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Abstract. This paper presents a method to efficiently estimate average 3-D shapes
from non-rigid motion in the case of missing data. Such a shape can be further
used to accomplish full reconstruction of deformable objects and registration of
non-rigid shapes. The approach is based firstly on a power method which linearly
provides an initial estimate of the 3-D structure and motion components of the
object shape. Secondly, non-linear optimisation is used to refine the initial linear
estimation. Tests on both real and synthetic sequences show the procedure effec-
tiveness in dealing with different degrees of occlusions in the measurements.

1 Introduction

Recently the inference of the 3-D structure of a deforming body viewed by an un-
calibrated camera has attracted increasing interest. In a Structure from Motion (SfM)
domain, non-rigid shapes have posed new problems since theyviolate the rigidity con-
straints on which previous SfM methods strongly rely. Most of the model-free ap-
proaches to non-rigid SfM available nowadays are based either on closed-form so-
lutions [12], assuming pre-specified shape priors, or iterative non-linear optimisation
techniques [5, 1, 11], requiring an appropriate initialisation in order to converge. In the
latter case, average shape and motion [9] have experimentally proven to be a successful
initialisation to such tasks and they can be easily computedwhen the full trajectory of
a point lying on the deforming body is available.

However, in the case of missing data affecting the trajectories (i.e. a point being
occluded for some frames) a solution for the average shape isnot currently available.
Estimation of structure and motion from occluded data (see [3] for a review) is an
essential task for most practical applications given the difficulty to obtain complete
trajectories. At this end, the solution proposed here is an iterative power method which
can estimate average shapes in the case of missing data and its reliability is assessed in a
full 3-D reconstruction task for deforming objects. The approach is based on the notion
of average shape introduced in [9] which penalizes in a certainty-reweighted scheme
the non-rigidity of trajectories. This method can be extended by reformulating power
methods for SfM [7] to include the notion of non-rigidity of atrajectory and extend it
to the case of missing data.

In detail, the paper firstly introduces the non-rigid factorization framework and the
definition of average shape (Section 2). Then, power methodsfor SfM are presented
in Section 3 for the case of rigidly moving objects. The new approach with missing
entry is explained in Section 4 and experiments (Section 5) show its effectiveness on
synthetic test and on a face modelling task.
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2 Non-rigid Structure from Motion

2.1 A Factorization Approach to Deformable Modelling

Tomasi and Kanade’s factorization algorithm [10] has been reformulated to the case of
non-rigid 3-D structure [2]. A linear approximation of a setof K basis shapesSk is
used to describe a 3-D time varying shapeX such that:

X =

K
∑

k=1

lkSk X, Sk ∈ ℜ3×P lk ∈ ℜ (1)

Each basis shapesSk represent the mode of deformations of the deforming body and
they are parameterised as a3 × P matrix which contains the 3-D locations ofP ob-
ject points for that particular mode of deformation. Assuming an orthographic camera
model the shape is then projected onto an image framei giving P image points:

Wi =
[

wi1 ... wiP

]

= Ri

(

K
∑

k=1

likSk

)

(2)

where eachwij = [uijvij ]
T with j = 1 . . . P contains the horizontal and vertical image

coordinates of the point – referred to the centroid of the object – andRi encodes the first
two rows of the rotation matrix for a specific framei. If all P points are tracked inF
image frames we may construct the measurement matrixW which can be expressed as:

W =







w11 . . . w1P

...
...

wF1 . . . wFP






=







l11R1 . . . l1KR1

...
...

lF1RF . . . lFKRF













S1

...
SK






= MS. (3)

Clearly, the rank of the measurement matrix is constrained to be at most3K, where
K is the number of deformations. This rank constraint can be exploited to factorize the
measurement matrix into a motion matrix~M and a shape matrix~S by truncating the SVD
of W to rank3K. However, this factorization is not unique since any invertible 3K×3K

matrix Q can be inserted in the decomposition leading to the alternative factorization:
W = (~MQ)(Q−1~S). The focal problem to solve in non-rigid factorization schemes is to
find theQ that renders the appropriate replicated block structure ofthe motion matrix
and that removes the affine ambiguity, upgrading the reconstruction to a metric one.

2.2 Extracting Average Shapes from Deformations

Based on the framework described in the previous section, Kim & Hong [9] recently
introduced a measure called the Degree of Non-rigidity (DoN) to estimate the deviation
of a deformable point from its average position. This measure can in turn be used to
extract an average shape using an iterative certainty reweighted scheme. If the average
3-D shape of a time varying shapeXi = [Xi1 . . .XiP ] is given byX̂ = [X̂1 . . . X̂P ] the
DoN for point j is defined as:

DoNj =

F
∑

i=1

(Xij − X̂j)(Xij − X̂j)
T . (4)
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The 2-D projectionCj of theDoN will be thus given by:

Cj =

F
∑

i=1

Ri(Xij − X̂j)(Xij − X̂j)
T
R

T
i =

F
∑

i=1

(wij − ŵij)(wij − ŵij)
T (5)

wherewij are the image coordinates of pointj at framei andŵij are the coordinates
of its projected mean shape. While theDoN cannot be computed without an estimation
of the mean 3-D shape, the value of its projection can be estimated directly from image
measurements.

An initial estimate of the projected 2-D mean shapesŵij could be given simply
by the first basis shapeS1 (as in equation (3)) which could be computed with a rank-
3 approximationSV D3(W) = M̂Ŝ. The projected deviation from the mean for all the
points would then be defined by{wij −ŵij} = W− M̂Ŝ. However, a straight application
of a rank-3 factorization over the first basis component does not produce an accurate
measure ofCj as showed in [9]. To adjust the covariances, the average shape andCj are
iteratively estimated until convergence. However, the procedure is unable to deal with
the case of missing data affecting the measurements. We willshow in the next section
how power methods can efficiently solve this issue.

3 Power Methods for Structure from Motion

SfM algorithms based on factorization require an initial decomposition of the motionM
and structure matrixS given the dataW. In this context, power methods were introduced
with the namepowerfactorizationby Schaffalitzky and Hartley [7] to efficiently fac-
torise rank-constrained image measurements. This approach is an alternation method
which iteratively estimatesM andS by simply executing multiplications and matrices
inverse. The update rules at iterationq are given by [7]:

Mq = WST
q−1

(ST
q−1

Sq−1)
−1

Sq = (MT
q Mq)

−1MT
q W

(6)

They are a straightforward derivation from the orthogonal power method [6] which
convergence rate depends on the ratio of the dominant singular values ofW. In the case
of an affine camera viewing a moving rigid body, the update rules (6) can be modified to
account for the geometrical properties of the measurements. For each framei = 1 · · ·F ,
the projection of a pointj = 1 · · ·P can be expressed as:

wij = AiXj + ai (7)

whereAi is a2× 3 camera projection matrix,Xj a3-vector of the 3-D coordinates and
ai a2-vector of the affine camera translation. In a more compact form, equation (7) can
be rewritten for every point at each frame as:

Wi =
[

Ai ai

]

[

X1 · · · XP

1 · · · 1

]

= Mi

[

X

1
T

]

(8)
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where1 is a P -vector of ones. Finally, the global expression for each frame can be
written as:

W =







W1

...
WF






=







[

A1 a1

]

...
[

AF aF

]







[

X

1
T

]

=
[

A a
]

[

X

1
T

]

= MS (9)

The algorithm for extracting the affine motion and structureof a rigid object can be
summarized as follows:

– Initialize X0 with random entries.
– Compute the2F × 4 update ofMq given equation (6).
– Extract the2F × 1 measurements centroidaq such thatMq =

[

Aq aq

]

.
– Compute the3 × P update ofXq such that:Xq = (AT

q Aq)
−1AT

q (W− Tq) where
(W− Tq) are the centered coordinates andTq = aq11×P

4 Average Shape Estimation with Missing Data

4.1 Power Iterations and Degree of Non-rigidity

In the case of affine estimation of average shapeŜ and motionM̂, strongly non-rigid
trajectories (which in turn provide high covariancesCj) are penalized in the estimation
of the average components. The estimation task can be recastin the minimisation of a
cost functionχ such that:

χ =
∑

i,j

(wij − M̂iX̄j)
T
C
−1

j (wij − M̂iX̄j) (10)

whereX̄j contains the the homogeneous coordinate for the average point such that
X̄j = [X̂T

j 1]T . Minimizing χ can be carried out with a minor reformulation of the
power method [7]. In brief, each matrixC−1

j can be factored asC−1

j = BT
j Bj giving:

χ =
∑

i,j

(wij − M̂iX̄j)
T
B

T
j Bj(wij − M̂iX̄j) =

∑

i,j

‖Bjwij − Bj M̂iX̄j‖
2 (11)

Notice the similarity with equation (6) which hints to a solution of the minimization
of (10) with a power approach. In order to obtain the two updates rules for motion and
structure we can rewrite (11) such that:

χ =
∑

i,j

‖Bjwij − Bj
~Xjm̃i‖

2 (12)

with:

~Xj =

[

X̄
T
j 0
0 X̄

T
j

]

andm̃i =
[

m
T
1i m

T
2i

]T
(13)

wherem
T
1i andm

T
2i are respectively the first and second4 × 1 rows of M̂i. Given the

quadratic costs (11) and (12) we can express the power updates for the motion as:

m̃i = (
∑

j

~X
T
j B

T
j Bj

~Xj)
−1
∑

j

~X
T
j B

T
j Bjwij = (

∑

j

~X
T
j C

−1

j
~Xj)

−1
∑

j

~X
T
j C

−1

j wij (14)
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After rearrangingm̃i 7→ M̂i =
[

Ai ai

]

we obtain:

X̂j = (
∑

i

A
T
i C

−1

j Ai)
−1
∑

i

A
T
i C

−1

j (wij − ai) (15)

whereai is the overall translation component as defined in (9). Once the estimates for
the averagêM andŜ are available,Cj is update by equation (5).

4.2 The Missing Data Case

We can now assume that some points are not visible in some frames due to occlusion.
In order to include missing data, we can modify the power update equations in (14) and
(15) to simply not include the equations regarding the missing entries giving:

m̃i = (
∑

j

~X
T
j C

−1

j
~Xj)

−1
∑

j

~X
T
j C

−1

j Zijwij (16)

X̂j = (
∑

i

A
T
i C

−1

j Ai)
−1
∑

i

A
T
i C

−1

j Zij(wij − ai) (17)

whereZij is a scalar which is zero whenever a point is missing and one otherwise. The
updates have the property of efficiently estimating the centroid at each frameai since
the measurement matrix of missing data may be not mean-centered. Schematically, the
algorithm can be outlined as follows1:

– Initialize X with random entries.
– Compute the2F × 4 update of̂Mi for i = 1 · · ·F given equation (16).
– Given M̂i =

[

Ai ai

]

, extract the measurements centroidai.
– Compute the update of the average 3-D structure with (17).
– RecomputeCj =

∑F

i=1
Zij(wij − ai − AiX̂j)(wij − ai − AiX̂j)

T .
– Iterate until convergence.

A metric update of the average shape can be then obtained in the case of orthographic
[10] and weak or para-perspective cameras [8] by computing the correct3× 3 transfor-
mationQ for the average shape.

4.3 Non-linear Optimisation and Non-rigid SfM

A full deformable 3-D reconstruction as presented in Section 2.1 can be successfully
computed linearly only when particular assumptions over the data are given and when
the full trajectories are available. For instance, in [12] the authors proved the existence
of a unique solution and a closed form algorithm whenK independent 3-D shapes can
be identified in the measured data. On the other hand, a more general solution consists
in performing non-linear optimisation [5, 1, 11] by minimizing a cost function which
reflects the full deformable model as presented in equation (3) giving:

min
RiSkj lik

∑

i,j

Zij ‖ wij − x̂ij ‖2= min
RiSkj lik

∑

i,j

Zij ‖ wij − (Ri

∑

k

likSkj) ‖
2 (18)

1 for clarity we drop the iteration subscriptq
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whereSkj is the 3 × 1 basis for the pointj such thatSk = [Sk1 · · ·SkP ]. Again,
the least-squares entries for the missing data are omitted.Initialisation of the model
parameters are provided by the average shape computed with our power approach.

5 Experiments

5.1 Synthetic Data

The proposed power approach is first validated using randomly generated synthetic data
of a deforming shape. The 3-D bodies are generated by firstly sampling the first basis
shapeS1 over the surface of a sphere. The following basisS2 . . . SK , which express
the modes of deformation of the body, are generated randomly. In order to obtain a
given deformation at framei, the configuration weightsli1 . . . liK are computed by
fitting 4-order polynomials to random samples, this gives more regular deformation
rather then erratic motion. The computed 3-D shapes are thennormalized to obtain a

specific ratio of deformation defined as
∑F

i=1
‖
∑K

k=2
likSk‖

2

∑

F
i=1

‖li1S1‖2
which is fixed to0.25. The

final measurement matrixW is obtained by projecting each 3-D non-rigid shape onto the
image plane by means of random orthographic cameras Finally, points are eliminated
given different ratios of missing data.

We test the algorithm performances in providing a meaningful initialisation to the
optimisation problem as defined in section 4.3. Firstly, we noticed problems in the con-
vergence if the algorithm for computing the average shape does not include the iterative
re-weighting withCj . The overall results are showed in table 1 with different levels of
image noise affecting the data. A decrease in the algorithm’s performances is given for
ratios of30% and more missing data. Regarding the mean shape computation, conver-
gence is generally achieved after 15 iterations with10% of missing data, higher ratios
increase this number however, in the worst case, the algorithm was not performing more
than50 steps.

5.2 Real Data

The real experiments are focused on extracting a mean shape from a deforming face2

exhibiting a light rotation and non-rigid motion especially in the mouth region We se-
lected a700 frames long sequence from the overall5000 frames and56 points are
collected to form the measurement matrixW. Occluded points appear with an overall
20% ratio of missing entries. The recovered mean shape (see figure 1) is then used to
initialize a full deformable reconstruction and some frames presenting the recovered
3-D depth and deformations are presented (front and side view). The approach is able
to successfully recover a reasonable estimates of the depthand deformations even if
the subject is not performing strong rigid motion. The final number of iterations for the
power method was of50 followed by40 iteration of non-linear optimisation.

2 sequence available at: www-prima.inrialpes.fr/FGnet/data/01-TalkingFace/talkingface.html
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6 Conclusions

We presented a power approach to estimate average shapes from non-rigid motion in the
case of missing data. Experimentally we have shown the effectiveness of the method in
a deformable 3-D reconstruction task with affine cameras. The extracted average shape
and motion have been shown to provide a reliable initialisation for SfM optimisation
tasks in the tested cases. As a further study, the method may be extended to more gen-
eral camera models (i.e. full perspective), however initial results have shown increased
instability in the convergence given by the difficulty in decoupling deformations from
perspective distortions. In such cases, an approach using shape priors as presented in
[4] may help to successfully compute a reliable average shape.
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NoiseMissing %
0 0.5 1 1.5 2

10% 1, 32 1, 47 1, 89 2, 11 2, 13

20% 2, 85 3, 69 3, 45 3, 69 4, 05

30% 3, 75 4, 74 4, 76 5, 03 5, 78

40% 3, 99 4, 64 5, 18 5, 47 6, 87

Rotation Error

NoiseMissing %
0 0.5 1 1.5 2

10% 0.84 1.10 1.02 1.38 1.94

20% 1.26 1.38 2.05 1.26 2.55

30% 1.41 1.62 2.19 2.21 2.18

40% 1.78 1.86 1.96 2.39 2.40

3-D Structure error

Table 1. Left: Mean of the the absolute rotation error expressed in degrees. Right: 3-D recon-
struction error expressed in percentage relative to the scene size. Thevariance of the added noise
is expressed in terms of image pixel. The value are computed on10 trials for each configuration
of noise and missing data ratios.

Average Frame 100 Frame 178 Frame 388 Frame 487

Fig. 1. The first column shows the complete set of 56 points used for reconstruction (first row)
and the recovered 3-D average shape (front and side views). The remaining columns present4

key frames of the sequence with the available points at each frame. The second and third rows
present respectively the front and side views of the reconstructed 3-D structure after non-linear
optimisation. The number of basis shapes was fixed toK = 6.


