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Abstract. This paper presents a method to efficiently estimate average 3-D shapes
from non-rigid motion in the case of missing data. Such a shape cantherfur
used to accomplish full reconstruction of deformable objects and ratjistrof
non-rigid shapes. The approach is based firstly on a power methodt lirtearly
provides an initial estimate of the 3-D structure and motion components of the
object shape. Secondly, non-linear optimisation is used to refine the inigaklin
estimation. Tests on both real and synthetic sequences show the peéfda-
tiveness in dealing with different degrees of occlusions in the measmtsm

1 Introduction

Recently the inference of the 3-D structure of a deformindybeiewed by an un-
calibrated camera has attracted increasing interest. nuatGre from Motion (SfM)
domain, non-rigid shapes have posed new problems sincevithleye the rigidity con-
straints on which previous SfM methods strongly rely. Mokthe model-free ap-
proaches to non-rigid SfM available nowadays are baseereih closed-form so-
lutions [12], assuming pre-specified shape priors, or titleranon-linear optimisation
techniques [5, 1, 11], requiring an appropriate initidlsain order to converge. In the
latter case, average shape and motion [9] have experirheptalen to be a successful
initialisation to such tasks and they can be easily compwteeh the full trajectory of
a point lying on the deforming body is available.

However, in the case of missing data affecting the trajéesofi.e. a point being
occluded for some frames) a solution for the average shapet isurrently available.
Estimation of structure and motion from occluded data (83€dr a review) is an
essential task for most practical applications given tHficdity to obtain complete
trajectories. At this end, the solution proposed here igerative power method which
can estimate average shapes in the case of missing data agldhibility is assessed in a
full 3-D reconstruction task for deforming objects. The \ggeh is based on the notion
of average shape introduced in [9] which penalizes in a iteytaeweighted scheme
the non-rigidity of trajectories. This method can be exthty reformulating power
methods for SfM [7] to include the notion of non-rigidity oft@jectory and extend it
to the case of missing data.

In detail, the paper firstly introduces the non-rigid fatzation framework and the
definition of average shape (Section 2). Then, power metfardSfM are presented
in Section 3 for the case of rigidly moving objects. The newrapch with missing
entry is explained in Section 4 and experiments (Sectiorh&jvdts effectiveness on
synthetic test and on a face modelling task.
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2 Non-rigid Structure from Motion

2.1 A Factorization Approach to Deformable Modelling

Tomasi and Kanade'’s factorization algorithm [10] has bedormulated to the case of
non-rigid 3-D structure [2]. A linear approximation of a s#tK basis shapesy, is
used to describe a 3-D time varying shapsuch that:

K
X=) LSk X8, eR¥P L eR (1)
k=1

Each basis shapes,. represent the mode of deformations of the deforming body and
they are parameterised ag a P matrix which contains the 3-D locations &f ob-

ject points for that particular mode of deformation. Assagnan orthographic camera
model the shape is then projected onto an image fragngng P image points:

K
W= [wi..wip| =R (Z liksk> 2
k=1

where eachw;; = [u;;v;;]7 with j = 1... P contains the horizontal and vertical image
coordinates of the point — referred to the centroid of theaob} andk; encodes the first
two rows of the rotation matrix for a specific framelf all P points are tracked i’
image frames we may construct the measurement niatiich can be expressed as:

Wi ... W1p lllRl llKRl Sl
W= L= 5 L | =S, (3)
Wp1 ... WEpp lFlRF~~~lFKRF SK

Clearly, the rank of the measurement matrix is constraiodetat mos8 K, where
K is the number of deformations. This rank constraint can Ipéoéed to factorize the
measurement matrix into a motion mat#ixand a shape matr&by truncating the SVD
of wto rank3 K. However, this factorization is not unique since any inbdt3 X' x 3K
matrix Q can be inserted in the decomposition leading to the altemé&ictorization:
W = (MQ)(Q~!'8). The focal problem to solve in non-rigid factorization setes is to
find theQ that renders the appropriate replicated block structutb@imotion matrix
and that removes the affine ambiguity, upgrading the reoacti&n to a metric one.

2.2 Extracting Average Shapes from Deformations

Based on the framework described in the previous sectiam, &iHong [9] recently
introduced a measure called the Degree of Non-rigidityN) to estimate the deviation
of a deformable point from its average position. This measan in turn be used to
extract an average shape using an iterative certainty géesl scheme. If the average
3-D shape of a time varying shafie= [X;; ... X;p] is given by& = [X; ... Xp] the
DoNfor point j is defined as:

'
DoN; =Y (X5 — X;)(Xi; — X;)". 4)
=1
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The 2-D projectiorc; of the DoN will be thus given by:

F F

Cj =Y Ri(Xij — X;)(Xi; — X)TR] = (wij — Wij)(wij — Wij)" (5)

i=1 =1

wherew,; are the image coordinates of pojhat frame: andw;; are the coordinates
of its projected mean shape. While the N cannot be computed without an estimation
of the mean 3-D shape, the value of its projection can be agtuirdirectly from image
measurements.

An initial estimate of the projected 2-D mean shages could be given simply
by the first basis shap® (as in equation (3)) which could be computed with a rank-
3 approximationSV D3 (W) = MS. The projected deviation from the mean for all the
points would then be defined Bw;; — w;;} = Ww—HS. However, a straight application
of a rank3 factorization over the first basis component does not predurcaccurate
measure o€; as showed in [9]. To adjust the covariances, the averageshait; are
iteratively estimated until convergence. However, thecpdure is unable to deal with
the case of missing data affecting the measurements. Wahal in the next section
how power methods can efficiently solve this issue.

3 Power Methods for Structure from Motion

SfM algorithms based on factorization require an initiat@®position of the motiod
and structure matrig given the dat&. In this context, power methods were introduced
with the namepowerfactorizatiorby Schaffalitzky and Hartley [7] to efficiently fac-
torise rank-constrained image measurements. This agpisamn alternation method
which iteratively estimated ands by simply executing multiplications and matrices
inverse. The update rules at iteratigpare given by [7]:

Mg = WSg_1(Sg_18¢-1)""
(6)

Sq = (MIM,)~'MIwW

They are a straightforward derivation from the orthogoralvgr method [6] which
convergence rate depends on the ratio of the dominant singalues ofi. In the case
of an affine camera viewing a moving rigid body, the updateg () can be modified to
account for the geometrical properties of the measuremiéoteach frameé=1--- F,
the projection of a poinf = 1-- - P can be expressed as:

wij =AX; +a; (7

where); is a2 x 3 camera projection matriXX; a3-vector of the 3-D coordinates and
a; a2-vector of the affine camera translation. In a more compaat fequation (7) can
be rewritten for every point at each frame as:

w=nfar] |50 5| [ E ] ®
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where1l is a P-vector of ones. Finally, the global expression for eacimfacan be
written as:

W= W:1 = [A1:al] [H[Aa]{XT]MS 9)
w} [AF‘.aF] ! !

The algorithm for extracting the affine motion and structafe rigid object can be
summarized as follows:

— Initialize Xy with random entries.

— Compute theF' x 4 update o, given equation (6).

— Extract the2F’ x 1 measurements centroigj such that, = [A|a, ].

— Compute the x P update off, such thatx, = (ATA,)~'AT (W — T,) where
(W — T,) are the centered coordinates and= a,11x p

4 Average Shape Estimation with Missing Data

4.1 Power lterations and Degree of Non-rigidity

In the case of affine estimation of average sh&@nd motionit, strongly non-rigid
trajectories (which in turn provide high covarian@g$ are penalized in the estimation
of the average components. The estimation task can be iadhst minimisation of a
cost functiony such that:

X = Z W” X TC (Wij — MZX]) (10)

whereX; contains the the homogeneous coordinate for the average gaih that
X; = [XT 1], Minimizing y can be carried out with a minor reformulation of the
power method [7]. In brief, each matrix ' can be factored as; ' = BT B; giving:

X = Z wi — 1,X;) BB (wi; — LX) =) [Bywy; —B;XG |7 (11)
2%
Notice the S|m|Iar|ty with equation (6) which hints to a swdm of the minimization
of (10) with a power approach. In order to obtain the two upsgaules for motion and
structure we can rewrite (11) such that:

X = |Bjwi; — B;%;m,| (12)
i
with: o
i X: 0 - T
=75 xr | andm; = [mf, (13)
J

wherem?, andm?; are respectively the first and secohc 1 rows of ;. Given the
quadratic costs (11) and (12) we can express the power \gftaitdhe motion as:

ZXTBTB %)Y %TBIBw,; = ZXTC‘lx ZXTC_IWU (14)
7
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After rearranging®; — M; = [A;|a; | we obtain:

X;=(Q_alcy'a) ' Y alci (wy —ay) (15)

3

wherea, is the overall translation component as defined in (9). Oheeestimates for
the averagé and$ are available¢; is update by equation (5).

4.2 The Missing Data Case

We can now assume that some points are not visible in some$ralne to occlusion.
In order to include missing data, we can modify the power tgdguations in (14) and
(15) to simply not include the equations regarding the mgsgintries giving:

J J

Xj=0Q alcy'a)™ Yy afcr Zij(wi —ay) a7)

whereZ;; is a scalar which is zero whenever a point is missing and dmenetse. The
updates have the property of efficiently estimating theroghtat each frame,; since
the measurement matrix of missing data may be not meanreentechematically, the
algorithm can be outlined as follows

— Initialize X with random entries.

— Compute th&F x 4 update of; fori = 1--- I given equation (16).
— Givenll; = [A;|a; |, extract the measurements centrajd

— Compute the update of the average 3-D structure with (17).

- Recomput@j = Zlel ZL] (W'L'j —a; — ALXJ)(WU —a; — Ain)T.

— Iterate until convergence.

A metric update of the average shape can be then obtained raie of orthographic
[10] and weak or para-perspective cameras [8] by computiegorrect x 3 transfor-
mationq for the average shape.

4.3 Non-linear Optimisation and Non-rigid SfM

A full deformable 3-D reconstruction as presented in Seclid can be successfully
computed linearly only when particular assumptions overdata are given and when
the full trajectories are available. For instance, in [1] authors proved the existence
of a unique solution and a closed form algorithm whémndependent 3-D shapes can
be identified in the measured data. On the other hand, a maerajesolution consists
in performing non-linear optimisation [5, 1, 11] by minirmg a cost function which
reflects the full deformable model as presented in equa8ipgi¢ing:

min Zij | Wij — %5 |I°=_min Zij Il wij — (R D 1aSkj) II° - (18)

j k

RiSkjlin < RiSkjlin <
i,j i

)

! for clarity we drop the iteration subscript

5
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where Sy, is the3 x 1 basis for the poiny such thatS; = [Sg1--- Skp]. Again,
the least-squares entries for the missing data are omlittéalisation of the model
parameters are provided by the average shape computedwifiower approach.

5 Experiments

5.1 Synthetic Data

The proposed power approach is first validated using ranglgamerated synthetic data
of a deforming shape. The 3-D bodies are generated by fimthpbng the first basis
shapes; over the surface of a sphere. The following basis. . Sk, which express
the modes of deformation of the body, are generated randdmigrder to obtain a
given deformation at framé the configuration weight; ...[;x are computed by
fitting 4-order polynomials to random samples, this givesenegular deformation
rather then erratic motion. The computed 3-D shapes arertbanalized to obtain a

specific ratio of deformation defined 'F:ZI I %fii”ii’“w which is fixed t00.25. The
=1 g
final measurement matrikis obtained by projecting each 3-D non-rigid shape onto the

image plane by means of random orthographic cameras Fipaligts are eliminated
given different ratios of missing data.

We test the algorithm performances in providing a meaninigftialisation to the
optimisation problem as defined in section 4.3. Firstly, wgaed problems in the con-
vergence if the algorithm for computing the average shaps dot include the iterative
re-weighting withC;. The overall results are showed in table 1 with differenelswof
image noise affecting the data. A decrease in the algorétip@‘formances is given for
ratios 0f30% and more missing data. Regarding the mean shape compuiztiorer-
gence is generally achieved after 15 iterations Wiif% of missing data, higher ratios
increase this number however, in the worst case, the ahgoritas not performing more
than50 steps.

5.2 Real Data

The real experiments are focused on extracting a mean shapeafdeforming face
exhibiting a light rotation and non-rigid motion espegiah the mouth region We se-
lected a700 frames long sequence from the overallo0 frames andb6 points are
collected to form the measurement matfixOccluded points appear with an overall
20% ratio of missing entries. The recovered mean shape (see figus then used to
initialize a full deformable reconstruction and some franpeesenting the recovered
3-D depth and deformations are presented (front and siaé) vighe approach is able
to successfully recover a reasonable estimates of the @eptldeformations even if
the subject is not performing strong rigid motion. The finainber of iterations for the
power method was df0 followed by40 iteration of non-linear optimisation.

2 sequence available at; www-prima.inrialpes.fr/FGnet/data/01-Talkoejfakingface.html



Extracting average shapes from occluded non-rigid motion 7

6 Conclusions

We presented a power approach to estimate average shapesdnerigid motion in the
case of missing data. Experimentally we have shown thetaeféeess of the method in
a deformable 3-D reconstruction task with affine cameras.éitracted average shape
and motion have been shown to provide a reliable initidbsator SfM optimisation
tasks in the tested cases. As a further study, the method enaxtended to more gen-
eral camera models (i.e. full perspective), however ihigaults have shown increased
instability in the convergence given by the difficulty in depling deformations from
perspective distortions. In such cases, an approach usagperiors as presented in
[4] may help to successfully compute a reliable averageehap
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. Noise o Noise
Missing 05T 1 157 2 Missing %0571 11572
10% |[1,32[1,47[1,89(2,11[2,13 10% [0.84[1.10[1.02[1.38]1.94
20% (2,85|3,69(3,45(3,69|4, 05 20% |1.26(1.38]2.05(1.26|2.55
30% (3,75|4,74]4,76(5,03|5, 78 30% |1.41]1.62|2.19(2.21|2.18
40% [3,99|4,64|5, 185,476, 87 40% |1.78]1.86|1.96(2.39|2.40
Rotation Error 3-D Structure error

Table 1. Left: Mean of the the absolute rotation error expressed in degreest: Riffhrecon-
struction error expressed in percentage relative to the scene sizeafduece of the added noise
is expressed in terms of image pixel. The value are computdd t¢nials for each configuration
of noise and missing data ratios.

0
Y
b

NN

. . S . .
Average Frame 100 Frame 178 Frame 388 Frame 487

Fig. 1. The first column shows the complete set of 56 points used for recatistr(first row)
and the recovered 3-D average shape (front and side views).efi@ing columns preset
key frames of the sequence with the available points at each frame ethadsand third rows
present respectively the front and side views of the reconstruci2a@tBdacture after non-linear
optimisation. The number of basis shapes was fixelf te: 6.



