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Abstract. Due to the increased complexity of software development projects 

more and more systems are described by models. The sheer size makes it 

impractical to describe these systems by a single model. Instead many models 

are developed that provide several complementary views on the system to be 

developed. This however leads to a need for compositional models. This paper 

describes a foundational theory of model composition in form of an algebra to 

explicitly clarify different variants and uses of composition, their interplay with 

the semantics of the involved models and their composition operators. 
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1 Model composition 

The complexity of software products and therefore of their development projects is 

steadily increasing. To handle this complexity models are used as an intermediate 

result to raise the level of abstraction, to enhance the understanding, and to simplify 

analysis and prediction of properties of the system under development. Nowadays 

modeling languages like the UML (Unified Modeling Language) and an increasing 

number of DSLs (Domain Specific Languages) are used for planning, architecting, 

developing, coding, deploying, and documentation purposes. Based on these 

languages a number of development approaches like OMG’s Model Driven 

Architecture can be classified as “Model Driven Engineering” (MDE). 

In any complex software system, mastering complexity means using a variety of 

semantically and syntactically precise [1,2] models to describe different aspects and 

views of the software system. Therefore it is essential to understand how these 

different models fit together and complement each other. For an integrated 

understanding, a clear definition of what composition of models means is necessary. 

Model composition has impacts on at least three different levels: 
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 Syntactic level: the way the composition between models can explicitly be 

expressed as a new model in an appropriate modeling language. 

 Semantic level: the meaning of the composed models as a unit in terms of 

semantics of the modeling languages involved. 

 Methodic level: the integration of model composition techniques in software 

development processes and tools. 

 

A clear explanation of a composition mechanism of models on each of these 

dimensions is necessary to facilitate a “compositional” use of models in development 

projects. E.g., for an integrated understanding of some models describing aspects of 

the same system it is not necessary to provide a syntactic composition operator that 

explicitly produces an integrated model. Instead it is essential to understand the 

meaning of “composition” using a semantic composition. For code generation 

purposes it is however often necessary to explicitly calculate the integrated model, 

because only from there it is possible to start the generator. This is a pity, because 

already in 1972 Parnas introduced modularity in his article [3] as an important 

requisite for independent understanding, development, and compilation – something 

we have achieved on code level, but not on model level so far. It therefore depends on 

the form of use which properties a model composition operator must have.  

In contrast to concrete model composition techniques [4, 5, 6] we examine in this 

paper syntactic and specifically semantic properties of model composition as basis for 

a methodical discussion and therefore regard this paper as a first contribution to a 

wider discussion on compositionality of models.  

The rest of the paper is structured as follows. Section 2 gives a compact 

recapitulation and introduction to our understanding of syntax and semantics of a 

modeling language. Section 3 describes the properties of model composition in 

algebraic terms. We derive requirements for well-defined model composition 

operators and give a first classification of possible operators. Section 4 describes 

related work, followed by a conclusion in Section 5. 

2 Syntax and Semantics of Models  

In software engineering we are basically concerned with graphical or textual 

languages to describe structure, behavior, or interaction of systems, interfaces etc. As 

these models shall usually be understood by tools, e.g., for code generation and test 

case definition there must be a clear definition of what the language concepts are. 

This is in sharp contrast to many other forms of models, where there is no formal and 

explicit definition of the modeling language used (see, e.g., architectural or medical 

models). 

Formally, a modeling language M is a set of well-formed models. So a model 

m∈M is syntactically well-formed, both by context-free syntax as well as conforming 

to all context-conditions. Each of these models gets a semantics by mapping it from 

the language to a well-known semantic domain [1, 7]. This principle is well 

understood in the field of programming languages, where each syntactic construct has 



a well defined meaning that describes its effects in terms of operational or 

denotational semantics.  

Although standardization bodies have not yet been able to define a commonly 

accepted, formal semantics, e.g., for the UML as yet, we here assume such a semantic 

definition would be given. See [7] for a deeper discussion on semantic issues. To 

understand the meaning of composition, it is evident that the meaning / semantics of 

the involved models needs to be understood.  

2.1 Semantic Domain and Mapping 

Given a language M of models, the meaning of each element is usually given by 

explaining it in a well-known domain D, the semantic domain. This semantic domain 

describes which artifacts and concepts exist and must be well understood by both the 

language designer and the language users [7]. This principle is rather general, even so 

the details of the semantic domain as well as the form of representation vary. E.g., 

denotational as well as operational semantics can be subsumed under this form of 

approach using an abstract set of models resp. an abstract machine as semantic 

domain.  

Examples for a semantic domain are the System Model [8], Abstract State 

Machines [9], or pure mathematics [2]. 

Given the modeling language M and the semantic domain D each model m∈M 

must be mapped to D. As explained earlier, it is important to define the meaning 

(semantics) of models explicitly. So an explicit formal definition of the mapping is a 

function from M to D:   

sm: M → D (1) 

Benefits of a formal mapping function are that we are able to reason about the 

mapping and thus, about the language and the instances itself.  

2.2 Set-Valued Semantics 

A general problem of the semantics definition of a model is that models should be 

useable in early phases of development. In early phases models are usually 

underspecified and somewhat abstract. Therefore, there is usually not a single system 

that realizes a model, but a larger set of realizations. Thus, the mapping of an 

underspecified diagram to program code or any other deterministic realization would 

result in either incomplete code or code that incorporates decisions not present in the 

model. These decisions done by the translation algorithm, however, are critical for the 

model understanding, as they may not intend the developers view. Currently many 

tools help themselves, by disallowing ambiguity and thus preventing 

underspecification. A mapping to code, therefore, for principal reasons cannot serve 

as a semantics definition. To adequately handle underspecification the semantics of 

languages like Spectrum [10] or Z [11] is described as a set of systems having the 

given properties instead of a single system [12]. Such specification oriented set-

valued semantics allow us to describe and understand important properties of 



modeling languages. Thus we use set-valued semantics as a basis for further 

investigation into a model composition theory. 

The basic idea is to map any model m∈M to all systems which obey the constraints 

that the model imposes. Denoting the set of all systems with S the semantic domain is 

then the power set D = ℘(S) and each instance m∈M will be mapped by sm to the 

largest set of systems which fulfill the constraints.  

sm: M → ℘(S) (2) 

We do not need to further investigate into the details of S, but understand that it 

captures the relevant properties of a system. These are usually structural properties 

(objects, their values and linkage) as well as behavioral and interaction properties 

(traces of interactions, etc.). 

As an illustrative example for set-valued semantics covering underspecification 

consider a simple class diagram with one class “Person” having a String attribute 

“name”. What do we know about the system described?  

 

1. There is a class “Person” 

2. All instances of the class “Person” and all instances of subclasses have an 

attribute “name” whose type is “String” 

3. No more information can be inferred. 

 

The real semantics of this model must be given as the set of all systems obeying 1 

and 2. Usually these systems have other classes and possibly the class “Person” 

contains more attributes than “name”, but in our set-valued semantics those systems 

still fulfill the constraints defined by the model. Furthermore, it is not given that there 

will ever be an instance of class Person at all. Instead the class Person may also be 

abstract.  

This approach is called a “loose semantics” [10] and is very helpful in capturing 

underspecification. Today many developers and especially tools assume some kind of 

“completeness” of their models, which is quite conflicting with the possibility to 

compose models. 

Set-valued semantics allows to state some important properties with respect to the 

semantic mapping sm: 

 

 A model m∈M is consistent exactly if sm(m)≠∅, which means that there is at 

least one system that obeys the instance’s properties. Otherwise, there are some 

contradicting constraints in the model m itself. 

 A model m∈M does not contain information if sm(m)=S. Then any system can 

serve as an implementation. 

 A model m2 refines another model m1 exactly if sm(m2) ⊆ sm(m1). So, if we add 

more data to the model m2, it further constraints the resulting set of systems, 

which therefore will become smaller.  

 
The loose approach has an interesting aspect: the more we know, thus the more 

information is present in a model, the fewer implementations are possible. This is why 

m2 has more information and thus refines m1 exactly if sm(m2) ⊆ sm(m1). 



It is noteworthy that the “loose semantics” approach we use is loose on the 

behavioral as well as on the structural level. For existing behavioral elements, such as 

methods, their behavior may vary and additional structural elements (such as 

attributes, classes etc.) are possible.  

Besides set-valued semantics for some forms of models and especially for 

executable languages an “initial” or a “minimal” semantics can be given. These forms 

of semantics correspond to the idea that there is a unique realization in the set 

mentioned above with minimalistic properties. Informally spoken, such a unique 

element can be characterized by assumptions like “everything explicitly defined is 

present, but nothing more”. Class diagrams, e.g., lead to a canonical implementation 

through code generation and deterministic, completely defined state machines do have 

one single execution. Having both, a set-valued semantics for the specification of a 

system and an initial semantics, e.g., for test purposes or executable models, seems to 

be appropriate. For specification purposes, we concentrate on the set valued 

semantics. 

3 An Algebraic View on Model Composition  

When models are developed and composed, the developers as well as the tools always 

deal with their syntactic representation. But doing so, developers want to compose the 

meaning underlying these models. Thus, one goal of our algebraic theory is to clarify 

the relationships between composition on the syntactic and on the semantic level. 

Beyond that, another interesting issue consists in the question which basic 

requirements for a composition operator on the one hand and for composition tools on 

the other exist.  

3.1 Model Composition 

Model composition in its simplest form refers to the mechanism of combining two 

models into a new one. Without further information or requirements the definition of 

model composition is quite abstract. Denoting the universe of models with M we get 

the following definition of model composition operators:  

 

Definition 1: Model composition operator. 

A model composition operator ⊗ is a function with two models as input, which 

produces a composed model as output: ⊗: M × M → M.  

 

Given the semantics of models, we can infer properties of the semantics of a 

composition operator ⊗ by relating the semantics on its source and resulting model. 

 

Definition 2: Property preserving (PP) composition operator.  

A composition operator ⊗: M×M→M is property preserving on the left argument, if 

for any m1, m2 ∈ M it holds: sm(m1 ⊗ m2) ⊆ sm(m1). Analogously, it is property 



preserving on the right argument, iff sm(m1⊗m2) ⊆ sm(m2) and property preserving 

(PP) if both properties hold. 
 

The simple example shown in Figure 1 serves as basis for further explanations. 

 

 

Figure 1: Example for composition on models and semantics 

Property preservation is important for a composition operator, as it ensures that no 

information and thus, no design decisions that were present in a source model are lost 

in the composition. We can infer that property preservation is equivalent to:  

∀ m1, m2 ∈ M:  sm(m1 ⊗  m2) ⊆ sm(m1) ∩ sm(m2) (3) 

Please note that this need not be equality, as the composition operator may be 

allowed to add further information that was not present in any of the models before. 

This can be useful, especially if there are decisions on unifications to make that are 

not unique. E.g., unnamed associations between the same classes can be identified, 

but need not.  

 

Definition 3: Fully property preserving (FPP) composition operator.  

A composition operator ⊗: M×M→M is fully property preserving, iff  

∀ m1, m2 ∈ M:  sm(m1 ⊗  m2) = sm(m1) ∩ sm(m2) (4) 

 

The most important consequence of FPP is that it allows us to separately analyze 

and understand the source models and their properties individually and to trace 

properties (as well as errors) of the composed model back to the input models. 

Furthermore, with a PP composition a model developer can be sure that the 

requirements defined in his models are preserved in the implementation. And third, a 

PP operator makes model composition understandable: changes in one input model 
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have an impact on the composed model within a localized, clearly identifiable area, 

but do not affect properties defined in the other models.  

A FPP composition operator neither adds nor forgets information. Unfortunately, 

we will have to live with the situation, that there are modeling languages, where there 

is no composed model that exhibits the desired properties. E.g., composing flat 

automata is not necessarily fully property preserving (depends on the assumed 

communication between these automata). In this case, emerging properties of the 

composition cannot necessarily be traced back to the original, but may result from the 

composition operator itself, which in fact is a composition and an additional 

refinement. However, adding wrong information through a composition operator may 

lead to an inconsistent result (sm(m1 ⊗  m2) = ∅) even though the models originally 

where not inconsistent with each other (sm(m1) ∩ sm(m2) ≠ ∅). We therefore 

demand that composition preserves consistency: 

 

Definition 4: Consistency preserving (CP) composition operator.  

A composition operator ⊗: M×M→M is consistency preserving (CP), iff  

∀ m1, m2 ∈ M:  sm(m1) ∩ sm(m2) ≠ ∅   ⇒   sm(m1 ⊗  m2) ≠ ∅  (5) 

 

Corollary: A FPP composition operator is consistency preserving.  

Proof: by definition. 

 

In general as well as in the remainder of this paper we assume model composition 

to be property preserving as well as consistency preserving (but not in all cases fully 

property preserving). 

3.2 A Generalization for Semantic Composition Operators 

We have explained the desired properties of a composition operator using set-valued 

semantics. This technique can be generalized, assuming there is a composition 

operator ⊕ available on the semantic domain. Intersection ∩ as used above is such an 

operator.   

  

Definition 5: General Semantic Composition Operator.  

The semantic composition operator ⊕ is a function with two sets of systems as input 

which produces a set of systems as output: ⊕: D × D → D.  
 

Given these operators on both levels, the semantic composition operator ⊕ can be 

understood as semantics of the syntactic operator ⊗ if the diagram in Figure 2 

commutes. 

 



            

Figure 2: Relationship between composition operators 

We say the diagram commutes iff  

∀ m1, m2 ∈ M:  sm(m1 ⊗  m2) = sm(m1) ⊕ sm(m2) (6) 

A commuting diagram corresponds to a fully property preserving composition as 

defined above and exhibits the same advantages as discussed above. We therefore 

impose the requirement that the diagram in Figure 2 should always commute. If not, 

at least the relaxed version must be considered:  

∀ m1, m2 ∈ M:  sm(m1 ⊗  m2) ⊆ sm(m1) ⊕ sm(m2) (7) 

Therefore, the syntactic operator ⊗ reflects the semantic composition ⊕ and an 

additional refinement. However, in the following we use intersection as semantic 

composition only. 

3.3 Syntax-Based Properties of Composition  

Examining properties of the syntactic composition ⊗, we find that there may be 

absorbing or neutral elements. In a first attempt, we may call a model m∈M right-

neutral, iff  

∀ m1 ∈ M: m1 ⊗ m = m1 (8) 

A model m∈M is called right-absorbing, iff  

∀ m1 ∈ M: m1 ⊗ m = m 
(9) 

Left-neutral and left-absorbing is defined analogously and neutral respectively 

absorbing is the combination of both sides. Furthermore, we might call a 

composition operator ⊗ commutative iff  

∀ m1, m2 ∈ M: m1 ⊗ m2 = m2 ⊗ m1 
(10) 

and associative iff 

∀ m1, m2, m3 ∈ M: (m1 ⊗ m2) ⊗ m3  = m1 ⊗ (m2 ⊗ m3) 
(11) 

Of course, if the composition operator is commutative, left and right-neutrality as well 

as properties to be left-/right-absorbing will coincide.  

There may be many models that are absorbing or neutral. But, due to unlucky 

context conditions there may also be none at all. For class diagram composition, a 

neutral element could be the empty class diagram, which is not allowed in UML 2.1.  

M

M M M 

sm 

⊗ 

⊕ 

sm sm 

S SS 



This formalization above would allow us to identify an algebra of composition on 

the syntactic level. However, when looking at the properties, we easily can see that 

this algebra is too restrictive to be of direct use. In fact models have a concrete syntax 

and the positions of white spaces or the graphical elements usually change, when 

models are composed or somehow otherwise modified. Furthermore, the order of 

presenting elements usually does not affect the semantics, but the layout of the 

composed result. An example in Figure 3 shows a possible key problem. 

 

 

 

 

 

 

 

 

Figure 3: Example for non-commutative model composition (on syntactic level) 

This example leads us to two observations. First, the result syntactically depends on 

the order of the input models and thus, composition is often not commutative. Second, 

the result does not depend semantically on the input order, since the outputs are 

“semantically equal”, which means that they are mapped by sm to the same set of 

systems. Therefore, we do generalize from a purely model (syntax)-based concept of 

composition to a semantic-based version.  

3.4 Semantic-Based Composition Properties 

Instead of defining associativity, etc. on the concrete syntax of models, we abstract 

away from irrelevant syntactic sugar and concentrate on the semantic properties of a 

model. Therefore, we develop the following definitions: 

 

Definition 6: Algebraic Properties of Composition.  

A model m∈M is called right-neutral vs. composition ⊗, iff  

∀ m1 ∈ M: sm(m1 ⊗ m) = sm(m1) (12) 

Model m∈M is called right-absorbing vs. composition ⊗, iff  

∀ m1 ∈ M: sm(m1 ⊗ m) = sm(m) 
(13) 

A model m∈M is called right-idempotent vs. composition ⊗, iff 

∀ m1 ∈ M: sm((m1 ⊗ m) ⊗ m) = sm(m1 ⊗ m) 
(14) 

Being left-neutral, -absorbing and –idempotent is defined in an analogous way.  

If a model is neutral (absorbing/idempotent) from both sides, it is called neutral 

(absorbing/idempotent).  

= ⊗ 
Person 

- name 

Person 

- age 

= ⊗ 
Person 

- age 

Person 

- name 

Person 

- age 

- name 

Person 

- name 

-age 



 

We call a composition operator ⊗ commutative vs. its semantics sm iff  

∀ m1,m2 ∈ M: sm(m1 ⊗ m2) = sm(m2 ⊗ m1) 
(15) 

and associative vs. its semantics sm iff 

∀ m1, m2, m3 ∈ M: sm((m1 ⊗ m2) ⊗ m3)  = sm(m1 ⊗ (m2 ⊗ m3)) 
(16) 

This formalization allows us to define an algebra with composition etc. based on 

semantic properties. Looking at these properties from a different angle, we can 

identify an equivalence relation ≅ on models based on the semantic mapping 

interpreted as homomorphism. 

3.5 Properties of the Semantic Mapping  

Let in this section ⊗ be a FPP composition operator. We know that (℘(S), ∩, S, ∅) 

defines a lattice, where intersection is both commutative and associative. Together 

with the semantic mapping sm we can translate the lattice properties to the language 

of models: 

 

Theorem 1:  

If a model composition ⊗ is fully property preserving, then (M, ⊗) also defines a 

commutative, associative structure with respect to sm and ⊗ is idempotent for all 

models. 

 

Proof: By definition of FPP we derive 

Assoc.: sm((m1 ⊗ m2) ⊗ m3) = sm(m1) ∩ sm(m2) ∩ sm(m3) = sm(m1 ⊗ (m2 ⊗ m3)), 

Comm.: sm(m1 ⊗ m2) = sm(m1) ∩ sm(m2) = sm(m2 ⊗ m1), and 

Idempot.: sm(m1 ⊗ m1) = sm(m1) ∩ sm(m1) = sm(m1). 
 

Respecting the semantic equivalence of two models is an important property for a 

composition operator, because then the concrete representative is irrelevant and layout 

or other minor rearrangements of the model do not affect the composition result. We 

therefore introduce the algebra of equivalence classes on models induced by the 

semantic mapping: 

 

Definition 7: Equivalence Classes of Models 

The semantic mapping sm defines an equivalence relation on models as follows: 

m1 ≅  m2   ⇔   sm(m1)  =  sm(m2) (17) 

The set of semantically equivalent models is denoted by  

[m1]  = { m2  |  m1  ≅ m2 } (18) 

We denote the set of equivalence classes over M by [M]. The composition operation 

can be extended to equivalence classes as follows: 

 



Definition 8: Composition on Model Classes 

Composition is extended to model classes by: 

[m1] ⊗  [m2]   =  { ma ⊗  mb  | ma ∈ [m1] ∧ mb ∈ [m2] } (19) 

 

Theorem 2: [.] is a congruence for FPPs 

If a model composition ⊗ is fully property preserving, then ([M],⊗) also defines a 

commutative, associative structure with respect to sm, all models are idempotent, and: 

[m1] ⊗  [m2]   =  [m1 ⊗ m2] (20) 

Proof: Follows from FPP and the definition of the equivalence classes. 

 

We now have a quotient algebra ([M], ⊗) with a number of desired properties for a 

syntactic composition operator: 

1. Composition is fully property preserving, such that each property of the 

composed model can be traced back to one of the input models or both. 

2. Composition is consistent with the semantics, such that it is irrelevant, which 

concrete representative was chosen. Thus the composition is well defined with 

respect to the quotient algebra. 

3. Composition is commutative and associative, such that the order of composition 

is irrelevant. 

As already discussed, unfortunately a number of composition operators will exist that 

do not fit this ideal scheme for a variety of reasons. E.g., it may rather often be the 

case that an operator is PP and CP, but not FPP. In this case, it may happen that even 

if the operator is commutative and associative on models, the equivalence on models 

is not a congruence vs. composition.  

A model composition operator which depends on the order of the input or concrete 

representations of the model would be difficult to manage. E.g., the input order has to 

be saved somewhere to guarantee the equality of the results.  

From theoretical computer science, we know that composition operators need to 

conform with semantics as much as possible. This may be achieved through a number 

of mechanisms. On the one hand the composition operator may be adjusted 

accordingly. Second, the semantic domain or the semantic mapping may be redefined, 

such that they go conform with composition and third, the modeling language itself 

may be adapted. 

3.6 Summary 

In the last sections we introduced some basic properties model composition operators 

may have such as PP, FPP, or CP. Following we give a short overview of the 

definitions which allow to categorize a given composition operator. 

 

Property Requirement Dependencies 

Property Preserving on the 

left (PPl) 
sm(m1 ⊗ m2) ⊆ sm(m1)  

Property Preserving on the sm(m1 ⊗ m2) ⊆ sm(m2)  



right (PPr) 

Property Preserving (PP) sm(m1 ⊗ m2) ⊆ sm(m1) ∩ sm(m1) PPl ∧ PPr ⇔ PP 

Fully Property Preserving sm(m1 ⊗  m2) = sm(m1) ∩ sm(m2) FPP ⇒ PP 

Consistency Preserving ∀ m1, m2 ∈ M:  sm(m1) ∩ sm(m2) ≠ ∅   ⇒   sm(m1 ⊗  m2) ≠ ∅ 

FPP ⇒ CP 

Commutative (Com) ∀ m1,m2 ∈ M: m1 ⊗ m2 = m2 ⊗ m1  

Associative (Ass) ∀ m1, m2, m3 ∈ M:  

(m1 ⊗ m2) ⊗ m3  = m1 ⊗ (m2 ⊗ m3) 

 

Commutative vs. 

Semantics (Comsm) 
∀ m1,m2 ∈ M: 

sm(m1 ⊗ m2) = sm(m2 ⊗ m1) 

Com ⇒ Comsm 

Associative vs. Semanics 

(Asssm) 
∀ m1, m2, m3 ∈ M:sm((m1 ⊗ m2) ⊗ 

m3)  = sm(m1 ⊗ (m2 ⊗ m3)) 

Ass ⇒ Asssm 

Table 1: Overview of Composition properties 

 

Furthermore, we defined special elements with respect to composition. Table 2 

gives a short overview. 

 

Property of Element m Requirement Dependencies 

Right-neutral (Rn) ∀ m1 ∈ M: m1 ⊗ m = m1  

Left-neutral (Ln) ∀ m1 ∈ M: m ⊗ m1 = m1  

Neutral (N) ∀ m1 ∈ M: m1 ⊗ m = m ⊗ m1 = 

m1 

Rn ∧ Ln ⇔ N 

Right-absorbing (Ra) ∀ m1 ∈ M:m1 ⊗ m = m  

Left-absorbing (La) ∀ m1 ∈ M: m ⊗ m1 = m  

Absorbing (A) ∀ m1 ∈ M:  

m1 ⊗ m = m ⊗ m1 = m 

Ra ∧ La ⇔ A 

Right-Idempotent (Ri) ∀ m1 ∈ M:  

(m1 ⊗ m) ⊗ m =m1 ⊗ m 

 

Left-Idempotent (Li) ∀ m1 ∈ M:  

m ⊗ (m ⊗ m1) = m1 ⊗ m 

 

Idempotent (I) ∀ m1 ∈ M:m ⊗ (m ⊗ m1) = (m1 ⊗ m) ⊗ m = m1 ⊗ m 

Ri ∧ Li ⇔ I 

 

Right-neutral vs. 

Composition (Rncomp) 
∀ m1 ∈ M: 

sm(m1 ⊗ m) = sm(m1) 

Rn ⇒ Rncomp 

Left-neutral vs. 

Composition (Lncomp) 
∀ m1 ∈ M:  

sm(m ⊗ m1) = sm(m1) 

Ln ⇒ Lncomp 

Neutral vs. 

Composition (Ncomp)  
∀ m1 ∈ M:  

sm(m1 ⊗ m) = sm(m ⊗ m1) = 

sm(m1) 

Rncomp ∧ Lncomp ⇔ Ncomp 

N ⇒ Ncomp 

Right-absorbing vs. 

Composition (Racomp) 
∀ m1 ∈ M:  

sm(m1 ⊗ m) = sm(m) 

Ra ⇒ Racomp 

Left-absorbing vs. 

Composition (Lacomp) 
∀ m1 ∈ M:  

sm(m ⊗ m1) = sm(m) 

La ⇒ Lacomp 



Absorbing vs. 

Composition (Acomp) 
∀ m1 ∈ M:  

sm(m1 ⊗ m) = sm(m ⊗ m1) = 

sm(m) 

Racomp ∧ Lacomp ⇔ Acomp 

A ⇒ Acomp 

Right-Idempotent vs. 

Composition (Ricomp) 
∀ m1 ∈ M:  

sm((m1 ⊗ m) ⊗ m) = sm(m1 ⊗ 

m) 

Ri ⇒ Ricomp 

Left-Idempotent vs. 

Composition (Licomp) 
∀ m1 ∈ M:  

sm(m ⊗ (m ⊗ m1)) = sm(m1 ⊗ 

m) 

Li ⇒ Licomp 

Idempotent vs. 

Composition (Icomp) 
∀ m1 ∈ M:  

sm(m ⊗ (m ⊗ m1)) = sm((m1 ⊗ 

m) ⊗ m) = sm(m1 ⊗ m) 

Ricomp ∧ Licomp ⇔ Icomp 

I ⇒ Icomp 

Table 2: Special elements of Composition 

4 Related Work 

Much work on specification with respect to model composition has been done in the 

formal methods community. Based on [13] the notion of fully abstract composition 

was transferred to a number of formal languages for behavioral specification. Our 

approach is very much in the spirit of this work, but tries to identify interesting sub-

properties for model composition as well. 

Model composition is also a widespread research issue in the world of UML. There 

are several works which concentrate on different kinds of UML-like diagrams, as 

class diagrams [14] or state charts [15]. Most of these works do not discuss 

composition or model management operators from a foundational, algebraic point of 

view and thus, have different objectives.  

In [4] three model composition tools, namely the Atlas Model Weaver, the Epsilon 

Merging Language, and the Glue Generator Tool which were developed in the 

Modelware project [18] are introduced and discussed in detail. Furthermore, it derives 

some common definitions from these discussions and clarifies some basic 

requirements for model composition tools and frameworks. However, our work 

concentrates on the semantic properties of model composition, whereas [4] addresses 

mainly syntactic properties and their implementation in tools. 

A generic semantics of the merge operator was presented in the MOMENT project 

[19]. It describes three steps of model merging: finding semantic equivalences, 

conflict resolution, and copying non-duplicated elements. In contrast to our work it 

concentrates on expressing semantic equalities by means of a metamodel whereas we 

discuss the semantic background of model composition. 

A more theoretical view on different model management operators is presented in 

[16]. It introduces algebraic properties of model merging such as commutativity, 

associativity, and idempotency. The theoretical results are illustrated by two 

examples, merging entity relationship models and state machines, respectively. In 

opposition to our work the algebra of model composition is not discussed in detail. 



Instead the concentration lies on a general overview of model management operators 

and their relationships. 

An algebra of merging incomplete and inconsistent graph-based views is discussed 

in [17]. Category theory and colimits serve as theoretical basis to express the 

relationships between different diagrams in opposition to our viewpoint of algebras. 

Furthermore, the basic intention of [17] consists in the identification of equal 

elements in different views whereas our work concentrates on the algebraic properties 

of model composition. 

5 Conclusion 

In this paper we gave a first contribution to shed light into the question how model 

composition operators interact with the semantics of models and what properties 

composition operators should have. For this purpose, we have abstractly described 

how semantics is defined. We then introduced an algebra of model composition that 

describes the formal relationship between the models, equivalence classes of 

semantically equivalent models, model composition and semantics. From this setting 

some results could be derived. The most important are that model composition should 

be a congruence induced by the semantic definition and a composition should be a 

commutative and associative operator with respect to the semantics. 

These theoretical results lead to practical consequences for the design of model 

composition operators, modeling languages and semantic domains. Any composition 

operator should obey the properties implied by the algebra in order to allow a modular 

model-based development of software systems with independent 

compilation/transformation of models to other representations and levels of 

abstraction. 

This paper is concerned with the model composition operator and its implications. 

It can be seen as a foundation for further investigations on model management 

operations. However, there are a number of extensions to deal with: How to deal with 

a diff operator to reverse composition? How does code and test-case generation 

interact with composition and semantics? Are there impacts for the form of meta-

modeling widely used today? What are properties of an unsymmetric composition like 

aspect weaving? How do UML’s semantic variation points interact with composition? 

Will refinement preserving composition be useful and feasible? Will there be 

compositional refactorings? Many of these questions need to be solved for a 

foundational theory of model composition. 
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