Skip to main content

Local Wall-Motion Classification in Echocardiograms Using Shape Models and Orthomax Rotations

  • Conference paper
Book cover Functional Imaging and Modeling of the Heart (FIMH 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4466))

Abstract

Automating the analysis of left ventricular (LV) wall motion can improve objective prediction of coronary artery disease. A new method for classifying LV wall motion using shape models with localized variations was developed for this purpose. These sparse shape models were built from four-chamber and two-chamber echocardiographic sequences using principal component analysis and orthomax rotations. The resulting shape parameters were then used to classify wall-motion abnormalities of LV segments. Compared with the shape model before rotation, higher classification correctness was achieved using significantly less shape parameters. The local variations exhibited by these shape parameters correlated reasonably with the location of the segments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. IEEE Trans. Pattern Anal. Machine Intell. 23(6), 681–685 (2001)

    Article  Google Scholar 

  2. Stegmann, M.B.: Generative interpretation of medical images. PhD thesis, Technical University of Denmark (2004)

    Google Scholar 

  3. Bosch, J.G., Nijland, F., Mitchell, S.C., Lelieveldt, B.P.F., Kamp, O., Reiber, J.H.C., Sonka, M.: Computer-aided diagnosis via model-based shape analysis: Automated classification of wall motion abnormalities in echocardiograms. Acad. Radiol. 12(3), 358–367 (2005)

    Article  Google Scholar 

  4. Üzümcü, M., Frangi, A.F., Reiber, J.H.C., Lelieveldt, B.P.F.: Independent component analysis in statistical shape models. In: Proc. SPIE Med. Imag.: Image Processing, vol. 5032, pp. 375–383 (2003)

    Google Scholar 

  5. Zou, H., Hastie, T., Tibshirani, R.: Sparse principal component analysis. Tech. rep. Standford University (2004)

    Google Scholar 

  6. Sjöstrand, K., Stegmann, M.B., Larsen, R.: Sparse principal component analysis in medical shape modeling. SPIE Med. Imag.: Image Processing 6144, 61444X (2006)

    Google Scholar 

  7. Stegmann, M.B., Sjöstrand, K., Larsen, R.: Sparse modeling of landmark and texture variability using the orthomax criterion. SPIE Med. Imag.: Image Processing 6144, 61441G (2006)

    Google Scholar 

  8. Bosch, J.G., Mitchell, S.C., Lelieveldt, B.P.F., Nijland, F., Kamp, O., Sonka, M., Reiber, J.H.C.: Automatic segmentation of echocardiographic sequences by active appearance motion models. IEEE Trans. Med. Imag. 21(11), 1374–1383 (2002)

    Article  Google Scholar 

  9. Browne, M.W.: An overview of analytic rotation in exploratory factor analysis. Multivar. Behav. Res. 36(1), 111–150 (2001)

    Article  Google Scholar 

  10. Kaiser, H.F.: The varimax criterion for analytic rotation in factor analysis. Psychometrika 23(3), 187–200 (1958)

    Article  MATH  Google Scholar 

  11. Crawford, C.B., Ferguson, G.A.: A general rotation criterion and its use in orthogonal rotation. Psychometrika 35(3), 321–332 (1970)

    Article  MATH  Google Scholar 

  12. Nijland, F., Kamp, O., Verhorst, P.M.J., de Voogt, W.G., Bosch, H.G., Visser, C.A.: Myocardial viability: impact on left ventricular dilatation after acute myocardial infarction. Heart 87, 17–22 (2002)

    Article  Google Scholar 

  13. Bosch, H.G., van Burken, G., Nijland, F., Reiber, J.H.C.: Overview of automated quantitation techniques in 2D echocardiography. In: Reiber, J.H.C., van der Wall, E.E. (eds.) What’s New in Cardiovascular Imaging? Kluwer Academic Publishers, Boston (1998)

    Google Scholar 

  14. Suinesiaputra, A., Frangi, A.F., Üzümcü, M., Reiber, J.H.C., Lelieveldt, B.P.F.: Extraction of myocardial contractility patterns from short-axis MR images using independent component analysis. In: Sonka, M., Kakadiaris, I.A., Kybic, J. (eds.) Computer Vision and Mathematical Methods in Medical and Biomedical Image Analysis. LNCS, vol. 3117, pp. 75–86. Springer, Heidelberg (2004)

    Google Scholar 

  15. Webb, A.R.: Statistical Pattern Recognition, 2nd edn. John Wiley & Sons Ltd, New York (2002)

    MATH  Google Scholar 

  16. Jolliffe, I.T.: Rotation of ill-defined principal component analysis. Appl. Statist. 38(1), 139–147 (1989)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Frank B. Sachse Gunnar Seemann

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Leung, K.Y.E., Bosch, J.G. (2007). Local Wall-Motion Classification in Echocardiograms Using Shape Models and Orthomax Rotations. In: Sachse, F.B., Seemann, G. (eds) Functional Imaging and Modeling of the Heart. FIMH 2007. Lecture Notes in Computer Science, vol 4466. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72907-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72907-5_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72906-8

  • Online ISBN: 978-3-540-72907-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics