Skip to main content

Scroll Waves in 3D Virtual Human Atria: A Computational Study

  • Conference paper
Functional Imaging and Modeling of the Heart (FIMH 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4466))

Abstract

Atrial fibrillation (AF) induced electrical remodelling of ionic channels shortens action potential duration and reduces atrial excitability. Experimental data of AF-induced electrical remodelling (AFER) from two previous studies on human atrial myocytes were incorporated into a human atrial cell computer model to simulate their effects on atrial electrical behaviour. The dynamical behaviors of excitation scroll waves in an anatomical 3D homogenous model of human atria were studied for control and AF conditions. Under control condition, scroll waves meandered in large area and became persistent when entrapped by anatomical obstacles. In this case, a mother rotor dominated atrial excitation. Action potentials from several sites behaved as if the atrium were paced rapidly. Under AF conditions, AFER increased the stability of re-entrant scroll waves by reducing meander. Scroll wave break up leads to wavelets underpinning sustained chronic AF. Our simulation results support the hypothesis that AF-induced electrical remodelling perpetuates and sustains AF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lip, G.Y.: Tello-Montoliu H. Management of atrial fibrillation. Heart. 92, 1177–1182 (2006)

    Article  Google Scholar 

  2. Bosch, R.F., Zeng, X., Grammer, J.B., Popovic, C.M., Kuhlkamp, V.: Ionic mechanisms of electrical remodeling in human atrial fibrillation. Cardiovascular Res. 44, 121–131 (1999)

    Article  Google Scholar 

  3. Workmanm, A.J., Kane, K.A., Rankin, A.C.: The contribution of ionic currents to changes in refractoriness of human atrial myocytes associated with chronic atrial fibrillation. Cardiovascular Res. 52, 226–235 (2001)

    Article  Google Scholar 

  4. Jongsma, H.J., Wilders, R.: Gap junctions in cardiovascular disease. Circ. Res. 86, 1193–1197 (2000)

    Google Scholar 

  5. Rostock, T., O’Neill, M.D., Takahashi, Y., Sanders, P., Haissaguerre, M.: Interactions between two simultaneous tachycardias within electrically isolated pulmonary veins. J. Cardiovsac. Electrophysiol. 18, 441–445 (2007)

    Article  Google Scholar 

  6. Huang, C.X., Hu, C.L., Li, Y.B.: Atrial fibrillation may be a vascular disease: The role of pulmonary veins. Med. Hypotheses 68(3), 629–634 (2007)

    Article  Google Scholar 

  7. Kamanu, S., Tan, A.Y., Peter, C.T., Hwang, C., Chen, P.S.: Vein of Marshall activity during sustained atrial fibrillation. J. Cardiovasc. Electrophysiol. 17(8), 839–846 (2006)

    Article  Google Scholar 

  8. Nattel, S., Carlsson, L.: Innovative approach to anti-arrhythmic drug therapy. Nat. Rev. Drug Discov. 5(12), 1034–1049 (2006)

    Article  Google Scholar 

  9. Hersi, A., Wyse, D.G.: Medical management of atrial fibrillation. Curr. Cardiol. Rep. 8(5), 323–329 (2006)

    Article  Google Scholar 

  10. Verdino, R.J.: The evolution of atrial fibrillation ablation from triggers to substrate. J. Electrocardiol. 39(4), S184–S187 (2006)

    Article  Google Scholar 

  11. Purerfellner, H., Aichinger, J., Martinek, M., Nesser, H., Janssen, J.: Short- and long-term experience in pulmonary vein segmental ostial ablation for paroxysmal atrial fibrillation. Indian Pacing Electrophysiol. J. 6(1), 6–16 (2006)

    Google Scholar 

  12. Lazar, S., Dixit, S., Callans, D.J., Lin, D., Marchlinski, F.E., Gerstenfeld, E.P.: Effect of pulmonary vein isolation on the left-to-right atrial dominant frequency gradient in human atrial fibrillation. 3(8), 889–895 (2006)

    Google Scholar 

  13. Sulke, N., Sayers, F., Lip, G.Y.: Rhythm control and cardioversion. Heart 93(1), 29–34 (2007)

    Article  Google Scholar 

  14. Courtemanche, M., Ramirez, R.J., Nattel, S.: Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model. Am. J. Physiol. 275, H301–H321 (1998)

    Google Scholar 

  15. Seemann, G., Hoper, C., Sachse, F.B., Dossel, O., Holden, A.V., Zhang, H.: Heterogeneous three-dimensional anatomical and electrophysiological model of human atria. Phil. Trans. A. 364, 1465–1481 (2006)

    Article  Google Scholar 

  16. Biktasheva, I.V., Biktashev, V.N., Holden, A.V.: Self-termination of spiral waves in a model of human atrial tissue. In: Frangi, A.F., Radeva, P.I., Santos, A., Hernandez, M. (eds.) FIMH 2005. LNCS, vol. 3504, pp. 293–303. Springer, Heidelberg (2005)

    Google Scholar 

  17. Hanson, C., Jonson, Ch.: The visualization handbook. Elsevier, Butterworth-Heinemann (2005)

    Google Scholar 

  18. Byung-Soo, K., Young-Hoon, K., Gyo-Seung, H., Hui-Nam, P., Sang Chil, L., Wan Joo, S., Dong Joo, O., Young Moo, R.: Action potential duration restitution kinetics in human atrial fibrillation. J. Am. Col. Cardiol. 39(8), 1329–1336 (2002)

    Article  Google Scholar 

  19. Xie, F., Qu, Z., Garfinkel, A., Weiss, J.: Electrical refractory period restitution and spiral wave reentry in simulated cardiac tissue. Am. J. Physiol. Heart Circ. Physiol. 283, 448–460 (2002)

    Google Scholar 

  20. Zhang, H., Garratt, C.J., Zhu, J., Holden, A.V.: Role of up-regulation of IK1 in action potential shortening associated with atrial fibrillation in humans. Cardiovasc Res. 66, 493–502 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Frank B. Sachse Gunnar Seemann

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Kharche, S., Seemann, G., Leng, J., Holden, A.V., Garratt, C.J., Zhang, H. (2007). Scroll Waves in 3D Virtual Human Atria: A Computational Study. In: Sachse, F.B., Seemann, G. (eds) Functional Imaging and Modeling of the Heart. FIMH 2007. Lecture Notes in Computer Science, vol 4466. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72907-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72907-5_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72906-8

  • Online ISBN: 978-3-540-72907-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics