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Abstract. The extraction of reliable features is a key issue for au-
tonomous underwater vehicle navigation. Imaging sonars can produce
acoustic images of the surroundings of the vehicle. Despite of the noise,
the phantoms and reflections, we believe that they are a good source
for features since they can work in turbid water where other sensors like
vision fail. Moreover, they can cover wide areas incrementing the num-
ber of features visible within a scan. This work presents an algorithm to
extract linear features from underwater structured environments includ-
ing as major contributions a novel sonar model sensor and an adapted
implementation of the Hough transform.

1 Introduction

Vehicle localization, map building and more recently, the simultaneous local-
ization and mapping (SLAM) are fundamental problems to achieve true au-
tonomous vehicles [1], [2]. One of the key issues on those techniques is to de-
velop reliable systems to extract features from the environment in order to build 
maps or navigate thorough existing ones. Working in underwater environments 
is specially challenging because of the reduced sensorial possibilities. Acoustic 
devices are the most common choice while the use of cameras and laser sensors 
is limited to applications where the vehicle navigates very near to the seafloor. 
One of the issues on working on this kind of environments is the difficulty on 
finding reliable features. There are approaches using clusters of acoustic data as 
features [3], [4], some merge visual and acoustic information in order to improve 
the reliability [5], while others simply introduce artificial beacons to deal with 
complex environments [6]. Most of the previous work using mechanically scanned 
imaging sonars (MSIS) have focused on the use of point features assuming the 
robot remains static or moves sufficiently slow. In this work we propose an al-
gorithm to take advantage of structured elements typically present in common 
underwater scenarios (drilling platforms, harbours, channels, dams,...) in order 
to extract line features. Moreover, our algorithm removes the ”static” assump-
tion. This paper briefly introduces MSISs, presents a novel sonar model which 
improves the sensor measurements characterization and depicts a modified ver-
sion of the Hough transform algorithm for detecting line features (cross sections 
of planar structures present in the environment) in imaging sonar scans. Finally, 
the results and conclusions are presented.
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2 Extracting Line Features from Acoustic Images

MSISs perform scans in a 2D plane by rotating a sonar beam through a series
of small angle steps. For each emitted beam, distance vs. echo-amplitude data is
returned. Thus, accumulating this information along a complete 360◦ sector, an
acoustic image of the surroundings can be obtained (Fig. 1). Commonly, these
devices have a slow scanning rate (f.i. a Tritech Miniking sonar head needs about
6 seconds to complete a 360◦ scan). For this reason, the vehicle movement along
a complete scan usually induces important distortions in the acoustic image
(Fig. 1b). Extracting features from this kind of images produces inaccuracies
and yields to poor results. Therefore, the first step of the procedure consists
on merging the raw sensor data together with the information from the vehi-
cle’s navigation system [7]. Incorporating the displacements and rotations of the
sensor into the positional information of each sonar measurement leads to an
undistorted acoustic image such the one represented in Fig. 1c.

Fig. 1. (a) Schematic representation of the environment where the sonar data were
gathered. The highlighted zones represent the expected sonar returns. Images gener-
ated from acoustic data, (b) distorted and (c) undistorted image through navigation
integration.

2.1 Beam Segmentation

At a given orientation of the transducer head, the sensor gathers an acoustic
profile of the surroundings which is represented by a vector of echo amplitude
values (called bins) each one corresponding to a particular distance along the
emitted beam. Since objects present in the environment appear as high echo-
amplitude returns, only part of the information stored in the vector is useful for
feature extraction. Therefore, a segmentation process can be done in order to
get the more significant information from the acoustic beam and, in addition,
reduce the computational cost of the algorithm. In the context of this work
several approaches have been tested (Fig. 2):

– H ighest intensity: The bin with the maximum value over a threshold is
selected.

– Peak values: The set of local maxima over the threshold are selected. More-
over, they must accomplish a ”minimum distance between them” criterion.
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Fig. 2. (a) Acoustic image generated with the complete set of measurements, (b) high-
est intensity return selection, (c) peak values selection, (d) thresholding

.

– Thresholding: All the bins with values over a threshold are selected. The
performance of these approaches is reported in section 3.

2.2 Sonar Modeling

Each single beam’s bin represents the strength of the echo intensity return from a
particular place within the insonified area (Fig. 3a). The acoustic beam projected
along the central axis of the transducer has a 3◦ horizontal beamwidth and a
40◦ vertical beamwidth. As the sonar data is represented in the horizontal plane,
the uncertainty due to the vertical aperture produces a blurred representation of
the features along the beam (Fig. 3a). On the other hand, the uncertainty from
the horizontal beamwidth is not implicitly represented in the resulting data.
Typically, in order to represent this uncertainty, each bin can be described as an
arc showing all the possible locations of tangent surfaces producing compatible
sonar returns [8],[9]. While this simple model is well suited for air sonar ranging
systems, it is not able to explain the acoustic images gathered with a MSIS. A
careful analysis on such images (see Fig. 3b) reveals that their object detection
capability is not limited to the arc-tangent surfaces. Even those beams which
meet a surface with a considerable incidence angle (for the Miniking, β = 60◦)
produce a discernible high intensity profile. For this reason, we have adopted
an extended model to describe the imaging sonar. Each bin represents a zone
described by an arc which corresponds to the horizontal beamwidth α (in our
sensor, α = 3◦). Given a resolution and the incidence angle β, for each point
belonging the arc, its tangent surface as well as the intersecting planes with an
incidence angle smaller than ±β/2 are visible for the beam’s bin (Fig. 4). Hence,
the acoustic intensity represented by the bin should correspond to one of those
candidate planes.

2.3 The Hough Voting Space

The Hough transform [10] accumulates the information from the sensor data
into a voting table which is a parameterized representation of all the possible
feature locations. Those features that receive a great number of votes are the
ones with a relevant set of compatible sensor measurements and thus the ones



Line Extraction from Mechanically Scanned Imaging Sonar 325

Fig. 3. (a) Dispersion of the high intensity returns provoked by the vertical aperture
of the sonar beam, (b) representation of the horizontal beamwidth as an arc. Note that
at the maximum incidence angle the line feature is still distinguishable although the
arc is not tangent.

that most likely correspond to a real object in the environment. We have chosen
line features to represent the planar objects existing in the scene. These line
features are described by two parameters, ρB and θB (distance and orientation
with respect to the base frame B). Hence, the resulting Hough space is a two-
dimensional space where the voting process and the search for maxima can be
done efficiently. Another key issue is the quantization of the Hough space. In our
case, we have observed that tuning the quantization to match the angular and
lineal resolutions of our sensor (typically, 0.1 m and 1.8◦) works fine.

2.4 Voting

Each time a beam is obtained, the segmented bins vote in the Hough space.
The next step is to determine the candidate lines that will receive the votes. As
previously introduced in section 2.2, the measurement is modeled as an arc in
order to represent the uncertainty that appears due to the horizontal beamwith
α (Fig. 4). Hence, θSj will take values within an aperture of ±α/2 around the
real angle of the transducer head. Then, for each θSj value, a set of k candidate
lines will be determined. As said before, not only the lines tangent to the arc
are candidates, but also the ones inside the maximum incidence angle limits of
±β/2. So, for each θSj value we can define θB

k as:

θSj − β

2
≤ θB

k ≤ θSj +
β

2
. (1)

Finally, the ρB
k value that corresponds to each value of θB

k is calculated as:

ρB
k = xSj cos(θ

B
k ) + ySj sin(θB

k ) + ρSjcos(θSj

k ) . (2)

In Fig. 5a it is shown how the set of voters corresponding to a single sonar return
looks like when assigned to the Hough space. Note that each selected cell of the
Hough space only receives one single vote. However, we have tested two different
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Fig. 4. Model of the sonar sensor for line features. Where B is the base reference frame
and S is a reference frame attached to the current beam.

ways to assign values to the votes. The first method assigns to each vote a value
of 1, while the second gives to the vote a value related with the echo intensity
of its corresponding bin. In this way, we try to give more weight to those sonar
returns that more strongly reflect the presence of objects in the environment.

As the sensor constantly produces measurements, the number of votes as-
signed to the space grows without limit. Moreover, when a 360◦ scan around
the sensor is completed, the new upcoming measurements would correspond to
a zone already visited and hence, redundant votes could corrupt the candidate
election. To avoid this, we tagged each bin with the angle of its corresponding
beam so the oldest voters can easily be identified and discarded. The key issue
of this idea is determining which measurements are identified as old voters. A
rough option is to consider the voters tagged one 360◦ scan away from the ac-
tual beam orientation. A smarter approach is to determine the minimum scan
sector necessary to detect a line feature. In the extreme case, a line can exist in
a 180◦ sector (when the feature is very close to the sonar head so it is placed
at the diameter of the scan). Therefore, each time a new measurement is incor-
porated, a voting process is performed for the measurements corresponding to
the most recent 180◦ sector. Then, a search among the potential candidate lines
is done. If a line obtains a sufficient number of votes (this changes depending
on many factors such as the chosen beam segmentation procedure or the dis-
cretization of the voting space) it is considered as detected and thus, their voters
can be eliminated (one bin can only correspond to a single line feature in our



Line Extraction from Mechanically Scanned Imaging Sonar 327

Fig. 5. (a) Votes assigned to the voting space for one single measurement. (b) Aspect
of the voting space after a small scan sector. The actual voting scan sector is marked
by a red line, the present features are in green, the blue line indicates the features
detection zone. (c) Aspect of the voting space after almost one complete scan. Note
that the old voters (the ones before the 180◦ scan) have been removed from the space.

application). If there is no line detected, the votes will be stored and used when
new measurements arrive. This solves the problem of continuously dealing with
new information provided by the sensor while, at the same time, keeps the num-
ber of votes low improving the overall efficiency of the algorithm (Fig. 5b and c).

2.5 Line Extraction

The algorithm looks for winning candidates each time a new beam arrives. How-
ever, we have to ensure that the algorithm detects the line when it has received
all the possible votes (or what is the same, the line is totally inside the scan sector
and the newest sonar beam cannot provide more information to it). Analyzing
all line features existing in the sector scan it is possible to determine when they
have received all the votes. A simple and robust strategy consist on setting the
zone for the line detection 90◦ away from the last beam measurement, just in the
bisector of the 180◦ scan sector (see the blue lines in Fig. 5b and c). Beyond this
point, all the feature lines had been detected and hence, all the votes assigned
to this lines had been removed so they cannot interfere with the detection of
further features.
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Fig. 6. (a) 180◦ scan sector used in the example, (b) aspect of the voting space when
using only the highest value of each beam, (c) when using peak values, (c) when using
a threshold for measurement selection. Note that the shapes of the peaks reflect the
uncertainty of the lines in the scan.

3 Results and Conclusions

Several experiments were carried out gathering acoustic images in a water tank
with a Tritech Miniking sonar mounted in an AUV. A Sontek Argonaut DVL
sensor incorporating a magnetic compass was used to undistort the images. Se-
lecting the parameters (threshold, incidence angle, minimum distance between
local maxima, ...) according to the particular characteristics of our sensor and
using the extended sonar model proposed in this paper, all the segmentation
strategies were able to detect the line features. The proposed voting space (last
180◦ scan sector) together with the line extraction strategy allows to deal con-
tinuously with the sonar beams as provided by the sonar instead of waiting to
collect a full scan before detecting the lines. With the proposed strategy, the
maximum delay between the time instant in which the last bin of a line has
been measured and the detection instant is 1.5 seconds (90◦ scan time) instead
of the 6 seconds needed for mapping a full slam. in the future we will explore
alternatives to reduce this delay to zero, looking for the Hough peaks not in
linear region but in a nonlinear region.

Fig. 6 shows a representative experiment comparing the different beam seg-
mentation strategies, using votes with a value of one. In our experiments, voting
proportionally to the acoustic intensity didn’t improve results appreciably. Here-
after we describe the conclusion related to each segmentation strategy:

– Highest intensity: This method is the one computationally more efficient be-
cause of the small number of votes. After the voting process, the winners
appear in the Hough space as identifiable small peak zones. However, the low
number of votes make easier the existence of ”false winners” (a small but
elongated shape can produce a similar number of votes that a line feature
with lower intensity measurements, see Fig. 6b).

– Peak values: This method seems to be a good compromise between low com-
putational cost and robustness. The higher number of votes gives a better
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description of the elements present in the scene. The resulting Hough space
is similar to the one obtained with the previous method. However, it seems
to be more ”contrasted” as winners present a much higher concentration of
votes (Fig. 6c).

– Thresholding: This is by far the less efficient approach due to the large num-
ber of measurements involved in the voting. However, it presents a interesting
property that the other methods had not shown: The thickness of the linear
features present in the sonar scan seems to be related to the size and shape
of the winner peaks in the Hough space (see Fig. 6d). As introduced in sec-
tion 2.2, the vertical aperture of the fan shaped beam, among other causes,
provokes a thickening of the elongated form corresponding to the line feature.
This effect leads to uncertainty on the estimate of the real position of the fea-
ture and, for some applications, such as robot localization or SLAM, knowing
this uncertainty is crucial. We think that, using this method, we can probably
not only obtain the parameters of the existing features but also its related
uncertainty. Further work will be done on this matter.
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