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Abstract. This work describes an approach for the interpretation and
explanation of human behavior in image sequences, within the context
of a Cognitive Vision System. The information source is the geometrical
data obtained by applying tracking algorithms to an image sequence,
which is used to generate conceptual data. The spatial characteristics
of the scene are automatically extracted from the resuling tracking tra-
jectories obtained during a training period. Interpretation is achieved
by means of a rule-based inference engine called Fuzzy Metric Temporal
Horn Logic and a behavior modeling tool called Situation Graph Tree.
These tools are used to generate conceptual descriptions which semanti-
cally describe observed behaviors.

1 Introduction

A classical problem in computer vision is the analysis of human behavior in
observed scenes, where behavior refers to human agent trajectories which acquire
a meaning in an specific scene. Results obtained in this research may benefit in
the human-computer interaction and the video-surveillance domains.

Current motion understanding systems rely on numerical knowledge based
on (i) the quantitative data obtained from tracking procedures and (ii) the geo-
metrical properties of the scene[1],[7]. Therefore, this process is usually scene-
dependent, and a-priori information of the spatial structure of the scene is re-
quired. The questions about the what and why can be answered by reasoning
about the tracking data and transforming it to semantic predicates which relates
each tracked agent with its environment. Common problems are the semantic
gap which refers to the conceptual ambiguity between the image sequence and its
possible interpretations, and uncertainty, which raises due to the impossibility
of modeling all possible human behaviors.

In order to cope with the uncertainty aspects, integration can be learnt using
a probabilistic framework: PCA and Mixtures of Gaussians [8], Belief Networks
[6,10] and Hidden Markov Models [3] provide examples. However, probabilistic
approaches do not provide semantic explanation for observed agent behaviors.
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Alternatively, Fuzzy Metric Temporal Horn Logic (FMTHL) also copes with
the temporal and uncertainty aspects of integration in a goal-oriented manner
[12]. This predicate logic language treats dynamic occurrences, uncertainties of
the state estimation process, and intrinsic vagueness of conceptual terms in a
unified manner. FMTHL uses three different strategies to accomplish such an
abstraction process, according to the source of knowledge which is exploited to
generate the qualitative description [12]. The main advantage of FMTHL over
the previously referred algorithms relies on the promise to support not only
the interpretation, but in addition diagnosis during the continuous development
and test of the so-called Cognitive Vision Systems [9]. Further, Situation Graph
Trees (SGTs) constitute a suitable behavior model which explicitly represents
and combines the specialization, temporal, and semantic relationships of the
constituent conceptual predicates in FMTHL. [4].

This contribution is structured as follows: next section describes the quanti-
tative knowledge obtained from tracking. Next, we automatically build a concep-
tual scene model from the trajectories obtained from tracking during a training
period. Consequently, contrary to other approaches, the geometrical properties
of the scene are not provided beforehand, but automatically learnt from track-
ing instead. In Section 4 we show the conceptual description of human behaviors
observed in a pedestrian crossing scene. Finally, Section 5 concludes the paper
and shows future lines of research.

2 Numerical Knowledge for Motion Understanding

This section presents our procedure which converts the geometrical informa-
tion obtained from tracking processes into a list of conceptual predicates which
semantically describes motion events.

2.1 Information about the Agent

Semantic interpretation is based on the numerical state vector of the agent. The
state vector is determined by the nature of the parameters used for tracking,
which may refer to dynamical, positional and postural properties of the human
agent. For example, motion verbs, such as accelerating could be instantiated by
evaluating the history of the spatial and velocity parameters of the agent state.
In our case, numerical knowledge obtained from tracking is comprised in the
following attribute scheme:

has_status(Agent, pos, or, vel, aLabel),

which embeds the 2-D spatial position pos of the agent Agent in the floor
plane, in addition to the velocity vel and the orientation or. These three para-
meters are called the spatial status of the agent. The parameter aLabel refers
to the action, which obtained with respect to the velocity wvel: we differentiate
between walking, standing or running.
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(a) (b)

Fig. 1. Example of human agent tracking in the pedestrian crossing scene.

(b)

Fig. 2. Information of the scene. (a) The area occupied by an agent in a frame step is
given by the envolving ellipse obtained in the segmentation process. (b) The roadway
scene model and the agents’ trajectories.

In our experiments, the quantitative description of the state of the agent is
obtained through a segmentation process based on Horprasert algorithm [5] and
on a subsequently state estimation method [11] for each time step, see Fig. 1.

2.2 Information about the Scene

Behavior analysis requires an explicit reference to a spatial context, i.e., a con-
ceptual model of the scene. Such a model allows to infer the relationship of the
agent with respect to (predefined) static objects of the scene, and to associate
facts to specific locations within the scene. All this information is expressed as a
set of logical predicates in FMTHL. The conceptual scene model is divided into
polygonally bounded segments, which describe the possible positions in which
an agent can be found.

Here we present a learning procedure for the conceptual scene model, which
is based on the work of Fernyhough et al. [2]. We consider that the area (A)
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Fig. 3. Creation of trajectory segments. (a) Obtaining the temporal points of the tra-
jectory. (b) Drawing lines perpendicular to the orientation of the agent for each tem-
poral point, Connecting points at distance v from the corresponding temporal point,
thus obtaining the trajectory segments.

(b)

occupied by an agent at each frame step is provided by the segmentation process,
see Figure 2.(a). In our case, the trajectories of the agents were obtained from
the pedestrian crossing scene shown in Figure 2.(b).

Initially, we obtain a set of temporal points of the trajectory (73), each one
separated from the next by a fixed quantity of time, see Fig. 3.(a). Considering
the orientation of the agent at each point 7;, a perpendicular line is drawn and
the intersection (T3, and Tj,) is found at distance A to the point T}, see Figure
3.(b). Then, the T;, is joined with T;41,, and T, with T;41,. Consequently, the
four points 15, Ti41,, T,, Ti+1, define a trajectory segment.

We build a matrix with the same height and width than the ground plane
section of the scene. We traverse the matrix, assigning to each position (1, j)
the number of trajectories for which one of their segments are drawn at the
position (7, j) of the scene. For example, if three trajectories pass through the
same point of the scene, this point’s correspondence in the matrix will have value
3, see Fig. 4, where the brighter values represent the most accessed segments by
the agents. Then, a threshold value is assigned depending on the number of
trajectories analyzed and only those positions of the matrix whose value is equal
to or exceeds this threshold are considered. Finally, all adjacent positions are
considered to constitute a segment of the new scene, see Fig. 3.(c).

As a result of the learning process of the scene model, this is divided into
polygonally bounded roadway-segments, which describe the positions in which an
agent has been found. Each roadway-segment, has a label which determines the
conceptual description associated with such a segment. At present, we manually
distinguish (at least) four different types of segments, namely: sideway_segment,
waiting_line, roadway-segment, and crosswalk. Consequently, we can build predi-
cates which relate the spatial position of the agent with respect to these segments.

3 Working with Semantic Concepts

We next describe the use of FMTHL for generation of conceptual predicates
from the state vector. Subsequently, we present a SGT for behavior modeling
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Fig. 4. Representation of the accumulation matrix used to obtain the segments of the
new scene. Results match with the precomputed roadway scene.

which is used for the organization of plausible predicates into a temporal and
conceptual hierarchy.

3.1 Generation of Conceptual Predicates

We use a system based on the Horn-Logic Fragment of Fuzzy Metric Temporal
Logic (FMTHL)[12] which provides a suitable mechanism for processing fuzzy
and temporal data. By means of a set of inference rules, FMTHL allows to
transform quantitative data into qualitative data, expressed as logic predicates.

First, quantitative state parameters are associated to concepts like moving,
small, left, or briefly with a fuzzy degree of validity characterizing how good
a concept matches the numerical quantity. For example, the speed and orien-
tation parameters of the state vector is associated to fuzzy attributes, thus al-
lowing the instantiation of logic predicates such as has_speed(Agent, Value) or
has_direction(Agent, Value).

Secondly, spatial relations are derived by considering the positions of the
agents and other static objects in the scene. In this case, a conceptual scene
model is required to describe the spatial coordinates of the agent with respect
to static objects, other agents, and specific locations within the scene. This
description is implemented by applying a distance function between the po-
sitions of different agents/objects in the scene. Subsequently, a discretization
of the resulting distance value is obtained by using Fuzzy Logic, for example
is_alone(Agent, Proximity) or has_distance(Agent, Patiens, Value).

Lastly, an action label is associated depending on the agent velocity. Thus,
we can distinguish between three different actions, namely running, walking or
standing by defining predicates such as is_per forming(Agent, aLabel).

3.2 Situation Graph Trees

In this paper, predicate evaluation is performed in a goal-oriented manner: we
use SGT's to recognize those situations which can be instantiated for an observed
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Fig. 5. Situation Graph Tree for behavior interpretation of human agents crossing a
roadway.

agent by applying the so-called graph traversal [4]. The goal is to determine the
most specialized situation which can be instantiated by considering the state
vectors of the agents at each frame step. This traversal of the SGT is applied by
considering the knowledge encoded in the form of prediction and specialization
edges: on the one hand, given a situation, only its successors in temporal order
will be evaluated at the next time step. On the other hand, each situation can
be described in a conceptually more detailed way, thus allowing certain level of
abstraction and specificity.

Fig. 5 depicts a simplified version of an SGT which allows to infer the behav-
ior of agents of the roadway scene, as detailed next. The root graph comprises
only one situation scheme, in which the predicate states that an agent is presently
active, active(Agent). The first possible specialization is the fact that the agent
is not currently walking on the walking line. Then, only two situations can be
instantiated: the agent is on the road or is on the sideway. Because in this scene
there are only two kinds of segments where an agent can appear, this situation
would repeat until the agent reaches the waiting line or it leaves the scene. When
the agent arrives at the waiting line (ON_WAITING_LINE) the agent might stop
for checking that there is no car on the road. This case is also modeled in the
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Start End Situation
1 26 on_sideway_seg(agent_1, sseg24)
27 76 on_sideway_seg(agent_1, sseg25)
77 126 on_sideway_seg(agent_1, sseg26)
127 179 on_sideway_seg(agent_1, sseg27) Start End Situation
180 184 id ent_1, 28
on_st eWay._seg(ag T ss.eg ) 523 571 on_sideway_seg(agent_4, ssegl7)
185 225 agent_walking on_waiting_line(agent_1) 572 595 on_sideway_scg(agent 4, ssegl8)
_ - _4, sseg
226 321 on_crosswalk(agent_1) 596 635 on_road(agent_4, rseg9)
322 371 CmSSEd(agem—_l) 636 680 on_road(agent_4, rseg2)
372 26 on_the_other_sidewalk(agent_1) 681 740 on_the_other_sidewalk(agent_4)
(a) (b)

Fig. 6. Sequence of conceptual descriptions generated for : (a) agent_1 (b)agent_4.

specialization of this situation scheme. After leaving the waiting line, the agent
can walk on the pedestrian crossing (ON-CROSSWALK) or continue walking
on the sideway. Once an agent has reached the sideway on the other side of the
road, he or she is expected to continue walking on the sideway until leaving the
scene.

4 Experimental Results

In this section we show the resulting process of predicate generation in order to
obtain conceptual descriptions from image sequences recorded at a pedestrian
crossing scenario.

The image sequence used for this purpose comprised 4 human behaviors, as
summarized next:

— Agent 1 walks on the sideway towards the waiting line and crosses the pedes-
trian crossing without stopping to see whether a car is approaching.

— Agent 2 and Agent 3 behave initially like Agent 1, but they stop on the
waiting line for a few seconds before crossing the crosswalk.

— Agent 4 crosses the road without going to the pedestrian crossing.

Figure 6 show the resulting conceptual descriptions generated for agent_1
and agent_4 using the SGT of the previous section. The resulting conceptual
information establishes a behavioral layer in a cognitive vision system, which lets
knowing what the agent is doing at each frame step and predict what the agent
will probably do in the future frames. The first fact helps to generate natural
language descriptions about the video sequence. The second allows the vision
system to recover from segmentation errors e.g. predictable agent occlusions.

5 Conclusions

We have used a deterministic model suitable for modeling human behaviors.
Our information source has been an image sequence previously processed with
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pattern recognition algorithms, thus extracting quantitative data of the paths
followed by human agents. Interpretation of human behavior has been achieved
by means of a rule-based inference engine called FMTHL, and a human behavior
modelling tool called Situation Graph Tree. This model has been tested for a
street scene, and conceptual descriptions have been generated which semantically
describe observed behavior.

At present, the SGT described here has not learning capabilities, so the
accuracy of the modelled behavior will depend on the accuracy of the a-priory
knowledge used. We also need to provide machine learning capabilites to improve
reasoning through the sets of training examples. This will allow to confront
sociological theories about observed human behavior, whose quantitative base is
at present being computed from statistics and not from semantic concepts.
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