseous materials. For these materials a variant of this assumption, which we call the brightness conservation assumption should be employed. Under this assumption an object’s brightness can diffuse to its neighborhood. We propose a method for detecting regions of dynamic texture in image sequences. Segmentation into regions of static and dynamic texture is achieved by using a level set scheme. The level set function separates the images into areas obeying brightness constancy and those which obey brightness conservation. Experimental results on challenging image sequences demonstrate the success of the segmentation scheme and validate the model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nelson, R.C., Polana, R.: Qualitative recognition of motion using temporal texture. CVGIP: Image Understanding 56, 78–89 (1992)

    Article  MATH  Google Scholar 

  2. Szummer, M., Picard, R.W.: Temporal texture modeling. In: Proc. Int. Conf. Image Processing, vol. 3, pp. 823–826 (1996)

    Google Scholar 

  3. Doretto, G., et al.: Dynamic textures. IJCV 51, 91–109 (2003)

    Article  MATH  Google Scholar 

  4. Chetverikov, D., Péteri, R.: A brief survey of dynamic texture description and recognition. In: 4th Int. Conf. on Computer Recognition Systems, pp. 17–26 (2005)

    Google Scholar 

  5. Murray, D.W., Buxton, B.F.: Scene segmentation from visual motion using global optimization. IEEE Trans. Pattern Analysis and Machine Intell. 9(2), 220–228 (1987)

    Article  Google Scholar 

  6. Cremers, D., Soatto, S.: Motion competition: A variational approach to piecewise parametric motion segmentation. Int. J. Comp. Vision 62(3), 249–265 (2004)

    Article  Google Scholar 

  7. Doretto, G., et al.: Dynamic texture segmentation. In: Ninth Int. Conf. on Computer Vision, p. 1236 (2003)

    Google Scholar 

  8. Béréziat, D., Herlin, I., Younes, L.: A generalized optical flow constraint and its physical interpretation. In: Proc. Conf. Comp. Vision Pattern Rec., pp. 487–492 (2000)

    Google Scholar 

  9. Cuzol, A., Mémin, E.: Vortex and source particles for fluid motion estimation. In: Kimmel, R., Sochen, N.A., Weickert, J. (eds.) Scale-Space 2005. LNCS, vol. 3459, pp. 254–266. Springer, Heidelberg (2005)

    Google Scholar 

  10. Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artificial Intelligence 17(1-3), 185–203 (1981)

    Article  Google Scholar 

  11. Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: DARPA Image Understanding Workshop, pp. 121–130 (1981)

    Google Scholar 

  12. Péteri, R., Huskies, M., Fazekas, S.: DynTex: A comprehensive database of Dynamic Textures (2006), http://www.cwi.nl/projects/dyntex/

  13. Bruce, V., Green, P.R., Georgeson, M.: Visual Perception. Psychology Press, Hove (1996)

    Google Scholar 

  14. Bouthemy, P., Fablet, R.: Motion characterization from temporal co-occurrences of local motion-based measures for video indexing. In: Proc. of the Int. Conf. Pattern Recognition, vol. 1, pp. 905–908 (1998)

    Google Scholar 

  15. Peh, C.H., Cheong, L.-F.: Synergizing spatial and temporal texture. IEEE Transactions on Image Processing 11, 1179–1191 (2002)

    Article  MathSciNet  Google Scholar 

  16. Fablet, R., Bouthemy, P.: Motion recognition using nonparametric image motion models estimated from temporal and multiscale co-occurrence statistics. IEEE Trans. Pattern Analysis and Machine Intell. 25, 1619–1624 (2003)

    Article  Google Scholar 

  17. Lu, Z., et al.: Dynamic Texture Recognition by Spatiotemporal Multiresolution Histograms. In: Proc. of the IEEE Workshop on Motion and Video Computing (WACV/MOTION), pp. 241–246. IEEE Computer Society Press, Los Alamitos (2005)

    Chapter  Google Scholar 

  18. Péteri, R., Chetverikov, D.: Dynamic Texture Recognition Using Normal Flow and Texture Regularity. In: Marques, J.S., Pérez de la Blanca, N., Pina, P. (eds.) IbPRIA 2005. LNCS, vol. 3523, pp. 223–230. Springer, Heidelberg (2005)

    Google Scholar 

  19. Fazekas, S., Chetverikov, D.: Normal versus complete flow in dynamic texture recognition: A comparative study. In: Int. Workshop on Texture Analysis and Synthesis, pp. 37–42 (2005)

    Google Scholar 

  20. Otsuka, K., et al.: Feature extraction of temporal texture based on spatiotemporal motion trajectory. In: ICPR, vol. 2, pp. 1047–1051 (1998)

    Google Scholar 

  21. Zhong, J., Scarlaroff, S.: Temporal texture recongnition model using 3D features. Technical report, MIT Media Lab Perceptual Computing (2002)

