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Abstract. The parametric mazimum flow problem is an extension of
the classical maximum flow problem in which the capacities of certain
arcs are not fixed but are functions of a single parameter. Gallo et al. [6]
showed that certain versions of the push-relabel algorithm for ordinary
maximum flow can be extended to the parametric problem while only in-
creasing the worst-case time bound by a constant factor. Recently Zhang
et al. [14/13] proposed a novel, simple balancing algorithm for the para-
metric problem on bipartite networks. They claimed good performance
for their algorithm on networks arising from a real-world application. We
describe the results of an experimental study comparing the performance
of the balancing algorithm, the GGT algorithm, and a simplified version
of the GGT algorithm, on networks related to those of the application
of Zhang et al. as well as networks designed to be hard for the balancing
algorithm. Our implementation of the balancing algorithm beats both
versions of the GGT algorithm on networks related to the application,
thus supporting the observations of Zhang et al. On the other hand, the
GGT algorithm is more robust; it beats the balancing algorithm on some
natural networks, and by asymptotically increasing amount on networks
designed to be hard for the balancing algorithm.

1 Introduction

The parametric maximum flow problem is a generalization of the ordinary max-
imum flow problem in which the capacities of arcs out of the source (into the
sink) depend on a single parameter and are monotonically increasing (decreasing)
functions of the parameter. Applications of parametric maximum flow beyond
those of ordinary maximum flow include product selection [BI12], database record
segmentation [0], repair kit selection [I1], and flow sharing [0].

The current best time bounds for the ordinary maximum flow problem on a
network with n vertices, m arcs, and integral arc capacities bounded by U are
O(nm1og,, /(n10gny ™) 0] and O(min{n?/3,m'/?}ymlog(n?/m)logU) [1]. The
former algorithm is based on the push-relabel method [§]. Gallo et al. [6] show
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how to modify certain versions of the push-relabel method using amortization
and graph contraction to obtain an algorithm that solves the parametric maxi-
mum flow problem yet has the same asymptotic complexity as the original algo-
rithm. Their idea applies to the algorithm of [10], giving an O(nm 108, /(n10g n) )
bound for the parametric flow problem. Tarjan et al. [I3] give a divide and con-
quer approach that uses an ordinary maximum flow algorithm as a black box to
achieve a running time that is a factor min{n,log(nU)} worse than that of the
black box algorithm. In combination with [7], this gives an O(min{n?/3,m'/?}m
log(n?/m)log U min{n,log(nU)}) bound for the parametric problem. In prac-
tice, certain implementations of the push-relabel method (e.g. [4]) have better
overall performance than those of the algorithm of [7], which makes the GGT
algorithm a promising choice for the parametric flow problem.

Zhang et al. [I4] recently introduced an algorithm for the parametric problem
based on a new technique called star balancing (see Section [3)). This algorithm
solves the special case of the parametric problem in which the network is bi-
partite, source arcs have capacity A, where A is the parameter, sink arcs have
constant capacity, and all other arcs have infinite capacity. This is an important
special case, which includes all of the applications mentioned above except for
flow sharing. The star balancing algorithm with a small enhancement suggested
by Tarjan et al. [I3] runs in time O(mn?log(nU)) [13]. One can show that this
analysis is tight for a family of long path examples (See Section 4.2). Although
this bound is significantly worse than the best bounds currently known, the
worst-case bound is overly pessimistic for many real-world instances. In partic-
ular, the star balancing algorithm performs well on several real-world instances
of the product selection problem [I4]. This motivates experimental comparison
between this algorithm and the GGT algorithm.

Few experimental studies of the parametric flow problem have been published
in the open literature [2II3IT4]. Our codes are the same or better than the corre-
sponding ones in these studies. The only other implementation we are aware of
is based on an algorithm described in [9]. However, this implementation became
available to us too late for comparison in the current paper.

Our comparison between the GGT and star balancing algorithms involves sev-
eral steps. First, one needs to develop efficient implementations of the algorithms,
which is non-trivial. Then one needs to find interesting real-world and synthetic
instances that show strengths and weaknesses of the algorithms. We restricted
the experiments described here to bipartite problems of the kind to which the
star balancing algorithm applies. Experiments with the GGT algorithm on some
other graph types can be found in [2].

The rest of this paper is organized as follows. Section [[LT] reviews the ordi-
nary and parametric maximum flow problems and describes the notations we
use. Section [ describes the GGT algorithm and an efficient implementation
of it. Section [ describes the star balancing algorithm and its implementation.
Section Ml is devoted to our experiments. Finally, Section [ contains concluding
remarks, including possible future research directions.
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1.1 Background and Notation

For the ordinary maximum flow problem, the input is a directed, capacitated
network ' = (V, A, s,t,c : A — Z%), where V is a set of vertices of size n,
A is a set of directed arcs (u,v) of size m, s and ¢ are two special vertices
(the source and the sink), and ¢ is a capacity function. We assume that the
capacities are integers in the range [1,U]. A flow in a network is a function
f + A — R that satisfies the capacity constraints 0 < f(a) < ¢(a) Va € A
and the flow conservation constraints 3_, ,ca f(u,0) = 32, yea f(v,w) for
all v € V — {s,t}. The output for an ordinary maximum flow problem is a flow
fsuch that 37 4 f(s,v) is maximized.

For the parametric maximum flow problem, the input is a directed, capaci-
tated network N' = (V, A,s,t,c : A x R — ZT), where the extra input to the
capacity function is a parameter A\, upon which the capacities of some arcs may
depend. The capacities of arcs out of the source are monotonically increasing in
A, while those of arcs into the sink are monotonically decreasing in A All other
arcs must have constant capacities (i.e., the capacities cannot depend on \).
The set of minimum cuts for all values of A has a nested structure: as the value
of X increases, the source side of the cut grows. As a result, there are n — 1 or
fewer critical values of X, called breakpoints, at which the minimum cut changes.
The output for a parametric problem is the sequence of breakpoints along with
the corresponding nested cuts, and possibly corresponding maximum flows (or
information about them).

2 GGT Algorithm

2.1 Push-Relabel Algorithm

The GGT algorithm is based on the push-relabel algorithm [§] for the maximum
flow problem. The push-relabel algorithm uses two basic operations, push and
relabel, and maintains a flow and integral distance labels on vertices. The impor-
tant properties of the algorithm are that the distance labels are monotonically
increasing, the value of each distance label changes by O(n), and the work of the
algorithm is charged to the distance label increases. We assume that the reader
is familiar with the push-relabel algorithm as discussed in [§] or [6].

2.2 GGT Algorithm

In this section we describe two algorithms for the parametric flow problem, a
simple algorithm based on graph contraction and the GGT algorithm, which
also uses amortization to improve the worst-case complexity.

L Gallo et al. [6] show how to transform a parametric problem so that all of the arcs
into the sink are of constant capacity. For simplicity, in the rest of the paper we
assume that the arcs into the sink have constant capacity and the arcs out of the
source all have capacities that are linear functions of A.
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A simple algorithm for computing all breakpoints works recursively. At each
call, the algorithm gets an interval (A1, A3) and cuts corresponding to A1 and Ag,
and outputs all breakpoints in the interval. Initial values of \; and A3 that are
less than and greater than all breakpoints, respectively, are easy to find (see [6]).

Let a1 + Aby and as + Abs be the parametric capacities of the two input cuts.
Set A2 = (a1 —as)/(bs —b1) and compute the minimum cut corresponding to As.
If the parametric capacity of the cut is not equal to a; + Aby or as + Abs, then A,
is not a breakpoint, and we recursively find all breakpoints on (A1, A2) and on
(A2, Ag). Otherwise, it is a breakpoint, and we output it. Then, if the capacity is
equal to a1 +Aby, we recurse on the interval (A2, A3). In the other case, we recurse
on (A1, A2). When making a recursive call for the interval (A1, A2), we contract
the vertices on the sink side of the minimum cut corresponding to 2. Similarly,
when making the other recursive call, we contract vertices on the source side.
Each call of the algorithm is dominated by a minimum cut computation, and
one can show that the number of calls is O(n).

Next we describe the GGT algorithm. The algorithm uses amortization. One
way to use amortization in the context of the simple algorithm is to note that
when recursing on (A2, A3), one can use the distance labels (on the sink side of
the computed cut) from the current flow computation and amortize the cost of
such recursive calls over one maximum flow computation. Note that the distance
labels on the source side of the cut are “infinite” so the other recursive call cannot
be amortized. To obtain the desired bound, the GGT algorithm makes sure that
the cost of the flow computation on the bigger graph is amortized.

To achieve this, the algorithm runs two flow computations in parallel; forward
from the source and backward from the sink. Assume that the forward compu-
tation finishes first; the other case is symmetric. Then if the sink side of the
resulting cut has at least as many vertices as the source side, we disregard the
result of the backward computation. Otherwise, we finish the backward compu-
tation and keep the labels on the source side of the cut, which is at least as big
as the sink side. This way the GGT algorithm amortizes the cost of the bigger
recursive call at each level, leading to the desired time bound. See [6] for details.

2.3 Implementation Issues

We implemented two versions of the Gallo-Grigoriadis-Tarjan algorithm. The
complete version (GGT) uses amortization and bidirectional flow computations.
Our implementation uses the gap and global relabeling heuristics (see [, e.g.),
but does not use the dynamic tree data structure, so its running time bound is
O(n?y/m). We also implemented a simple version of the algorithm (SIMP) that
starts each maximum flow from scratch and uses the forward computation only.
Otherwise the implementation is similar and uses the gap and global relabel-
ing heuristics as well. This implementation has a worse asymptotic bound but
smaller constant factors. The efficiency of the resulting implementations requires
careful implementation of the contraction operations, including maintaining im-
plicit flows on contracted arcs.
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Dealing with precision. The above discussion assumes unlimited precision arith-
metic. Because of the multiplicative factors in the parametric cut capacities, one
may need high precision to distinguish between adjacent breakpoints. However,
using high-precision arithmetic is expensive, and in some applications one may
not need to distinguish between breakpoint values that are close together. Our
approach is to use 64-bit integer arithmetic and distinguish only between break-
points that are far enough apart. Our implementation can miss some breakpoints,
but for each missed breakpoint we find a value that is close. Note that using (even
double precision) floating point arithmetic does not avoid numerical issues and
may lead to correctness and termination problems.

Our implementation starts by selecting an integer multiplier M and multiply-
ing all capacities by M. The value of M is selected so that for the highest value
of X the total capacity of arcs from the source is less than 252, and for the lowest
value of A the same holds for the arcs into the sink. This choice of M guarantees
that flow excesses do not exceed 252, overflow errors will be detected, and our
correctness checker, which needs an extra bit of precision, can be implemented.

During the algorithm initialization, when calculating the initial range, we
round A\; down and A3 up to the nearest integer. During the algorithm execution,
we round the value of Ao down.

Note that because of the rounding, a value x we output may not be a break-
point. However, the following properties hold. These properties follow from the
fact that we evaluate the parametric capacity function at points which are integer
multiples of 1/M.

1. If we output a value x, then there is a breakpoint in the interval [z —1/M, z+
1/M].

2. For every breakpoint y, we output a value in [y — 1/M,y + 1/M].

3. For every two distinct x7 and xo we output, there are corresponding mini-
mum cuts (X7, X1), (X2, X2) such that the parametric capacities of the two
cuts are different.

Note that if we restrict the precision of the values we output, then this is the
best we can do.

In addition to outputting the approximate breakpoint parameter values, we
build a data structure containing the corresponding cuts. Since the cuts are
nested, the data structure is an ordered list of vertices, with a pointer to the last
vertex of the source-side set for each cut. Note that if all distinct breakpoints
are at least 2/M apart, the cuts correspond to the true breakpoint values, and
can be used to compute the exact breakpoint values.

3 Star Balancing Algorithm

3.1 Algorithm Description

First, we briefly review the star balancing algorithm. For a more detailed de-
scription, the reader should consult [T4] and [13]. The star balancing algorithm
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is an algorithm for solving instances of the parametric maximum flow problem
that meet the following constraints:

— the network is bipartite, that is, V\{s,t} can be partitioned into sets V; and
V5 such that all arcs from s are to members of Vi, all arcs to ¢ are from
members of V5, and all other arcs are from members of V7 to members of V5

— all arcs from s have capacity A

— all arcs to t have constant capacity

— all other arcs have infinite capacity.

For each arc (s,u), we define A(f,u) to be the unique value of A such that
c((s,u), A) = f(s,u), and refer to it as u’s A-value. Additionally, it will be useful
to have notation for describing the changes made to the flow during the process
of the algorithm’s execution. Define a z-straddling a-move to be the process of
starting from an initial flow f and pushing a > 0 units of flow along a simple
cycle (s,u1,v,us,s) for which A(f,u1) +a <z < A(f,u2) — a. Any z-straddling
move for any z is defined to be a balancing move.

The star balancing algorithm begins by replacing the arcs from the source
with arcs of infinite capacity, and then finding an arbitrary maximum flow in
the resulting network, which can be done in linear time. Next, the algorithm
repeatedly balances members v of V5 by changing the current flow f to a new
flow f’ via modifying the flows on arcs among {(s,u) U (u,v) | (u,v) € A} so
that there are no remaining balancing moves involving v. Note that if flows are
constrained to be integral as is the case in the implementation described in this
paper, there may be remaining fractional balancing moves, but no remaining
integral balancing moves.

Balancing a star can be accomplished in time linear in the degree of the
vertex [13]. Balancing can be done in any order, and is repeated until a sufficient
stopping condition is reached. Theoretical analysis of the algorithm [I3] assumes
round-robin balancing (i.e., repeatedly iterating over a list of the members of V3),
although our implementation uses a working set heuristic [I4] that is different
from simple round-robin balancing (See Section B.2]).

3.2 Implementation Details

Next we describe a few details of our implementation of the star balancing al-
gorithm.

First, although balancing a vertex v € V5 can be accomplished in time linear in
the degree k of v [I3] using weighted selection, our implementation uses sorting
and takes O(klogk) time. In practice, we found that using the sorting-based
algorithm was just as good as using the linear-time algorithm, probably because
only a small amount of time was spent balancing vertices of high degree for
the inputs we tried and because the sorting-based algorithm had lower overhead
since it uses a library sorting routine.

Second, rather than using round-robin balancing, we used the working set
heuristic originally introduced and described in [T4]. It does round robin balanc-
ing, but if a vertex v € V5 does not cause the flow to change during an iteration,
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it is marked “dead” and left out of future iterations, until all members of V5 are
dead, at which point all members of V5 are returned to “live” status. The upper
bounds proved for round-robin star balancing apply to the working-set variant,
and the same pathological long path example shows that this analysis is tight
for the working-set variant as well. In practice, the working set heuristic seems
to result in a significant speedup on many real-world and synthetic inputs.

Third, the stopping rule that we use for this implementation is slightly dif-
ferent from the stopping rules presented in the theoretical paper [13]. In our
implementation, once the working set is empty, all members of V5 become live,
and if one more round of balancing does not change the flow of any arc, then
balancing stops. Once balancing stops, we must use the current A-values to de-
termine the set of breakpoints to report. Two natural options are:

— reporting all distinct A-values based on the final flow

— reporting the average of A-values for each section, where sections partition
the vertices so that every possible remaining balancing move is entirely
within a section. (See [13].)

We chose to do the latter, since this guarantees that all reported breakpoints
correspond to actual parametric minimum cuts.

3.3 Precision Issues

For a practical implementation, precision issues are important. One option is to
work with high-precision or rational numbers. Both of these options introduce
significant overhead compared to the use of hardware arithmetic operations, so
we instead opted to use 64-bit integers as used in the other two implementations
of this paper. In what follows, we discuss the most important issues that arise
when using limited precision in the star balancing algorithm.

First, we address the question of how much precision is needed to solve the
problem exactly, assuming the fixed capacities are integral. It can be shown that
for two distinct breakpoints, A’ and A", it is the case that [N — \'| > 4/|V;|2.
This implies that multiplying arc capacities by some multiplier M > [V;]?/2
ensures that all true breakpoints differ by more than 2, so that if no augmenting
path (u1,v1,u2,v9,...,0—1,ug) remains (where u; € Vi and v; € V3) along
which 1 unit of flow can be pushed so as to decrease |\(f,u1) — A(f, ug)|, then
all reported breakpoints will be true breakpoints, and vice versa.

Because balancing only guarantees the non-existence of balancing moves (i.e.,
augmenting paths of two arcs, excluding the two arcs from s), however, and does
not guarantee that there are no remaining balancing paths as described above,
such a multiplier is insufficient to guarantee that exactly the true breakpoints
are found by the star balancing algorithm. Because of this weakness, patholog-
ical examples show that true breakpoints can be up to a distance 2(|V;]) from
the reported breakpoints if we only report one \-value per section ] Hence, an

2 Tt should be noted that we can eliminate all balancing paths and achieve a precision
guarantee identical to those of the SIMP and GGT implementations if we add a
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additional multiplicative factor of |V | is required (and sufficient, since no section
at the end of the star balancing phase can have A-values that differ by more than
|[Vi]| — 1) to guarantee that exactly the true breakpoints are reported.

Whatever multiplicative factor M is used for the capacities, the star balancing
algorithm may work with A-values as high as M - |Va| - U, so this value must fit
into a 64-bit integer, which we use to store A-values. In these experiments, we
used a multiplier of [V;3|.

If we are not concerned with finding exactly the true breakpoints, we can use a
smaller multiplier and report all A\-values (scaled down by M) as breakpoints at
the termination of the balancing phase. Using this approach, there will be some
reported breakpoint within 1/(2M) of each true breakpoint, but a pathological
example can be constructed that shows that reported breakpoints can be as far
as 2(logn/(Mloglogn)) from the closest true breakpoint. We believe that this
lower bound on inaccuracy is tight.

4 Experimental Comparison

In this section we report on experimental performance of SIMP, GGT, and the
star balancing algorithm, called SB. These implementations use the same lan-
guage (C++), compiler (cygwin), optimization flags (-O4), and were run on the
same computer, a Hewlett-Packard desktop with a 3.2GHz Pentium 4 processor
and 2GB of RAM. However, SIMP and GGT were implemented by a different
set of people than those that implemented SB. Also, while these algorithms are
for the general problem, SB works only for the special case discussed earlier.

The inputs we used in this experiment were a combination of real and syn-
thetic data. The real data we used were the inputs used in [T4]. These datasets
are instances of the revenue optimization problem, and correspond to sets of
products and orders for various subsets of these products.

In addition, we created synthetic datasets corresponding to each of the real
datasets. We computed the degree distributions of vertices on the left and right
sides of the bipartitions, and the distribution of the capacities of arcs going into
the sink, and used these to generate synthetic networks with statistics similar
to each real dataset. The purpose of these synthetic datasets was to examine
whether any underlying structure of the problems may have been affecting the
relative running times of the algorithms.

We created various other simple synthetic examples to illuminate the degree
to which the pathological worst-case running time of SB occurs on various simple
problem instances related to the long path example as compared to the more

Simple post-processing step that repeatedly pushes one unit of flow along augmenting
paths from u; € Vi to uz € Vi so as to balance their A-values. This post-processing
step runs in worst-case time O(m|Vz|?) but may run significantly faster in practice.
Although the post-processing step does not worsen the worst-case running time of
the star balancing algorithm, we chose not to incorporate it into the implementation
and instead leave the less-than-ideal precision guarantee as part of the specification
of the implementation.
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robust SIMP and GGT implementations. We started with various lengths of the
long path example with uniform sink arc capacities, and generalized this type
of example to have variable sink arc capacities and extra arcs, both random
and nonrandom, between the left and right sides of the bipartition. We also
experimented with some natural problem variants.

4.1 Real Data and Its Synthetic Model

First we compare the implementations on real-life problem instances from [I4].
There are four datasets, taken from the same real-world application. See Table[3]
for the vertex and arc sizes of these datasets. The results of the experiments,
displayed in Fig. [l and Table [[I show that SB, despite its inferior worst-case
running time, outperforms GGT and SIMP for these datasets.

70 T T T 70 T
GGT e GGT KXX=
60 [-SIMP sazos R 60 |-SIMP e
SB e SB e
T 50 p 2 50}
g 5
(5] - .
3 40 - § 40
X
£ 30} £ p £ 30
(9] S [}
2 3 2
i 20 S B E 20
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10 ygg v i 10
0 3 3 S S o
d1 d2 d3 dda

Synthetic dataset

Real-world dataset

Fig. 1. A comparison of the running times Fig. 2. Comparison results on synthetic

of the GGT, SIMP, and SB implementa- datasets of the same sizes, degree distri-

tions on real-world inputs butions, and capacity distributions as the
corresponding real-world inputs

Table 1. Tabular data corresponding to Table 2. Tabular data corresponding to

Fig. [ Fig.
dl d2 d3 d4a dl d2 d3 d4a
GGT 7.41 9.04 25.98 68.68 GGT 7.329.48 24.71 60.44
SIMP 4.21 5.07 13.41 37.75 SIMP 4.22 5.37 13.41 33.45
SB 2.41 1.74 3.27 16.29 SB 1.121.83 5.11 7.49

To help understand why this is happening, we implemented a synthetic prob-
lem generator that models these real-life problems, as discussed earlier. This
provided some robustness to the results that used the real data. The results of
these experiments, given in Fig. 2 and Table 2 show that the performance gap
remains roughly the same.
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Table 3. A description of
the problem sizes of the real-

world problem instances of Table 4. Tabular data corresponding to Fig.
the product selection prob-

lem wused in these experi- 6400 12800 25600 51200 102400 204800 409600

ments GGT 0.51 1.22 281 6.35 14.41 32.11 70.58

SIMP 0.23 0.57 1.35 3.07 7.04 15.76 34.44

dl 42 d3  d4a SB 048 1.14 2.66 5.88 13.21 30.91 77.86

|A| 454k 625k 1,401k 3,386k
|Vi| 263 232 344 439
Vo] 39k 53k 123k 286k

4.2 The Long Path Example and Its Variations

One type of bad example for SB is one in which there is a long path over which
many iterations of balancing are required to propagate modest changes in \-
values through the graph. Tarjan et al. [I3] showed that the running time of the
balancing algorithm using round-robin balancing on examples such as the one
shown in Fig. Blis 2(n®logn). This is troubling, especially considering that such
examples are extremely easy for most parametric maximum flow algorithms to
solve. Indeed, as the experimental results show in Fig.[dl SB performs drastically
worse on this family of examples than GGT and SIMP.

100

¢ GGT -
/ SIMP --O---
‘ SB -
;"; 10 | . E
c *
3 o)
£ TFe ¥ @ 3
£ X
Fooo1e ) 4
%)
0.01 L X ‘ ‘
100 1000 10000 100000 1e+06
Path length

Fig.3. The long path example, which Fig.4. A comparison of the running times
with unlucky initialization requires of GGT, SIMP, and SB on increasingly

_(Z(nd logn) time to finish balancing large long path examples. Note that the
running time of GGT and SIMP grows
roughly linearly, while the running time
of SB grows roughly cubically.

The behavior of the balancing algorithm on inputs resembling long paths is
troubling, but why might long paths not be a problem in practice? One intuitive
explanation for this is that real data may have variability in the capacities of the
arcs incident to the sink. Intuitively, this variability can keep SB from needing
to push flow over long distances to reach the balanced state. Using capacities
distributed uniformly at random on [1, 1000], this intuition was confirmed as
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shown in Fig. Bland Tabled where such variability improves the performance of
SB almost to that of GGT. Fig.[dland Table Bl also show how the competitiveness
of SB increases as the variability of the sink arc capacities increases.

Another reason why long paths may not be a problem in practice is that
additional connections in the graph may ameliorate the problem. For example,
if a random matching is overlaid on top of a long path graph (e.g. Fig. ),
the long path remains but there are many shortcuts for flow to take to reach
one end of the long path from the other end. The results, shown in Fig. []
and Table @ indicate that this variation on the long path example also elim-
inates much of the difference in performance between SB and the other two
implementations.
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Path length n (log scale) Upper-bound, U, on capacities

Fig. 5. A comparison of the running times Fig. 6. A comparison among the algorithms
of the GGT, SIMP, and SB implementa- on a long path example with 102,400 ver-
tions on long path inputs (as in Fig. [3) tices and capacities distributed uniformly
with sink capacities drawn from [1, 1000] in [100, U]. See Table [l for the data corre-
uniformly at random. See Table [ for the sponding to this graph.

data corresponding to this graph.

In fact, as Fig. [ and Table [0 show, adding additional random matchings
continues to improve the performance of SB algorithm relative to those of GGT
and SIMP. This leads one to speculate that it might be possible to prove a
running time bound that depends on some kind of expansion property of the
underlying bipartite graph. This is discussed in Section [

Another way to view the long path example is as a 1-dimensional checkerboard
in which red squares correspond to members of V; and black squares correspond

Table 5. Tabular data corresponding Table 6. Tabular data corresponding to Fig. [1]
to Fig.

200 400 800 1600 3200 6400 6400 12800 25600 51200 102400 204800 409600
GGT 26.77 18.19 16.44 16.35 16.65 16.98  GGT 0.14 0.31 0.67 1.37 2.81 5.78 12.08
SIMP 14.30 9.21 829 813 811 825 SIMP 0.08 0.19 040 0.84 172 3.58 7.42
SB 442.10 54.64 25.56 19.31 17.23 16.63 SB 021 0.71 1.24 3.10 6.93 24.38 111.44
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Fig. 7. A comparison of the running times
among GGT, SIMP, and SB on long path
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Fig. 8. A comparison of the running times
among GGT, SIMP, and SB on long path
inputs in which k£ random matchings are
overlaid on top of the long path. The num-
ber of vertices in the path was fixed to
409,600.

to members of V5 and there are arcs from each member of V; to the members of
V4 corresponding to adjacent squares on the checkerboard. Based on this view,
we can extend the long path example to higher-dimensional checkerboards in
which the paths are not as long for graphs of roughly the same size (See Fig. []).
More specifically, in a d-dimensional checkerboard example with n vertices, the

diameter of the graph is @(n'/9).

Indeed, as we increase the number of dimensions of the checkerboard while
holding the number of vertices roughly constant, the performance of SB improves
relative to that of the GGT and SIMP (See Fig. [0l and Table ).

Fig.9. An example of a 3 X 3 two-
dimensional checkerboard example
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Fig.10. A comparison of the running
times of the GGT, SIMP, and SB imple-
mentations on hypercube checkerboard in-
puts of similar size (about 60,000 vertices
each) but increasing dimension
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Table 7. Tabular data corre- Table 8. Tabular data corresponding to Fig.
sponding to Fig.

r 2 4 8 16 3 4 5 6 7 8 10 16
GGT 11.24 13.59 18.35 28.05 44.53 GGT 2.00 205 3.10 1.82 449 3.04 3.53 3.95
SIMP 7.26 8.91 12.07 17.19 29.12 SIMP 1.39 1.43 1.92 1.18 2.77 1.87 2.20 2.40
SB  45.62 16.75 14.00 14.00 16.93 SB  223.05 82.00 38.39 18.56 31.29 21.08 14.59 13.18

5 Conclusions and Future Work

Our comparison of the push-relabel algorithms SIMP and GGT with the star bal-
ancing algorithm shows that no algorithm dominates the others. This is despite
the fact that the push-relabel algorithms have significantly better worst-case
bounds. Also, SIMP outperforms GGT in all our experiments. The push-relabel
codes are more robust — when they are slower, they are not slower by as much
— probably due to the better worst-case bound. For real-life instances from the
one application domain we tried, the balancing algorithm was fastest, confirm-
ing the earlier claims of Zhang et al. [I413] based on indirect estimates of GGT
performance. In addition, the star balancing algorithm is easier to implement.

Our results show that the pathological behavior of the balancing algorithm
when running on long path examples disappears as various changes are made to
the network , such as adding sink arc capacity variability, adding random edges,
or parameterizing the dimension of the long path example so as to extend it to
a higher number of dimensions. This suggests two directions to take for future
work regarding using the balancing framework for parametric max-flow.

First, it is clear that the pathological long path behavior is moderated when
additional connections between the two sides of the partition provide shortcuts
to the long path, or when the long path is cut by variable sink arc capacities.
This suggests proving a bound better than the existing bound when the graph
has sufficient expansion or some other property. Proving such a bound would be
nice in that we would be able to give a better guarantee on the running time of
this extremely simple algorithm. Second, in addition to proving a better bound,
it would be interesting to see if there were a way to remove the pathological long
path behavior by devising a hybrid algorithm that is fast on inputs with long
paths, and remains fast on the types of inputs for which the balancing algorithm
shows good performance. Such an algorithm would probably only be interesting
if it did something other than running two different algorithms in parallel, and
it may even be possible to prove a better worst-case running time for such a
hybrid algorithm than the current best known worst-case running time.

For the push-relabel algorithms, it seems hard to construct a worst-case ex-
ample. In fact, it is hard to construct an example on which GGT is significantly
faster than SIMP, which should be the case in the worst-case example if the
sophisticated amortization used by GGT is needed to achieve the time bound.
The only known example where GGT beats SIMP [2] uses the fact that the un-
derlying push-relabel algorithm is asymmetric and can take very different time
when solving the equivalent problem on the reverse graph. The GGT algorithm
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runs on the original and the reverse graph in parallel and on such an example it
is faster for this reason. An interesting question is whether the clever amortiza-
tions used in GGT is reflected in practice. For example, it would be interesting
to see if there exist instances of the parametric maximum flow problem for which
GGT and SIMP have similar running times if the parameter value is fixed to any
value, but GGT saves a logarithmic factor over SIMP when the entire paramet-
ric problem is solved all at once. Finally, it would be interesting to see if there
is a faster implementation of a push-relabel algorithm for the special bipartite
version of the problem studied in this paper. In this regard, see [1I6] for results
on bipartite maximum flow.
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