
An Algebraic View on the

Semantics of Model Composition

Christoph Herrmann1, Holger Krahn1, Bernhard Rumpe1, Martin Schindler1,

and Steven Völkel1

1 Institute for Software Systems Engineering, Braunschweig University of Technology,

Mühlenpfordtstraße 23

38106 Braunschweig, Germany

{herrmann, krahn, rumpe, m.schindler, voelkel}@sse.cs.tu-bs.de

Abstract. Due to the increased complexity of software development projects

more and more systems are described by models. The sheer size makes it

impractical to describe these systems by a single model. Instead many models

are developed that provide several complementary views on the system to be

developed. This however leads to a need for compositional models. This paper

describes a foundational theory of model composition in form of an algebra to

explicitly clarify different variants and uses of composition, their interplay with

the semantics of the involved models and their composition operators.

Keywords: Model composition, Model merging, Semantics.

1 Model composition

The complexity of software products and therefore of their development projects is

steadily increasing. To handle this complexity models are used as an intermediate

result to raise the level of abstraction, to enhance the understanding, and to simplify

analysis and prediction of properties of the system under development. Nowadays

modeling languages like the UML (Unified Modeling Language) and an increasing

number of DSLs (Domain Specific Languages) are used for planning, architecting,

developing, coding, deploying, and documentation purposes. Based on these

languages a number of development approaches like OMG’s Model Driven

Architecture can be classified as “Model Driven Engineering” (MDE).

In any complex software system, mastering complexity means using a variety of

semantically and syntactically precise [1,2] models to describe different aspects and

views of the software system. Therefore it is essential to understand how these

different models fit together and complement each other. For an integrated

understanding, a clear definition of what composition of models means is necessary.

Model composition has impacts on at least three different levels:

[HKR+07] C. Herrmann, H. Krahn, B. Rumpe, M. Schindler, S. Völkel.

An Algebraic View on the Semantics of model Composition.

In: Proceedings of the Third European Conference on Model Driven Architecture - Foundations and Applications (ECMDA-FA 2007), Haifa, Israel

D. H. Akehurst, R. Vogel, R. F. Paige: LNCS 4530, pp. 99-113

Springer-Verlag Berlin-Heidelberg, 2007

www.se-rwth.de/publications

 Syntactic level: the way the composition between models can explicitly be

expressed as a new model in an appropriate modeling language.

 Semantic level: the meaning of the composed models as a unit in terms of

semantics of the modeling languages involved.

 Methodic level: the integration of model composition techniques in software

development processes and tools.

A clear explanation of a composition mechanism of models on each of these

dimensions is necessary to facilitate a “compositional” use of models in development

projects. E.g., for an integrated understanding of some models describing aspects of

the same system it is not necessary to provide a syntactic composition operator that

explicitly produces an integrated model. Instead it is essential to understand the

meaning of “composition” using a semantic composition. For code generation

purposes it is however often necessary to explicitly calculate the integrated model,

because only from there it is possible to start the generator. This is a pity, because

already in 1972 Parnas introduced modularity in his article [3] as an important

requisite for independent understanding, development, and compilation – something

we have achieved on code level, but not on model level so far. It therefore depends on

the form of use which properties a model composition operator must have.

In contrast to concrete model composition techniques [4, 5, 6] we examine in this

paper syntactic and specifically semantic properties of model composition as basis for

a methodical discussion and therefore regard this paper as a first contribution to a

wider discussion on compositionality of models.

The rest of the paper is structured as follows. Section 2 gives a compact

recapitulation and introduction to our understanding of syntax and semantics of a

modeling language. Section 3 describes the properties of model composition in

algebraic terms. We derive requirements for well-defined model composition

operators and give a first classification of possible operators. Section 4 describes

related work, followed by a conclusion in Section 5.

2 Syntax and Semantics of Models

In software engineering we are basically concerned with graphical or textual

languages to describe structure, behavior, or interaction of systems, interfaces etc. As

these models shall usually be understood by tools, e.g., for code generation and test

case definition there must be a clear definition of what the language concepts are.

This is in sharp contrast to many other forms of models, where there is no formal and

explicit definition of the modeling language used (see, e.g., architectural or medical

models).

Formally, a modeling language M is a set of well-formed models. So a model

m∈M is syntactically well-formed, both by context-free syntax as well as conforming

to all context-conditions. Each of these models gets a semantics by mapping it from

the language to a well-known semantic domain [1, 7]. This principle is well

understood in the field of programming languages, where each syntactic construct has

a well defined meaning that describes its effects in terms of operational or

denotational semantics.

Although standardization bodies have not yet been able to define a commonly

accepted, formal semantics, e.g., for the UML as yet, we here assume such a semantic

definition would be given. See [7] for a deeper discussion on semantic issues. To

understand the meaning of composition, it is evident that the meaning / semantics of

the involved models needs to be understood.

2.1 Semantic Domain and Mapping

Given a language M of models, the meaning of each element is usually given by

explaining it in a well-known domain D, the semantic domain. This semantic domain

describes which artifacts and concepts exist and must be well understood by both the

language designer and the language users [7]. This principle is rather general, even so

the details of the semantic domain as well as the form of representation vary. E.g.,

denotational as well as operational semantics can be subsumed under this form of

approach using an abstract set of models resp. an abstract machine as semantic

domain.

Examples for a semantic domain are the System Model [8], Abstract State

Machines [9], or pure mathematics [2].

Given the modeling language M and the semantic domain D each model m∈M

must be mapped to D. As explained earlier, it is important to define the meaning

(semantics) of models explicitly. So an explicit formal definition of the mapping is a

function from M to D:

sm: M → D (1)

Benefits of a formal mapping function are that we are able to reason about the

mapping and thus, about the language and the instances itself.

2.2 Set-Valued Semantics

A general problem of the semantics definition of a model is that models should be

useable in early phases of development. In early phases models are usually

underspecified and somewhat abstract. Therefore, there is usually not a single system

that realizes a model, but a larger set of realizations. Thus, the mapping of an

underspecified diagram to program code or any other deterministic realization would

result in either incomplete code or code that incorporates decisions not present in the

model. These decisions done by the translation algorithm, however, are critical for the

model understanding, as they may not intend the developers view. Currently many

tools help themselves, by disallowing ambiguity and thus preventing

underspecification. A mapping to code, therefore, for principal reasons cannot serve

as a semantics definition. To adequately handle underspecification the semantics of

languages like Spectrum [10] or Z [11] is described as a set of systems having the

given properties instead of a single system [12]. Such specification oriented set-

valued semantics allow us to describe and understand important properties of

modeling languages. Thus we use set-valued semantics as a basis for further

investigation into a model composition theory.

The basic idea is to map any model m∈M to all systems which obey the constraints

that the model imposes. Denoting the set of all systems with S the semantic domain is

then the power set D = ℘(S) and each instance m∈M will be mapped by sm to the

largest set of systems which fulfill the constraints.

sm: M → ℘(S) (2)

We do not need to further investigate into the details of S, but understand that it

captures the relevant properties of a system. These are usually structural properties

(objects, their values and linkage) as well as behavioral and interaction properties

(traces of interactions, etc.).

As an illustrative example for set-valued semantics covering underspecification

consider a simple class diagram with one class “Person” having a String attribute

“name”. What do we know about the system described?

1. There is a class “Person”

2. All instances of the class “Person” and all instances of subclasses have an

attribute “name” whose type is “String”

3. No more information can be inferred.

The real semantics of this model must be given as the set of all systems obeying 1

and 2. Usually these systems have other classes and possibly the class “Person”

contains more attributes than “name”, but in our set-valued semantics those systems

still fulfill the constraints defined by the model. Furthermore, it is not given that there

will ever be an instance of class Person at all. Instead the class Person may also be

abstract.

This approach is called a “loose semantics” [10] and is very helpful in capturing

underspecification. Today many developers and especially tools assume some kind of

“completeness” of their models, which is quite conflicting with the possibility to

compose models.

Set-valued semantics allows to state some important properties with respect to the

semantic mapping sm:

 A model m∈M is consistent exactly if sm(m)≠∅, which means that there is at

least one system that obeys the instance’s properties. Otherwise, there are some

contradicting constraints in the model m itself.

 A model m∈M does not contain information if sm(m)=S. Then any system can

serve as an implementation.

 A model m2 refines another model m1 exactly if sm(m2) ⊆ sm(m1). So, if we add

more data to the model m2, it further constraints the resulting set of systems,

which therefore will become smaller.

The loose approach has an interesting aspect: the more we know, thus the more

information is present in a model, the fewer implementations are possible. This is why

m2 has more information and thus refines m1 exactly if sm(m2) ⊆ sm(m1).

It is noteworthy that the “loose semantics” approach we use is loose on the

behavioral as well as on the structural level. For existing behavioral elements, such as

methods, their behavior may vary and additional structural elements (such as

attributes, classes etc.) are possible.

Besides set-valued semantics for some forms of models and especially for

executable languages an “initial” or a “minimal” semantics can be given. These forms

of semantics correspond to the idea that there is a unique realization in the set

mentioned above with minimalistic properties. Informally spoken, such a unique

element can be characterized by assumptions like “everything explicitly defined is

present, but nothing more”. Class diagrams, e.g., lead to a canonical implementation

through code generation and deterministic, completely defined state machines do have

one single execution. Having both, a set-valued semantics for the specification of a

system and an initial semantics, e.g., for test purposes or executable models, seems to

be appropriate. For specification purposes, we concentrate on the set valued

semantics.

3 An Algebraic View on Model Composition

When models are developed and composed, the developers as well as the tools always

deal with their syntactic representation. But doing so, developers want to compose the

meaning underlying these models. Thus, one goal of our algebraic theory is to clarify

the relationships between composition on the syntactic and on the semantic level.

Beyond that, another interesting issue consists in the question which basic

requirements for a composition operator on the one hand and for composition tools on

the other exist.

3.1 Model Composition

Model composition in its simplest form refers to the mechanism of combining two

models into a new one. Without further information or requirements the definition of

model composition is quite abstract. Denoting the universe of models with M we get

the following definition of model composition operators:

Definition 1: Model composition operator.

A model composition operator ⊗ is a function with two models as input, which

produces a composed model as output: ⊗: M × M → M.

Given the semantics of models, we can infer properties of the semantics of a

composition operator ⊗ by relating the semantics on its source and resulting model.

Definition 2: Property preserving (PP) composition operator.

A composition operator ⊗: M×M→M is property preserving on the left argument, if

for any m1, m2 ∈ M it holds: sm(m1 ⊗ m2) ⊆ sm(m1). Analogously, it is property

preserving on the right argument, iff sm(m1⊗m2) ⊆ sm(m2) and property preserving

(PP) if both properties hold.

The simple example shown in Figure 1 serves as basis for further explanations.

Figure 1: Example for composition on models and semantics

Property preservation is important for a composition operator, as it ensures that no

information and thus, no design decisions that were present in a source model are lost

in the composition. We can infer that property preservation is equivalent to:

∀ m1, m2 ∈ M: sm(m1 ⊗ m2) ⊆ sm(m1) ∩ sm(m2) (3)

Please note that this need not be equality, as the composition operator may be

allowed to add further information that was not present in any of the models before.

This can be useful, especially if there are decisions on unifications to make that are

not unique. E.g., unnamed associations between the same classes can be identified,

but need not.

Definition 3: Fully property preserving (FPP) composition operator.

A composition operator ⊗: M×M→M is fully property preserving, iff

∀ m1, m2 ∈ M: sm(m1 ⊗ m2) = sm(m1) ∩ sm(m2) (4)

The most important consequence of FPP is that it allows us to separately analyze

and understand the source models and their properties individually and to trace

properties (as well as errors) of the composed model back to the input models.

Furthermore, with a PP composition a model developer can be sure that the

requirements defined in his models are preserved in the implementation. And third, a

PP operator makes model composition understandable: changes in one input model

Systems, where

 a class „Person“

exists

 each instance of

Person or its

subclasses have a

name

Systems, where

 a class „Person“

exists

 each instance of

Person or its

subclasses have

an age

Systems, where

 a class „Person“

exists

 each instance of

Person or its

subclasses have an

age and a name

 ∩ =

= ⊗Person

- name

Person

- age

Person

- name

- age

have an impact on the composed model within a localized, clearly identifiable area,

but do not affect properties defined in the other models.

A FPP composition operator neither adds nor forgets information. Unfortunately,

we will have to live with the situation, that there are modeling languages, where there

is no composed model that exhibits the desired properties. E.g., composing flat

automata is not necessarily fully property preserving (depends on the assumed

communication between these automata). In this case, emerging properties of the

composition cannot necessarily be traced back to the original, but may result from the

composition operator itself, which in fact is a composition and an additional

refinement. However, adding wrong information through a composition operator may

lead to an inconsistent result (sm(m1 ⊗ m2) = ∅) even though the models originally

where not inconsistent with each other (sm(m1) ∩ sm(m2) ≠ ∅). We therefore

demand that composition preserves consistency:

Definition 4: Consistency preserving (CP) composition operator.

A composition operator ⊗: M×M→M is consistency preserving (CP), iff

∀ m1, m2 ∈ M: sm(m1) ∩ sm(m2) ≠ ∅ ⇒ sm(m1 ⊗ m2) ≠ ∅ (5)

Corollary: A FPP composition operator is consistency preserving.

Proof: by definition.

In general as well as in the remainder of this paper we assume model composition

to be property preserving as well as consistency preserving (but not in all cases fully

property preserving).

3.2 A Generalization for Semantic Composition Operators

We have explained the desired properties of a composition operator using set-valued

semantics. This technique can be generalized, assuming there is a composition

operator ⊕ available on the semantic domain. Intersection ∩ as used above is such an

operator.

Definition 5: General Semantic Composition Operator.

The semantic composition operator ⊕ is a function with two sets of systems as input

which produces a set of systems as output: ⊕: D × D → D.

Given these operators on both levels, the semantic composition operator ⊕ can be

understood as semantics of the syntactic operator ⊗ if the diagram in Figure 2

commutes.

Figure 2: Relationship between composition operators

We say the diagram commutes iff

∀ m1, m2 ∈ M: sm(m1 ⊗ m2) = sm(m1) ⊕ sm(m2) (6)

A commuting diagram corresponds to a fully property preserving composition as

defined above and exhibits the same advantages as discussed above. We therefore

impose the requirement that the diagram in Figure 2 should always commute. If not,

at least the relaxed version must be considered:

∀ m1, m2 ∈ M: sm(m1 ⊗ m2) ⊆ sm(m1) ⊕ sm(m2) (7)

Therefore, the syntactic operator ⊗ reflects the semantic composition ⊕ and an

additional refinement. However, in the following we use intersection as semantic

composition only.

3.3 Syntax-Based Properties of Composition

Examining properties of the syntactic composition ⊗, we find that there may be

absorbing or neutral elements. In a first attempt, we may call a model m∈M right-

neutral, iff

∀ m1 ∈ M: m1 ⊗ m = m1 (8)

A model m∈M is called right-absorbing, iff

∀ m1 ∈ M: m1 ⊗ m = m
(9)

Left-neutral and left-absorbing is defined analogously and neutral respectively

absorbing is the combination of both sides. Furthermore, we might call a

composition operator ⊗ commutative iff

∀ m1, m2 ∈ M: m1 ⊗ m2 = m2 ⊗ m1
(10)

and associative iff

∀ m1, m2, m3 ∈ M: (m1 ⊗ m2) ⊗ m3 = m1 ⊗ (m2 ⊗ m3)
(11)

Of course, if the composition operator is commutative, left and right-neutrality as well

as properties to be left-/right-absorbing will coincide.

There may be many models that are absorbing or neutral. But, due to unlucky

context conditions there may also be none at all. For class diagram composition, a

neutral element could be the empty class diagram, which is not allowed in UML 2.1.

M

M M M

sm

⊗

⊕

sm sm

S SS

This formalization above would allow us to identify an algebra of composition on

the syntactic level. However, when looking at the properties, we easily can see that

this algebra is too restrictive to be of direct use. In fact models have a concrete syntax

and the positions of white spaces or the graphical elements usually change, when

models are composed or somehow otherwise modified. Furthermore, the order of

presenting elements usually does not affect the semantics, but the layout of the

composed result. An example in Figure 3 shows a possible key problem.

Figure 3: Example for non-commutative model composition (on syntactic level)

This example leads us to two observations. First, the result syntactically depends on

the order of the input models and thus, composition is often not commutative. Second,

the result does not depend semantically on the input order, since the outputs are

“semantically equal”, which means that they are mapped by sm to the same set of

systems. Therefore, we do generalize from a purely model (syntax)-based concept of

composition to a semantic-based version.

3.4 Semantic-Based Composition Properties

Instead of defining associativity, etc. on the concrete syntax of models, we abstract

away from irrelevant syntactic sugar and concentrate on the semantic properties of a

model. Therefore, we develop the following definitions:

Definition 6: Algebraic Properties of Composition.

A model m∈M is called right-neutral vs. composition ⊗, iff

∀ m1 ∈ M: sm(m1 ⊗ m) = sm(m1) (12)

Model m∈M is called right-absorbing vs. composition ⊗, iff

∀ m1 ∈ M: sm(m1 ⊗ m) = sm(m)
(13)

A model m∈M is called right-idempotent vs. composition ⊗, iff

∀ m1 ∈ M: sm((m1 ⊗ m) ⊗ m) = sm(m1 ⊗ m)
(14)

Being left-neutral, -absorbing and –idempotent is defined in an analogous way.

If a model is neutral (absorbing/idempotent) from both sides, it is called neutral

(absorbing/idempotent).

= ⊗
Person

- name

Person

- age

= ⊗
Person

- age

Person

- name

Person

- age

- name

Person

- name

-age

We call a composition operator ⊗ commutative vs. its semantics sm iff

∀ m1,m2 ∈ M: sm(m1 ⊗ m2) = sm(m2 ⊗ m1)
(15)

and associative vs. its semantics sm iff

∀ m1, m2, m3 ∈ M: sm((m1 ⊗ m2) ⊗ m3) = sm(m1 ⊗ (m2 ⊗ m3))
(16)

This formalization allows us to define an algebra with composition etc. based on

semantic properties. Looking at these properties from a different angle, we can

identify an equivalence relation ≅ on models based on the semantic mapping

interpreted as homomorphism.

3.5 Properties of the Semantic Mapping

Let in this section ⊗ be a FPP composition operator. We know that (℘(S), ∩, S, ∅)

defines a lattice, where intersection is both commutative and associative. Together

with the semantic mapping sm we can translate the lattice properties to the language

of models:

Theorem 1:

If a model composition ⊗ is fully property preserving, then (M, ⊗) also defines a

commutative, associative structure with respect to sm and ⊗ is idempotent for all

models.

Proof: By definition of FPP we derive

Assoc.: sm((m1 ⊗ m2) ⊗ m3) = sm(m1) ∩ sm(m2) ∩ sm(m3) = sm(m1 ⊗ (m2 ⊗ m3)),

Comm.: sm(m1 ⊗ m2) = sm(m1) ∩ sm(m2) = sm(m2 ⊗ m1), and

Idempot.: sm(m1 ⊗ m1) = sm(m1) ∩ sm(m1) = sm(m1).

Respecting the semantic equivalence of two models is an important property for a

composition operator, because then the concrete representative is irrelevant and layout

or other minor rearrangements of the model do not affect the composition result. We

therefore introduce the algebra of equivalence classes on models induced by the

semantic mapping:

Definition 7: Equivalence Classes of Models

The semantic mapping sm defines an equivalence relation on models as follows:

m1 ≅ m2 ⇔ sm(m1) = sm(m2) (17)

The set of semantically equivalent models is denoted by

[m1] = { m2 | m1 ≅ m2 } (18)

We denote the set of equivalence classes over M by [M]. The composition operation

can be extended to equivalence classes as follows:

Definition 8: Composition on Model Classes

Composition is extended to model classes by:

[m1] ⊗ [m2] = { ma ⊗ mb | ma ∈ [m1] ∧ mb ∈ [m2] } (19)

Theorem 2: [.] is a congruence for FPPs

If a model composition ⊗ is fully property preserving, then ([M],⊗) also defines a

commutative, associative structure with respect to sm, all models are idempotent, and:

[m1] ⊗ [m2] = [m1 ⊗ m2] (20)

Proof: Follows from FPP and the definition of the equivalence classes.

We now have a quotient algebra ([M], ⊗) with a number of desired properties for a

syntactic composition operator:

1. Composition is fully property preserving, such that each property of the

composed model can be traced back to one of the input models or both.

2. Composition is consistent with the semantics, such that it is irrelevant, which

concrete representative was chosen. Thus the composition is well defined with

respect to the quotient algebra.

3. Composition is commutative and associative, such that the order of composition

is irrelevant.

As already discussed, unfortunately a number of composition operators will exist that

do not fit this ideal scheme for a variety of reasons. E.g., it may rather often be the

case that an operator is PP and CP, but not FPP. In this case, it may happen that even

if the operator is commutative and associative on models, the equivalence on models

is not a congruence vs. composition.

A model composition operator which depends on the order of the input or concrete

representations of the model would be difficult to manage. E.g., the input order has to

be saved somewhere to guarantee the equality of the results.

From theoretical computer science, we know that composition operators need to

conform with semantics as much as possible. This may be achieved through a number

of mechanisms. On the one hand the composition operator may be adjusted

accordingly. Second, the semantic domain or the semantic mapping may be redefined,

such that they go conform with composition and third, the modeling language itself

may be adapted.

3.6 Summary

In the last sections we introduced some basic properties model composition operators

may have such as PP, FPP, or CP. Following we give a short overview of the

definitions which allow to categorize a given composition operator.

Property Requirement Dependencies

Property Preserving on the

left (PPl)
sm(m1 ⊗ m2) ⊆ sm(m1)

Property Preserving on the sm(m1 ⊗ m2) ⊆ sm(m2)

right (PPr)

Property Preserving (PP) sm(m1 ⊗ m2) ⊆ sm(m1) ∩ sm(m1) PPl ∧ PPr ⇔ PP

Fully Property Preserving sm(m1 ⊗ m2) = sm(m1) ∩ sm(m2) FPP ⇒ PP

Consistency Preserving ∀ m1, m2 ∈ M: sm(m1) ∩ sm(m2) ≠ ∅ ⇒ sm(m1 ⊗ m2) ≠ ∅

FPP ⇒ CP

Commutative (Com) ∀ m1,m2 ∈ M: m1 ⊗ m2 = m2 ⊗ m1

Associative (Ass) ∀ m1, m2, m3 ∈ M:

(m1 ⊗ m2) ⊗ m3 = m1 ⊗ (m2 ⊗ m3)

Commutative vs.

Semantics (Comsm)
∀ m1,m2 ∈ M:

sm(m1 ⊗ m2) = sm(m2 ⊗ m1)

Com ⇒ Comsm

Associative vs. Semanics

(Asssm)
∀ m1, m2, m3 ∈ M:sm((m1 ⊗ m2) ⊗

m3) = sm(m1 ⊗ (m2 ⊗ m3))

Ass ⇒ Asssm

Table 1: Overview of Composition properties

Furthermore, we defined special elements with respect to composition. Table 2

gives a short overview.

Property of Element m Requirement Dependencies

Right-neutral (Rn) ∀ m1 ∈ M: m1 ⊗ m = m1

Left-neutral (Ln) ∀ m1 ∈ M: m ⊗ m1 = m1

Neutral (N) ∀ m1 ∈ M: m1 ⊗ m = m ⊗ m1 =

m1

Rn ∧ Ln ⇔ N

Right-absorbing (Ra) ∀ m1 ∈ M:m1 ⊗ m = m

Left-absorbing (La) ∀ m1 ∈ M: m ⊗ m1 = m

Absorbing (A) ∀ m1 ∈ M:

m1 ⊗ m = m ⊗ m1 = m

Ra ∧ La ⇔ A

Right-Idempotent (Ri) ∀ m1 ∈ M:

(m1 ⊗ m) ⊗ m =m1 ⊗ m

Left-Idempotent (Li) ∀ m1 ∈ M:

m ⊗ (m ⊗ m1) = m1 ⊗ m

Idempotent (I) ∀ m1 ∈ M:m ⊗ (m ⊗ m1) = (m1 ⊗ m) ⊗ m = m1 ⊗ m

Ri ∧ Li ⇔ I

Right-neutral vs.

Composition (Rncomp)
∀ m1 ∈ M:

sm(m1 ⊗ m) = sm(m1)

Rn ⇒ Rncomp

Left-neutral vs.

Composition (Lncomp)
∀ m1 ∈ M:

sm(m ⊗ m1) = sm(m1)

Ln ⇒ Lncomp

Neutral vs.

Composition (Ncomp)
∀ m1 ∈ M:

sm(m1 ⊗ m) = sm(m ⊗ m1) =

sm(m1)

Rncomp ∧ Lncomp ⇔ Ncomp

N ⇒ Ncomp

Right-absorbing vs.

Composition (Racomp)
∀ m1 ∈ M:

sm(m1 ⊗ m) = sm(m)

Ra ⇒ Racomp

Left-absorbing vs.

Composition (Lacomp)
∀ m1 ∈ M:

sm(m ⊗ m1) = sm(m)

La ⇒ Lacomp

Absorbing vs.

Composition (Acomp)
∀ m1 ∈ M:

sm(m1 ⊗ m) = sm(m ⊗ m1) =

sm(m)

Racomp ∧ Lacomp ⇔ Acomp

A ⇒ Acomp

Right-Idempotent vs.

Composition (Ricomp)
∀ m1 ∈ M:

sm((m1 ⊗ m) ⊗ m) = sm(m1 ⊗

m)

Ri ⇒ Ricomp

Left-Idempotent vs.

Composition (Licomp)
∀ m1 ∈ M:

sm(m ⊗ (m ⊗ m1)) = sm(m1 ⊗

m)

Li ⇒ Licomp

Idempotent vs.

Composition (Icomp)
∀ m1 ∈ M:

sm(m ⊗ (m ⊗ m1)) = sm((m1 ⊗

m) ⊗ m) = sm(m1 ⊗ m)

Ricomp ∧ Licomp ⇔ Icomp

I ⇒ Icomp

Table 2: Special elements of Composition

4 Related Work

Much work on specification with respect to model composition has been done in the

formal methods community. Based on [13] the notion of fully abstract composition

was transferred to a number of formal languages for behavioral specification. Our

approach is very much in the spirit of this work, but tries to identify interesting sub-

properties for model composition as well.

Model composition is also a widespread research issue in the world of UML. There

are several works which concentrate on different kinds of UML-like diagrams, as

class diagrams [14] or state charts [15]. Most of these works do not discuss

composition or model management operators from a foundational, algebraic point of

view and thus, have different objectives.

In [4] three model composition tools, namely the Atlas Model Weaver, the Epsilon

Merging Language, and the Glue Generator Tool which were developed in the

Modelware project [18] are introduced and discussed in detail. Furthermore, it derives

some common definitions from these discussions and clarifies some basic

requirements for model composition tools and frameworks. However, our work

concentrates on the semantic properties of model composition, whereas [4] addresses

mainly syntactic properties and their implementation in tools.

A generic semantics of the merge operator was presented in the MOMENT project

[19]. It describes three steps of model merging: finding semantic equivalences,

conflict resolution, and copying non-duplicated elements. In contrast to our work it

concentrates on expressing semantic equalities by means of a metamodel whereas we

discuss the semantic background of model composition.

A more theoretical view on different model management operators is presented in

[16]. It introduces algebraic properties of model merging such as commutativity,

associativity, and idempotency. The theoretical results are illustrated by two

examples, merging entity relationship models and state machines, respectively. In

opposition to our work the algebra of model composition is not discussed in detail.

Instead the concentration lies on a general overview of model management operators

and their relationships.

An algebra of merging incomplete and inconsistent graph-based views is discussed

in [17]. Category theory and colimits serve as theoretical basis to express the

relationships between different diagrams in opposition to our viewpoint of algebras.

Furthermore, the basic intention of [17] consists in the identification of equal

elements in different views whereas our work concentrates on the algebraic properties

of model composition.

5 Conclusion

In this paper we gave a first contribution to shed light into the question how model

composition operators interact with the semantics of models and what properties

composition operators should have. For this purpose, we have abstractly described

how semantics is defined. We then introduced an algebra of model composition that

describes the formal relationship between the models, equivalence classes of

semantically equivalent models, model composition and semantics. From this setting

some results could be derived. The most important are that model composition should

be a congruence induced by the semantic definition and a composition should be a

commutative and associative operator with respect to the semantics.

These theoretical results lead to practical consequences for the design of model

composition operators, modeling languages and semantic domains. Any composition

operator should obey the properties implied by the algebra in order to allow a modular

model-based development of software systems with independent

compilation/transformation of models to other representations and levels of

abstraction.

This paper is concerned with the model composition operator and its implications.

It can be seen as a foundation for further investigations on model management

operations. However, there are a number of extensions to deal with: How to deal with

a diff operator to reverse composition? How does code and test-case generation

interact with composition and semantics? Are there impacts for the form of meta-

modeling widely used today? What are properties of an unsymmetric composition like

aspect weaving? How do UML’s semantic variation points interact with composition?

Will refinement preserving composition be useful and feasible? Will there be

compositional refactorings? Many of these questions need to be solved for a

foundational theory of model composition.

Acknowledgement: The work presented in this paper is undertaken as a part of the

MODELPLEX project. MODELPLEX is a project co-funded by the European Commission

under the “Information Society Technologies” Sixth Framework Programme (2002-2006).

Information included in this document reflects only the authors’ views. The European

Community is not liable for any use that may be made of the information contained herein.

References
1. D. Harel, B. Rumpe. Modeling Languages: Syntax, Semantics and All That Stuff.

Technical Report MCS00-16, The Weizmann Institute of Science, Rehovot, Israel, 2000

2. R. France, A. Evans, K. Lano, B. Rumpe. The UML as a Formal Modeling Notation. In:

Computer Standards and Interfaces, pages 325-334. Elsevier Science Publisher. 19 (1998).

3. D. Parnas. On the criteria to be used in decomposing systems into modules In:

Communications of the ACM, pages 1053 - 1058. Volume 15 (12), December 1972.

4. J. Bezivin, S. Bouzitouna, M. Didonet Del Fabro, M.-P. Gervais, F. Jouault, D. S.

Kolovos, I. Kurtev, and R. F. Paige. A canonical scheme for model composition. In

Proceedings of the Second European Conference on Model-Driven Architecture (EC-

MDA) 2006, pages 346-361, Bilbao, Spain, July 2006.

5. K.-D. Engel, R.F. Paige, and D.S. Kolovos. Using a Model Merging Language for

Reconciling Model Versions, in Proc. Second European Conference on Model-Driven

Architecture (EC-MDA) 2006, pages 143-158, LNCS 4066, Springer-Verlag, Bilbao,

Spain, July 2006

6. M. Fabro, J. Bézivin, F. Jouault, E. Breton, and G. Gueltas: AMW: a generic model

weaver. In: Proceedings of the 1ères Journées sur l'Ingénierie Dirigée par les Modèles

(IDM05), pages 105-114, Paris, 2005.

7. D. Harel, B. Rumpe. Meaningful Modeling: What's the Semantics of Semantics?, In: IEEE

Computer, Volume 37 (10), pages 64-72, IEEE, October 2004.

8. M. Broy, M. Cengarle, B. Rumpe. Towards a System Model for UML. The Structural

Data Model. Munich University of Technology, Technical Report TUM-I0612. June 2006

9. Y. Gurevich, P. Kutter, M. Odersky and L. Thiele (eds.), Abstract State Machines: Theory

and Applications, Lecture Notes in Computer Science, pages 22-33, Volume 1912,

Springer-Verlag, 2000.

10. M. Broy, C. Facchi, R.Grasu, R. Hettler, H. Hußmann, D. Nazareth, F. Regensburger, O.

Slotosch, and K. Stoelen. The requirements and Design Specification Language

SPECTRUM, An Informal Introduction, Version 1.0, Part 1, Technical Report TUM-

I9312, Technische Universität München, 1993.

11. M. Spivey. The Z Notation - A Reference Manual. 2nd Edition. Prentice Hall, 1992.

12. B. Rumpe. A Note on Semantics (with an Emphasis on UML). In: Second ECOOP

Workshop on Precise Behavioral Semantics, pages 177-197, Haim Kilov, Bernhard

Rumpe (eds.), Technische Universität München, TUM-I9813

13. J. Kok. A fully abstract semantics for data flow nets. In: Proceedings of the Parallel

Architectures and Languages Europe, Volume II: Parallel Languages, pages 351 - 368.

Eindhoven, The Netherlands, June 15-19, 1987

14. G. Straw, G. Georg, E. Song, S. Ghosh, R. France, and J. Bieman. Model Composition

Directives, Proceedings of the 7th UML Conference, pages 87-94, Lisbon, Portugal,

October 10-15, 2004

15. O. Aldawud, A. Bader, and T. Elrad. Weaving with statecharts. In: Workshop on Aspect-

Oriented Modeling, Enschede, Netherlands (2002)

16. G. Brunet , M. Chechik , S. Easterbrook , S. Nejati , N. Niu , M. Sabetzadeh, A manifesto

for model merging, Proceedings of the 2006 international workshop on Global integrated

model management, pages 5-12, May, 2006, Shanghai, China

17. M. Sabetzadeh, S. Easterbrook, An Algebraic Framework for Merging Incomplete and

Inconsistent Views, Proceedings of the 13th IEEE International Conference on

Requirements Engineering (RE'05), pages 306-318, August 29-September 02, 2005

18. The Modelware Project Homepage: http://www.modelware-ist.org

19. A. Boronat, J. Carsi, I. Ramos, P. Letelier. Formal Model Merging Applied to Class

Diagramm Integration. Electronic Notes on Theoretical Computer Science, pages 5-26,

Volume 166, 2007, Ansterdam, The Netherlands