    Google Scholar 

  22. Wildes, R.P., Bergen, J.R.: Qualitative Spatiotemporal Analysis Using an Oriented Energy Representation. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 768–784. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  23. Smith, J.R., Lin, C.-Y., Naphade, M.: Video texture indexing using spatiotemporal wavelets. In: Proc. Int. Conf. on Image Processing, vol. 2, pp. 437–440 (2002)

    Google Scholar 

  24. Wu, P., et al.: Texture descriptors in MPEG-7. In: Skarbek, W. (ed.) CAIP 2001. LNCS, vol. 2124, pp. 21–28. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  25. Saisan, P., et al.: Dynamic texture recognition. In: Proc. Conf. Comp. Vision Pattern Rec., vol. 2, Kauai, Hawaii, pp. 58–63 (2001)

    Google Scholar 

  26. Fujita, K., Nayar, S.K.: Recognition of Dynamic Textures using Impulse Responses of State Variables. In: Int. Workshop on Texture Analysis and Synthesis, pp. 31–36 (2003)

    Google Scholar 

  27. Soatto, S., Doretto, G., Jones, E.: Spatially Homogeneous Dynamic Textures. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3022, pp. 591–602. Springer, Heidelberg (2004)

    Google Scholar 

  28. Shum, H.-Y., et al.: Synthesizing Dynamic Texture with Closed-Loop Linear Dynamic System. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3022, pp. 603–616. Springer, Heidelberg (2004)

    Google Scholar 

  29. Todorovic, D.: A gem from the past: Pleikart Stumpf’s anticipation of the aperture problem, Reichardt detectors, and perceived motion loss at equiluminance. Perception 25, 1235–1242 (1996)

    Article  Google Scholar 

  30. Hildreth, E.C.: The analysis of visual motion: From computational theory to neural mechanisms. Annual Review of Neuroscience 10, 477–533 (1987)

    Article  Google Scholar 

  31. Horn, B.K.P.: Robot Vision. McGraw-Hill, New York (1986)

    Google Scholar 

  32. Paragios, N., Deriche, R.: Geodesic active regions and level set methods for motion estimation and tracking. CVIU 97(3), 259–282 (2005), doi:10.1016/j.cam.2003.04.001

    Google Scholar 

  33. Zheng, H., Blostein, S.D.: Motion-based object segmentation and estimation using the MDL principle. IEEE Transactions on Image Processing 4(9), 1223–1235 (1995), citeseer.ist.psu.edu/zheng95motionbased.html

    Article  Google Scholar 

  34. Galun, M., Apartsin, A., Basri, R.: Multiscale segmentation by combining motion and intensity cues. In: Proc. Conf. Comp. Vision Pattern Rec., vol. 1, Washington, DC, USA, pp. 256–263. IEEE Computer Society Press, Los Alamitos (2005)

    Google Scholar 

  35. Wang, J.Y.A., Adelson, E.H.: Representing moving images with layers. The IEEE Transactions on Image Processing 3(5), 625–638 (1994), citeseer.ist.psu.edu/wang94representing.html

    Article  Google Scholar 

  36. Amiaz, T., Kiryati, N.: Piecewise-smooth dense optical flow via level sets. Int. J. Comp. Vision 68(2), 111–124 (2006)

    Article  Google Scholar 

  37. Weickert, J., Bruhn, A., Brox, T.: Variational Motion Segmentation with Level Sets. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 471–483. Springer, Heidelberg (2006)

    Google Scholar 

  38. Anandan, P.: A computational framework and an algorithm for the measurement of visual motion. Int. J. Comp. Vision 2(3), 283–310 (1989)

    Article  Google Scholar 

  39. Black, M.J., Anandan, P.: The robust estimation of multiple motions: parametric and piecewise-smooth flow fields. Comp. Vision and Image Underst. 63(1), 75–104 (1996)

    Article  Google Scholar 

  40. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. Comp. Phys. 79, 12–49 (1988), citeseer.ist.psu.edu/osher88fronts.html

    Article  MATH  MathSciNet  Google Scholar 

  41. Dervieux, A., Thomasset, F.: A finite element method for the simulation of rayleigh-taylor instability. In: Lecture Notes in Mathematics, vol. 771, pp. 145–158 (1979)

    Google Scholar 

  42. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Transactions on Image Processing 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  43. Vese, L.A., Chan, T.F.: A multiphase level set framework for image segmentation using the Mumford and Shah model. Int. J. Comp. Vision 50(3), 271–293 (2002)

    Article  MATH  Google Scholar 

  44. Papenberg, N., et al.: Highly accurate optic flow computation with theoretically justified warping. Int. J. Comp. Vision 67(2), 141–158 (2006)

    Article  Google Scholar 

  45. Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations. Applied Mathematical Sciences, vol. 147. Springer, Heidelberg (2002)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Fiorella Sgallari Almerico Murli Nikos Paragios

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Amiaz, T., Fazekas, S., Chetverikov, D., Kiryati, N. (2007). Detecting Regions of Dynamic Texture. In: Sgallari, F., Murli, A., Paragios, N. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2007. Lecture Notes in Computer Science, vol 4485. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72823-8_73

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72823-8_73

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72822-1

  • Online ISBN: 978-3-540-72823-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics