
1

Evolution and Collective Intelligence

of the Electric Sheep

Scott Draves

Spotworks, San Francisco CA, USA

Summary. Electric Sheep is a collective intelligence composed of 40,000 computers
and people mediated by a genetic algorithm. It is made with an open-source screen-
saver that harnesses idle computers into a render farm with the purpose of animating
and evolving artificial life-forms known as sheep. The votes of the users form the
basis for a fitness function for exploring a space of abstract animations. Users also
may design sheep by hand for inclusion in the gene pool.

The name Electric Sheep is an homage to Philip K. Dick’s novel Do Androids
Dream of Electric Sheep, the basis for the film Blade Runner. The metaphor com-
pares the screen-saver to the computer’s dream.

After the introduction, we dig into the system starting with Section 1.2 on its
architecture and implementation. Section 1.3 covers the genetic code, including its
basis in the equations of classic Iterated Function Systems. The equation is then
generalized into the Fractal Flame algorithm, which translates the genetic code into
an image. The next two sections treat color and motion.

Section 1.4 shows how the genetic algorithm decides which sheep die, which ones
reproduce, and how. Section 1.5 defines the primary dataset and its limitations,
and reports some of its statistics. Section 1.5.1 uses the dataset to determine that
the genetic algorithm functions more as an amplifier of its human collaborators’
creativity rather than as a traditional genetic algorithm that optimizes a fitness
function.

The goal of Electric Sheep is to create a self-supporting, network-resident life-
form. Section 1.6 speculates on how to make the flock support more of a self-
sustaining reaction rather than functioning as an amplifier. At last, Section 1.6.1,
explains how Dreams in High Fidelity addresses the support issue.

images elided

Fig. 1.1. Above is Sheep 191.21054 (sheep generation 191, number 21054) and below
is 198.19616, born in August and December 2005, respectively.

2 Scott Draves

Fig. 1.2. System block diagram. The dotted lines divide the diagram into 3 parts: on
the left are the components that run on the server, on the right those on the client,
and in the middle is the internet. A sheep is conceived by the genetic algorithm
(GA, described in Section 1.4), sits in the render queue until all its frames have been
received, then is born into the flock. It can then be downloaded into the client and
voted upon until its death. Apophysis is the sheep design GUI (See Section 1.4.1).
Coral and BitTorrent are download accelerators (See Section 1.2.1).

1.1 Introduction

The Electric Sheep project began in 1999, and is ongoing [6]. To the public,
it appears as a screen-saver client that can be downloaded and installed on
almost any computer. When one of these computers is idle and goes to sleep,
the sheep animations appear, and in parallel the computer goes to work ren-
dering new sheep and sharing its results with all other users. It was inspired
by the SETI@Home distributed screen-saver [1].

Figure 1.1 shows still images of two example sheep. After installation, no
interaction is required for a user to enjoy the imagery and for their computer
to contribute to its creation.

Each sheep’s shape, motion, and color are specified by a genetic code, a
string of hundreds of floating point numbers. When a user sees a sheep they
like, they may press the up arrow key to vote for it, and increase its rating.
Sheep with higher ratings live longer and are more likely to reproduce. This

1 Evolution and Collective Intelligence of the Electric Sheep 3

fitness function captures the desire of the audience, hence the sheep are a
product of aesthetic evolution, a concept first realized by Karl Sims [11].

Users can also download GUI software called Apophysis [13] to design
sheep genomes and post them to the server. If they prove popular they may
interbreed with the artificially evolved population. Hence a human design
team collaborates and competes with the artificial intelligence.

1.2 Architecture and Implementation

Electric Sheep has a client/server architecture as illustrated in Figure 1.2.
The client initiates all communication between them, and if no client were
running, the server would not run at all.

The screen-saver client has three main threads. One thread downloads
sheep animations from the server to a local disk cache. It downloads those
with the most votes first. The default size of the cache is 1GB (enough for
216 animations) but the user may change it. Another thread reads the sheep
from the cache and displays them in a continuous sequence on the screen.
The third thread contacts the server, receives a genome specifying a frame to
render, renders the frame, then uploads the resulting JPEG file.

The server maintains several collections of sheep. Sheep are numbered as
they are created and are identified by this sequence number. Freshly con-
ceived genomes start out in the render queue. Each frame is sent out to a
different computer. When all the frames of a sheep have been received, they
are compressed into MPEG and deleted, and the sheep is made available for
download and voting. Sheep average 4.6MB each. Eventually the sheep dies
(Section 1.4.2 explains when) and the MPEG file is deleted.

All these sheep are referred to collectively as a generation. Each time the
server is reset the database is wiped, all sheep are deleted from the server and
from all client caches, the generation number is incremented, and evolution
starts fresh. The generation current in November 2006 is 202, and the sheep
that are analyzed below are members of generation 165, from 2004. The ma-
jor generations last for many months, contain thousands of sheep, and are
preserved on the server. Most generations last only a few moments during
debugging and are discarded.

1.2.1 Bandwidth

The primary server is a commodity Linux x86 server running Apache. It runs
the evolutionary algorithm, collects frames and votes, compresses frames, and
sends genomes to clients for rendering. This server received 220Kb/s from the
clients and transmits 260Kb/s to them (measured average of July to October
2004). On average since its inception in 1999, the server traffic has doubled

4 Scott Draves

every 9 months. This machine does not have nearly enough bandwidth avail-
able to distribute the MPEG files to all the clients. With the current audience
size, this would require 20TB/day (1.8Gb/s)!

Over the years the mechanism and source for the bandwidth has changed.
Right now, the primary server copies them to a high volume server with
15Mb/s allocated to sheep. This machine feeds the Coral web-cache, an NSF-
funded network of hundreds of servers located world-wide. Coral limits Electric
Sheep to 250GB/day of traffic.

Because each user only gets a fraction of the flock, their experience is less
than ideal. A freshly installed client may take a long time to download its
first sheep. When it does run, the playback will probably be repetitive and
discontinuous because the client has only a subset of the flock. Right now this
is the factor limiting user growth. Bandwidth is the bottleneck.

To address this, the sheep are adopting BitTorrent, a peer-to-peer file shar-
ing protocol [4]. The idea is to share the bandwidth load among the clients the
same way the computational load already is. A client with BitTorrent built-in
has been released and is delivering about 2TB/day of sheep. Unfortunately
BitTorrent depends on each user configuring their firewall to allow their com-
puter to act as a server. Only about 15% of them do so successfully, and this
subset cannot support the whole network. Because the sheep are batched into
torrents of 100MB each (about 22 sheep), with this protocol the download is
not prioritized by rating.

The system is open-source and the code is licensed under the GPL (General
Public License version 2) [10]. The fractal flame utilities are written in C and,
alas, the server is written in Perl. The clients are written in C, C++, and
Objective-C. The genome format is XML.

1.3 The Genetic Code

Fractal flames [5] were developed in 1992 as a generalization and refinement
of the Iterated Function System (IFS) category of fractals [3]. The genetic
code used by Electric Sheep is the parameter set for these fractals. It consists
of up to several hundred floating-point numbers. The parameters control the
scattering of billions of particles from which an image emerges.

The genetic code is a visual language and the core of the system. The
language is intended to be abstract, expressive, and robust. Abstract means
that the codes are small relative to the images. Expressive means that a variety
of images can be drawn. And robust means that useful codes are easy to find.
These are conflicting goals.

1.3.1 Iterated Function Systems

A classic IFS consists of a recursive set-equation on the plane:

1 Evolution and Collective Intelligence of the Electric Sheep 5

S =
n−1⋃

i=0

Ti(S)

The solution S is a subset of the plane (and hence a two-tone image). The
Ti are a small collection of n affine transforms of the plane, and S is their
fixed-point. Affine transformations consist of combinations of scale, rotate,
translate, and skew. Hence S is composed of several distorted copies of itself.
Normally each copy is smaller than the whole. This is illustrated in Figure 1.3.
Overlap is allowed.

The process is closely related to both video feedback (with each camera
corresponding to one transformation), and iterated photocopying with zoom
and cut&paste. Its implementation however is more like a particle system: the
transformations are iterated to generate a stream of colored particles, each of
which contributes luminance to a pixel. Unlike a regular particle system, the
particles’ positions are not saved, and with each frame they are all generated
from scratch using just the genome. This allows the renderer to run in parallel
across many computers.

Fig. 1.3. Construction of S from two transformations T0 and T1. The first two
diagrams in the top row represent T0 and T1 by showing how they map the biunit
square (outlined) into a smaller square (shaded). Their union is the top-right dia-
gram. The bottom row represents further applications of the transformations, right
to left. The solution S appears in the lower-left along with the first four levels of
construction squares.

6 Scott Draves

1.3.2 Fractal Flames

A fractal flame is based on the same recursive equation, but the transforms
may be non-linear and the solution algorithm produces a full-color image. The
transforms are linear blends of a set of 31 basis functions known as variations.
The variations are composed with an affine matrix, like a classic IFS. So each
transform Ti is:

Ti(x, y) =
∑

j

vijVj(aix + biy + ci, dix + eiy + fi)

where vij are the blending coefficients for Ti, and ai through fi are 6 affine
matrix coefficients. The Vj are the variations, for example:

V0(x, y) = (x, y) V3(x, y) = (r cos(θ + r), r sin(θ + r))
V1(x, y) = (sinx, sin y) V4(x, y) = (r cos(2θ), r sin(2θ))
V2(x, y) = (x/r2, y/r2) V5(x, y) = (θ/π, r − 1)

where r and θ are the polar coordinates for the point (x, y) in rectangular
coordinates. V0 is the identity function so this space of non-linear functions is
a super-set of the space of linear functions. See [5] for the complete list.

There are 3 additional parameters for density, color, and symmetry. Den-
sity effects the relative brightness; color effects which part of the palette is
used, and symmetry the motion. They are also explained in [5]. Together
these 40 (31 for vij plus 6 for ai to fi plus 3 is 40 total) parameters make
up one transform, and are roughly equivalent to a gene in biological genetics.
The order of the transforms in the genome does not effect the solution image.
Many transforms have visually identifiable effects on the solution, for example
particular shapes, structures, textures, angles, or locations. The genome and
its relation to the recursive set equation is depicted in Figure 1.4.

Fig. 1.4. A genome with two transforms, its formula, and its formula again written
more abstractly.

On average there are five transforms in the function system, making for
200 (5 × 40) floating-point numbers in the genome. Note however that most

1 Evolution and Collective Intelligence of the Electric Sheep 7

sheep have most variational coefficients set to zero, which reduces the effective
dimensionality of the space. However some sheep have many more than five
transforms. When the XML representation of a large collection of genomes
were compressed with gzip, they averaged 1.7KB each.

At the time of generation 165, there were only up to six transforms in the
function system, and there were only 18 variations, resulting in 162 dimen-
sions. The next version has 40 variations plus 24 additional parameters per
transform.

1.3.3 Color and Palettes

The colors of the image are determined by a palette, which is a map from
[0, 1] to color. During generation 165, the palette was determined by a single
number, which selected one of several hundred built-in palettes. This integer
color parameter has since been replaced with an arbitrary palette (768 bytes)
in the genome. This is like a classic color-map of an 8-bit frame-buffer, but it
is used just to determine the color of each particle, which is then drawn into
a full-color image.

The original palettes were algorithmically derived from photographs of
landscapes and famous paintings. The algorithm extracts colors from an in-
put image (the trivial part) and then orders them to reduce the difference
between adjacent colors in the palette (the hard part—finding an optimal
solution is equivalent to the Traveling Salesman Problem). Today users who
submit genomes can use their own source images to create palettes with this
algorithm, or import arbitrary palettes.

This contrasts with the more common genetic approaches to colors, which
are to either evolve an algebraic expression for the palette, or to evolve sep-
arate expressions for each color component (red, green, and blue, or hue,
saturation, and value). The problem with these methods is that the color-
space used (RGB or HSV) predominates, resulting in either mostly grays and
unsaturated colors (from RGB) or garish rainbows (from HSV).

1.3.4 Animation and Transitions

The previous sections described how a single image is defined by the genome.
To create animations, Electric Sheep rotates over time the 2 × 2 matrix part
(ai, bi, di, and ei) of each of the transforms. After a full circle, the solution
image returns to the first frame, so sheep animations loop smoothly. Sheep
are 128 frames long, and by default are played back at 23 frames per second
making them 5.5 seconds long.

The client does not just cut from one looping animation to another. It
displays a continuously morphing sequence. To do this the system renders
transitions between sheep in addition to the sheep themselves. The transitions
are genetic crossfades based on pair-wise linear interpolation, but using a

8 Scott Draves

spline to maintain C1 continuity with the endpoints. This means that the
derivative of the motion is also continuous, hence the motion is free of jerks.

Transitions are also 128 frames long. For each sheep created, three tran-
sitions are also created: one from another random flock member to the new
sheep, one from the new sheep to a random flock member, and another one
between two other random members. Most of the rendering effort is spent on
transitions.

1.4 The Genetic Algorithm

There are three parts of the genetic algorithm: the rating system that collects
the votes and computes the fitness of individual sheep, the genetic operators
used to create new genomes, and the main loop that controls which live and
die.

As already mentioned, users can vote for a sheep they like by pressing the
up arrow key. If the sheep is alive its rating is incremented. Pressing the down
arrow key decrements the rating. Votes for dead sheep are discarded. Votes
during transitions are discarded. Users may also vote for or against a sheep
by pressing buttons on its web page.

The ratings decay over time. Each day the ratings are divided by four with
integer arithmetic rounding down.

Fig. 1.5. Sheep 165.15875 (generation 165, number 15875), on the top-left, was
born on August 16 and died 24 hours later after receiving one vote. It was one of
42 siblings. It was reincarnated on October 28 as sheep 165.29140, received a peak
rating of 29, lived 7 days, and had 26 children, 8 of which appear to its right. Below
are five descendants of a sheep in order parent to child, starting on the left. Their
numbers are 165.01751, 165.01903, 165.02313, 165.02772, and 165.02975. The last
is a result of mutation, the previous three of crossover, the first was posted by Liz
Tomchek.

1 Evolution and Collective Intelligence of the Electric Sheep 9

Fig. 1.6. The closest ancestors and descendants of Sheep 202.43868, the brown
snowflake-symmetric sheep drawn slightly larger in the center. This sheep and these
ancestors were generated by crossover, so each has two parents. The in-laws of the
descendants generated by crossover are not shown, so whether they are mutants or
children is not depicted.

1.4.1 Genetic Operators

There are four sources of genomes for new sheep: randomness, mutation,
crossover, and posts from Apophysis. The parents for mutation and crossover
operators are randomly picked from the current population weighted by rat-
ing. The probability of being selected is proportional to log

2
(1+r), where r is

the rating . Sheep that have received no votes have rating zero and so cannot
be selected. When the study below was conducted, the probability was linear
in the rating. The results appeared to follow a winner-take-all pattern though,
with a few popular sheep dominating reproduction. Sample families appear
in Figures 1.5 and 1.6.

randomness The affine matrix coefficients are chosen with uniform dis-
tribution from [-1, 1]. The variational coefficients are set to zero except for
one variation chosen at random that is set to one.

crossover The crossover operation has three methods. The main method
creates a genome by taking each transform (gene) from one parent or the

10 Scott Draves

other at random. Another method does pair-wise linear interpolation between
the two parent genomes where the blend factor is chosen uniformly from [0,
1]. The last method takes the union of the two genomes. 1/10 crossovers use
union, 2/10 use interpolation.

mutation The mutation operator has several different methods: random-
izing just the variational coefficients, randomizing just the matrix coefficients
of one transform, adding noise (-10 decibels, or numbers from [-0.1, 0.1]) to
all the matrix coefficients, changing just the colors, and adding symmetry.

When applying these three automatic operators, the server renders a low-
resolution frame and tests if the image is too dark or too bright. The operator
is iterated until the resulting genome passes. For random genomes, 43% are
rejected (in a test run 177 tries were required to get 100 passing genomes).
This is a simple viability test.

post Human designers may post genomes to the server with Apophysis.
Apophysis represents the matrix coefficients as triangles that the designer can
drag, scale, and rotate. The variations are represented with type-in boxes,
and the rest of the parameters are editable in one of several dialog windows.
Apophysis is scriptable, and scripts are also often shared. Scripts are essen-
tially user-defined, high-level genetic operators. Discovery plays a large roll in
working with Apophysis.

In generation 202, all genomes are required to be under the CreativeCom-
mons Attribution license [9] to allow derived works such as by the genetic al-
gorithm. As a result, anyone can download any sheep, learn from its genome,
improve it, and re-post it.

The server has a queue of sheep and transitions that are currently being
rendered. When the queue is left with fewer than about 60 sheep, it is filled
with genomes derived with one of the three automatic operators, or posted
genomes if any are available.

In addition to picking parents for mutation and crossover from the current
population, there are two additional sources of genomes. One is an archive of
dead sheep from the current generation with peak rating of 2 or more, the
other is a gene-bank of the sheep from previous generations with peak ratings
of 4 or more. A sheep’s peak rating is the highest rating obtained during its
lifetime. The gene-bank is not represented in Figure 1.2.

In contrast with the older genetic algorithm of used during generation 165,
the GA now substitutes previous good sheep for most random sheep. It also
favors crossover over mutation. See Section 1.6 below for an explanation of
broods, a further improvement of the genetic algorithm.

1.4.2 The Main Loop

The server maintains a single flock of sheep and continuously updates their
ratings, creates new sheep, and kills off old ones. During generation 165, the
server had 510MB of disk space for storing sheep animations, enough for 28
sheep and 83 transitions. Now it has 2.5GB. Each time a sheep is born, when

1 Evolution and Collective Intelligence of the Electric Sheep 11

it finishes rendering, the sheep with the lowest rating is killed to make room.
If several sheep are tied for worst, then the oldest is taken (usually several
sheep have received no votes and are tied with a rating of zero). Sheep also
have a maximum lifespan of 7 days.

Killing a sheep removes the animation file from the server, but not from
clients who may have allocated more disk space to their caches. The other
records, including the peak rating, parentage, genome, a filmstrip of 16 thumb-
nails, and the first frame are kept. This archive may be browsed on the server
either sorted by peak rating, as extended family trees, or by designer.

This on-line or steady-state approach contrasts with the more traditional
genetic algorithm’s off-line main loop that divides the population into genera-
tions and alternates between rating all the individuals in a generation and then
deriving the next generation from the ratings. Note that Electric Sheep does
have ‘generations’, but it means something else as explained in Section 1.2.

1.5 Empirical Results

The primary dataset of 4,100 genomes was collected from the server’s database
starting July 13th 2004 until October 13th. Previous versions of the server did
not keep a record of the sheep: when they died they were completely deleted
from the server. The data we have collected are a starting point to understand-
ing the system and its behavior. However, they are somewhat confounded:

• The client uses the ratings to prioritize downloading. Since the server is
busy enough that most clients cannot download all the sheep, this causes
a snowball effect where a high rating itself causes more votes.

• The audience is fickle: sheep with identical genomes regularly receive com-
pletely different ratings (See Figure 1.5). Possibly the audience becomes
fatigued by repeated exposure to variations of a successful genome, and
stops voting for them. Even once popular sheep reintroduced much later
do not necessarily fare well.

• Designers enlist others to vote for their sheep, post many similar sheep, or
re-post the results of automatic evolution. There are three administrators
who occasionally kill sheep, explicitly direct mating, mutation, reincarna-
tion, and vote without limit.

In April 2006 there were 30,000 users of the screen-saver almost everyday.
About 900 of them vote by pushing the arrow keys on the keyboard, and 20
vote while browsing the database on the web. On average each day, 14 genomes
are submitted by 8 different designers. Over the six months of generation 198,
44 people submitted 5 or more genomes. By September 2006 the number of
daily users has increased to 40,000.

Previously, user counts had to be estimated from unique IP addresses [6],
but starting May 2005 with v2.6 the client generates a unique identifier (like

12 Scott Draves

a web cookie). By comparison over a one-day period, the IP address estimate
was 10% over, but if counted over weeks, it was about double.

The collective intelligence has other more traditional channels as well: In
the past month the general client user forum has averaged 13 messages per
day. The genetic design discussion list has gotten 1.5 messages per day, and
the Apophysis email list 10 messages per day. Wikis are used to supplement
traditional documentation.

1.5.1 Amplification of Creativity

In a system with human-computer collaboration, we propose defining the cre-

ative amplification as the ratio of total content divided by the human-created
content. If we compare the posted genomes with their evolved descendants we
can measure how much creative amplification Electric Sheep provides.

In the primary dataset there were 21% hand-designed, posted sheep and
79% evolved sheep. If the sum is weighted by rating, then we get 48% to
52%, for an amplification factor of 2.08 (1+52/48). One could say the genetic
algorithm is doubling the output of the human posters.

Of the 79% evolved sheep, 42% of them result from the totally random
genetic operator. Their fraction of total ratings is only 3.8%.

There are some caveats to this metric. For example, if the genetic algorithm
just copied the posted genomes, it might receive some votes for its ‘creativity’.
Or if it ignored the posted genomes and evolved on its own, it would receive
some votes but they would not represent ‘amplification’.

 1

 10

 100

 1000

 10000

 0 2 4 6 8 10 12 14
 10

 100

 1000

 1 2 4 8 16 32

Fig. 1.7. On the left is a histogram of lengths of lineages. The length is on the hor-
izontal axis, and the number of sheep is on the vertical. On the right is a histogram
of the ratings of the sheep. Again, the rating is on the horizontal and the number
of sheep is on the vertical.

Figure 1.7 shows the distribution of lengths of lineages of the sheep. The
lineage length of a sheep is the maximum number of parent-to-child relation-
ships that issue from it. Sheep with no children are assigned one, and sheep
with children are assigned one plus the maximum of the lineage lengths of

1 Evolution and Collective Intelligence of the Electric Sheep 13

those children. Instead of fitness increasing along lineages, we find it dying
out: the rating of the average parent is 6.7 but the average maximum rating
of direct siblings is only 3.8.

The decay in ratings may result from the audience losing interest in a
lineage because it fails to change fast enough, rather than a decay of absolute
quality of those sheep. The viewpoint of watching the screen-saver and seeing
sheep sequentially is different from the viewpoint of browsing the archive and
comparing all the sheep. Neither can be called definitive.

Genetic algorithms normally run for many tens to hundreds or thousands
of generations. In contrast, the lineages of the sheep are very short: the longest
is 13.

1.6 Motivation and Direction

Electric Sheep illustrates the process by which the longer and closer one stud-
ies something, the more detail and structure appears. It investigates the role of
experiencers in creating the experience. If nobody ran the client, there would
be nothing to see.

Because the collective guides the evolution, no one has the burden of vot-
ing. Instead people act on inspiration. The network is used to assemble these
bits of judgment efficiently. This avoids the common pitfall of aesthetic evo-
lution, which is a dearth of human input.

The sheep are parasites of human attention. The goal of Electric Sheep is
to create a self-supporting, network-resident life-form. Right now the sheep
depend on a central server, requiring disk, bandwidth, and administration.
Hopefully these inputs can be eliminated and the network can be made sym-
metric by using Distributed Hash Tables [2] and BitTorrent (see Section 1.2).

Furthermore the genetic algorithm depends on input from human design-
ers. Our goal here is not to remove the input, but to improve what the genetic
algorithm does with it: to increase the creative amplification factor. The ul-
timate goal then is divergence of the factor. In Can a machine do anything

new? [14], Alan Turing wrote:

One could say that a man can “inject” an idea into the machine, and
that it will respond to a certain extent and then drop into quiescence,
like a piano string struck by a hammer. Another simile would be an
atomic pile of less than critical size: an injected idea is to correspond
to a neutron entering the pile from without. Each such neutron will
cause a certain disturbance which eventually dies away. If, however,
the size of the pile is sufficiently increased, their disturbance caused
by such an incoming neutron will very likely go on and on increasing
until the whole pile is destroyed. Is there a corresponding phenomenon
for minds, and is there one for machines? ... Adhering to this analogy
we ask, “Can a machine be made to be supercritical?”

14 Scott Draves

A big problem with the Electric Sheep’s genetic algorithm is that the
population size is too small. Good mutations are rare. So just eliminating
the constraints of the central server and growing the population might help.
If sheep have more children their chance of having one whose rating exceeds
their own increases. The question is, will the audience become bored first?

A more direct way to improve the genetic algorithm would be to develop
a model of the historic sheep ratings, and then use this model to screen the
output of the genetic algorithm. This would be a more sophisticated viability
test than the one described in Section 1.4.1. One useful input to this model
could be the fractal dimension of the sheep, as it correlates well with aesthetics
[12]. A histogram of total rating by dimension has a characteristic sharp peak
between 1.5 and 1.7 [7]. This way risks homogenizing the sheep, however.

In the meantime we are experimenting with putting a human filter on
the genetic algorithm, a technique we call the brood. The server now daily
generates 256 potential children, but only renders one frame of each (this is
about as expensive as rendering two ordinary sheep). The shepherd picks the
best 40 or so of the brood. Future invocations of the genetic algorithm then
use these picks, if available. Early indications are that the lengths of lineages
have increased: so far the maximum in generation 202 is 30, compared to 13
for generation 165 (see Section 1.5.1).

A more fundamental problem with achieving open-ended evolution is the
finiteness of the genetic code. One way to address that may be to replace the
current fixed set of variations and coefficients with algebraic expressions, as
in Genetic Programming [8]. Another would be to embed the current genetic
code into a per-pixel, image-arithmetic language, like Sims’ [11].

1.6.1 Dreams in High Fidelity

One way that the Electric Sheep are not self-supporting is financially: the
developers are volunteers. There are many ways of supporting open-source
software: for the Electric Sheep, donations, DVD sales, and advertisements
on the website have proved to be inadequate. The new plan is to turn the
bandwidth bottleneck (see Section 1.2.1) to our advantage.

Dreams in High Fidelity consists of a small computer driving a large 1280×
720 liquid crystal display: a painting that evolves. It plays animations rendered
by the Electric Sheep, but at triple the resolution and six times more frames
per sheep. The image quality is striking on a large display. It requires 20 times
the computation to make a high fidelity sheep.

The artist selects favorite sheep from the archives and public flock, and
sends them back to be re-rendered at higher resolution: heaven for an electric
sheep. So far two such flocks have been completed. The first is 55GB, totaling
eight hours if played end-to-end, and requiring over one million CPU hours
to render. The second is 100GB.

The Dreams have a symbiotic relationship to the screen-saver. The free
version provides the design laboratory and gene pool from which the best

1 Evolution and Collective Intelligence of the Electric Sheep 15

sheep are extracted. It also provides the distributed supercomputer needed to
realize the high fidelity content. Ideally the hifi version will fetch the income
required to keep the whole project in operation, and develop it further.

1.7 Conclusion

The Electric Sheep demonstrate the feasibility of large-scale distributed inter-
active evolution. The network serves both as an artwork itself, and a platform
for further research. In particular, this framework can be applied to other
genetic codes besides fractal flames.

I believe the free flow of code is an increasingly important social and artistic
force. The proliferation of powerful computers with high-bandwidth network
connections forms the substrate of an expanding universe. The Electric Sheep
and we their shepherds are colonizing this new frontier.

I look forward to many more generations of sheep at ever higher resolu-
tions, with more expressive genetic codes, in three dimensions, responding to
music, performing feats not yet imagined.

References

1. David Anderson et al. Seti@home: An experiment in public-resource computing.
Communications of the ACM, 45:56–61, 2002.

2. Hari Balakrishnan, M. Frans Kaashoek, David Karger, Robert Morris, and Ion
Stoica. Looking up data in p2p systems. Communications of the ACM, 46(2):43–
48, 2003.

3. Michael Barnsley. Fractals Everywhere. Academic Press, 1988.
4. Bram Cohen. Incentives build robustness in bittorrent. In Workshop on Eco-

nomics of Peer-to-Peer Systems, 2003.
5. Scott Draves. The fractal flame algorithm. http://flam3.com/flame.pdf, 2004.
6. Scott Draves. The electric sheep screen-saver: A case study in aesthetic evolu-

tion. In Applications of Evolutionary Computing, LNCS 3449. Springer Verlag,
2005.

7. Scott Draves, Fred Abraham, Ralph Abraham, J. C. Sprott, and Pablo Viotti.
Aesthetics and the fractal dimension of electric sheep. Presented at the annual
meeting of the Society for Chaos Theory in Psychology and the Life Sciences,
2005.

8. John Koza. Genetic Programming: On the Programming of Computers by Means
of Natural Selection (Complex Adaptive Systems). The MIT Press, 1992.

9. Lawrence Lessig. The Future of Ideas. Vintage, 2002.
10. Bruce Parens. The open source definition. In Open Sources: Voices from the

Open Source Revolution. O’Reilly, 1999.
11. Karl Sims. Artificial evolution for computer graphics. In Proceedings of SIG-

GRAPH. ACM, 1991.
12. J. C. Sprott. Automatic generation of iterated function systems. Computers

and Graphics, 18:417–425, 1994.

16 Scott Draves

13. Mark Townsend. Apophysis. http://apophysis.org, 2004.
14. Alan Turing. Can a machine do anything new? Computing Machinery and

Intelligence, 59:433–460, 1950.

Acknowledgments

Many thanks to Dean Gaudet, Paul Graham, Scott Hassan, Tristan Horn,
Nick Long, David McGrath, Erik Reckase, Matt Reda, Jeremy Richardson,
Mark Townsend, and Chris Ursitti.

