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Abstract. How can a RFID (Radio Frequency Identification Devices) system 
prove that two or more RFID tags are in the same location? Previous 
researchers have proposed yoking-proof and grouping-proof techniques to 
address this problem – and when these turned out to be vulnerable to replay 
attacks, a new existence-proof technique was proposed. We critique this class of 
existence-proofs and show it has three problems: (a) a race condition when 
multiple readers are present; (b) a race condition when multiple tags are 
present; and (c) a problem determining the number of tags. We present two new 
proof techniques, a secure timestamp proof (secTS-proof) and a timestamp-
chaining proof (chaining-proof) that avoid replay attacks and solve problems in 
previously proposed techniques. 
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1   Introduction 

Radio Frequency Identification Devices (RFID), are supported by systems comprised 
of wireless readers and tags, and allows objects to be identified and, in some cases, 
tracked. [1] The most commonly used tags, passive tags, are inexpensive devices 
powered by radio signals from readers. They have sharply limited memory and 
processing capabilities. Some argue that RFID tags allow less expensive inventory 
management capabilities. [2] One important issue for RFID systems is generation of 
coexistence proofs demonstrating two or more RFID tags are simultaneously located. 
The key contribution of this paper is a critique of previous RFID coexistence proofs 
and a set of new proofs avoiding previous shortcomings. 
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Here are some motivating examples: 

1) Medical care: a medical professional can prove that a set of correct drugs, blood 
products, or other medical materials are brought together for patient needs. The proof 
can be retained in case of dispute or for insurance purposes. [3] 

2) Transportation: a transport or logistic firm can prove that items are always 
stored together in a safe box, if RFID tags are on the box and contents. [3] 

3) Forensics: if RFID tags are on phones or other personal devices, law 
enforcement can use it to identify witnesses to a crime.   

Here is a brief summary of prior work: Juels defined yoking-proofs which use a 
random number independently generated by tags to produce a coexistence proof. [3] 
Saito and Sakurai observed that yoking-proofs are vulnerable to replay attacks and 
proposed grouping-proofs that request timestamps from a trusted server. [4] 
Piramuthu observed that grouping-proofs were still vulnerable to replay attacks and 
proposed existence-proofs that keep a random number in the tag memory and sets the 
inputs of one tag to information generated by a second tag. [5] We can group these 
techniques into those using an off-line verifier (yoking-proofs) and those using an 
online verifier (grouping-proofs and existence-proofs). 

We show existence-proofs have three problems: 

• A race condition when multiple readers are present; 
• A race condition when multiple tags are present; and  
• Difficulties in determining the number of tags. 

We give two new proof techniques: 

• a secure timestamp proof (secTS-proof) – a proof technique based on a secure 
online verifier that issues secure timestamps; and 

• a timestamp-chaining proof (chaining-proof) – a proof technique based on a 
secure off-line verifier. [6] 

Both schemes avoid the replay attack, and can scale up to support proofs of 
arbitrary number of tags in a simultaneous environment.  
 
Notation: 

� OV: a trusted online verifier 
� FV: a trusted off-line verifier 
� TSD: a trusted timestamp database, which stores timestamps and message 

authentication codes from readers 
� TS: a timestamp 
� x: a symmetric key  
� r: a random number 
� MAC: message authentication code. 
� MACx[m]: the MAC of message m under key x  
� SKx[m]: the encryption of m under key x  
� PAB: a proof that tags A and B were scanned simultaneously 
� P1~n: a proof that tags 1, 2, 3, …, n were scanned simultaneously 
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2   Related Work 

2.1   Yoking-Proof 

In yoking-proofs, the reader interacts with two RFID tags, TA and TB, and an off-line 
verifier (FV). TA and TB share secret keys xA and xB with FV and generate random 
numbers rA and rB, respectively, in every session. Figure 1 gives the protocol. After 
receiving PAB, the reader forwards PAB, rA and rB to FV. 

(1)“left proof”

(2)a = (A, rA) (3)“right proof”, rA

(5)B, mB, rB
(6)rB

(8)mA

(9)PAB=(A, B, mA, mB)

Reader

(7)mA=

MACxA[rB]

(4)mB=

MACxB[rA]

Tag TA Tag TB

 
Fig. 1. Yoking-Proof 

Because each tag uses a random number to compute a MAC, an adversarial reader 
can perform a replay attack by reusing previously generated random values. Saito and 
Sakurai showed a replay attack on TA (see Figure 2 – the dashed line indicates the 
reader interacts with TA and TB at different times) [4] and Piramuthu showed a replay 
attack on TB [5]. The yoking-proof technique cannot be repaired since the adversarial 
reader can send PAB, rA and r to FV for verification and ignores rB. 

Reader (Attacker) 
(1)“left proof”

(2)a = (A, rA)

(6)“right proof”, rA

(8)B, mB, rB

(3)r

(5)mA

(9)PAB=(A, B, mA, mB)

Tag TA Tag TB

(4)mA=

MACxA[r] 

(7)mB=

MACxB[rA]

 

Fig. 2. Replay attack against Yoking-Proof 

2.2   Grouping-Proof 

Saito and Sakurai give a grouping-proof technique with the intention of avoiding 
replay attacks. [4] The reader acquires a timestamp (TS) from an on-line verifier (OV) 
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and sends it to TA and TB. TA and TB individually compute mA and mB using the secret 
keys xA and xB – see Figure 3. After receiving proof PAB, the reader sends PAB, A, and 
B to OV. Grouping-proofs rely on a timeout mechanism – if the OV receives PAB at 
time more than TS+Δ, it rejects the proof. 

Tag TB(2)TS

(4)mA

(2)TS

(7)mB

(8)PAB=(TS, mB)

(5)mA

OV

(1)TS (9)PAB, A, B 

ReaderTag TA

(3)mA=

MACxA[TS] 
(6)mB=

MACxB[TS, mA]

 

Fig. 3. Grouping-Proof 

Piramuthu shows grouping-proofs are vulnerable to replay attacks (see Figure 4.). 
[5] An adversarial reader repeatedly transmits different future timestamps to tag TA, 
generating different (TS, mA) pairs. At the future time, the adversarial reader transmits 
these combinations to the tag TB and then sends PAB to OV. Note that the adversarial 
reader formally acquires TS from OV. 

Tag TBReader (Attacker) 
(1)TS

(3)mA

(4)TS

(7)mB

(8)PAB=(TS, mB)

(5)mA

OV

(9)TS (10)PAB, A, B 

Tag TA

(2)mA=

MACxA[TS] 

(6)mB=

MACxB[TS, mA]

 

Fig. 4. Replay attack against Grouping-Proof 

Saito and Sakurai extend their scheme to prove coexistence of multiple tags 
(Figure 5). Their scheme needs two types of tags, product tags and pallet tags. 
Product tags function similarly to the TA or TB discussed above. Pallet tags can 
compute symmetric key encryption and have larger memory stores than product tags. 
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Pallet Tag Reader
(2)TS

(4)mi

(9)P1~n=(TS, Cp) 

(5)TS

(6)mi

(8)Cp

…
..

OV

(1)TS (10)P1~n, Ti

  Tag Ti

(7)Cp=

SKx[TS, m1,....,mn]

(3)mi=

MACxi[TS] 

 

Fig. 5. Grouping-Proof for multiple tags 

Product tags and a pallet tag share their secret keys with OV. The reader gathers n 
MACs from the product tag Ti (1 i n≤ ≤ ) and sends them to the pallet tag. The pallet 
tag encrypts n MACs mi and TS to generate the ciphertext Cp. After the reader 
receives Cp from the pallet tag, it sends P1~n and all Ti (1 i n≤ ≤ ) to OV. OV first 
checks whether P1~n are within the timeout range. OV decrypts Cp using x to get mi. 
OV verifies mi using xi. Note that this approach is also vulnerable to replay attacks. 

2.3   Existence-Proof 

Piramuthu proposes existence-proofs with the intention of avoiding replay attacks. [5] 
His idea is to ensure that inputs to a tag depend on information generated by other 
tags. Figure 6 shows his approach:   

• The reader requests random number r from OV, which in term is a seed for 
generating rA and rB by tags TA and TB. 

• TB generates mB which depends on both r and rA. 
• TA uses mB and rA to generate mA. 

Tag TBReader
(2)request, r 

(4)A, rA
(5)request, rA, r 

(7)B, mB
(8)mB

(10)mA

(11)PAB=(rA, r, mA, mB)

OV

(1)r (12)PAB, A, B 

Tag TA

(3)rA is stored 

in memory. 

(9)mA=

MACxA[mB, rA]

(6)mB=

MACxB[rA, r] 

 

Fig. 6. Existence-Proof 
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Since both TA and TB rely on values generated by the other, it is robust against 
replay attacks. This scheme also uses a timeout mechanism to ensure the freshness of 
proofs.  

3   Problems of Existence-Proofs 

While existence-proofs avoid replay attacks, they have other problems. First, when 
tag TA interacts with multiple readers, a race condition can occur (Figure 7). Reader1 
sends r1 to TA and Reader2 sends r2 to TA almost simultaneously. TA generates r1A and 
r2A, stores them in the memory, and transmits them to Reader1 and Reader2. After 
Reader1 and Reader2 individually interact with their other tags, i.e. T1B or T2B, they 
send m1B and m2B to TA almost simultaneously. TA does not know which rA (r1A or r2A) 
should be used with m1B or m2B to generate m1A or m2A, causing a race condition. 

request, r1

A, r1A

m1B

Tag TA

request, r2

A, r2A 

m2B

m1A=MACxA(m1B, r1A)

or 

m2A=MACxA(m2B, r2A)

Which one, r1A or 

r2A, should be used?

Reader1  Reader2 

 

Fig. 7. Race condition for multiple readers 

Tag TBiReader
request, r 

A, rAi request, rAi, r

 Tag TA

Bi, mBi mBi 

  mAi

How many rAi

should be 

generated? 

Which rAi

should be 

used? 

P1~n=(rAi, r, mAi, mBi)

mAi=

MACxAi[mBi, rAi]

mBi=

MACxBi[rAi, r] 

 

Fig. 8. Race condition for multiple tags and determining the number of tags 

Piramuthu designed existence-proofs to scale to handle multiple tags. Tag TA 
generates rAi (i=1, … , n-1, where n is the number of tags) by partitioning r into n-1 
parts and the reader generates mBi according to each rAi. In the end, P1~n is composed 
of rA1, rA2, …, rA(n-1), r, mA1, mA2, …, mA(n-1) and mB1, mB2, …, mB(n-1). However, 
because TA does not know how many rAi should be generated, it cannot determine the 
number of tags (see Figure 8.) Even if the reader can give the number of TBi to TA, TA 

mBi= 
MACxBi[rAi, r  
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does not know which rAi is used with mBi to generate mAi, causing a different type of 
race condition, which we call the race condition for multiple tags. 

4   Two Proposed Coexistence-Proofs 

Above, we distinguished between systems with online verifiers and off-line verifiers. 
Below we give two proposed proof types, secTS-proof (with an online verifier) and 
chaining-proof (with an off-line verifier.)  

Figure 9 shows the secTS-proof. To prevent adversarial readers from generating 
bogus timestamps, when the reader requests OV, OV generates a random number r 
and uses its secret key x to encrypt TS and r to create a unique S. OV also checks the 
freshness of proofs – if a proof is submitted after TS+Δ, it is rejected.  

Figure 10 shows the chaining-proof. In this scheme, the reader can issue the 
timestamp by itself. Because there is not an on-line verifier to monitor the reader’s 
behavior, an attacker may issue a bogus timestamp. We use Haber-Stornetta 
timestamps [6] to avoid attack; each new timestamp is formed by taking a hash and 
using the hash value and MAC from previous timestamps. Because the reader does 
not have the tag’s secret key, the timestamp can be generated until the last timestamp 
has been obtained. To complete verification, the reader must report the last 
timestamp, tag id, and timestamp MAC computed by the tag to an offline trusted third 
party (timestamp database TSD). When TSD receives the timestamp, it marks the 
timestamp information with a trusted time value. 

Reader
(2)request, S 

(4)A, mA
(5)request, mA, S 

(7)B, mB

(8)PAB=(S, mB)

OV

(1)S = SKx[r, TS] 

Tag TB

(9)PAB, mA

(3)mA=

MACxA[S] 

Tag TA

(6)mB=

MACxB[mA, S] 

 

Fig. 9. SecTS-Proof 

In the chaining-proof, each tag shares its secret key xi with FV. Furthermore, the 
reader reports timestamps msi=(Ti, TSi(h(msi-1)), mi) to TSD, where i indicates the 
sequence that the reader scans the tags. ms0 is a random number r acquired from TSD. 
Once TSD receives one msi, TSD stores and combines msi with a time (RTi) which 
means when TSD receives this msi. The procedure of chaining-proof for multiple tags 
is described as follows: 
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Reader

request,
TS2(h(ms1)) 

T2, m2

T1, m1

Tag T1

request,
TS3(h(ms2)) 

T3, m3
request,
TS4(h(ms3)) 

T4, m4

request,
TS1(r)

Tag T2

Tag T4

request,
TSn-1(h(msn-2)) 

Tn-1, mn-1

request,
TSn(h(msn-1))

Tn, mn

Tag Tn

…
…

…
…

…
… …

…

P1~n=(r,T1,T2,…,Tn,TS1(r),TS2(h(ms1)),…,TSn(h(msn-1)),m1,m2,…,mn)

m2=

MACx2[TS2(h(ms1))]

m4=

MACx4[TS4(h(ms3))]

Tag T3

TSD

msi

m1=

MACx1[TS1(r)] 

m3=

MACx3[TS3(h(ms2))]

Tag Tn-1

r

mn-1=

MACxn-1[TSn-1(h(msn-2))] 

mn=

MACxn[TSn(h(msn-1))]

 

Fig. 10. Chaining-Proof 

1. TSD gives a random number r to the reader and combines r with a time, RT0. 
2. The reader issues TS1 including a random number r to the tag T1. 
3. T1 generates m1 by applying x1 to TS1, and sends its id T1 and m1 to the reader. 
4. The reader reports ms1=(T1||TS1(r)||m1) to TSD, and TSD stores and combines it 

with a time, i.e. RT1. 
5. The reader sends TS2 including h(ms1) to the tag T2. h( ) is a one-way hash 

function. 
6. T2 use x2 on TS2 to generate m2, and submits its id T2 and m2 to the reader. 
7. The reader reports ms2=(T2||TS2(h(ms1))||m2) to TSD, and TSD stores and 

combines it with a time, i.e. RT2. 
8. The remainder tags and the reader repeat until the reader gets all MACs of nearby 

tags. 
9. When verifying, FV receives the proof P1~n from the reader. 

10. FV extracts msi from P1~n and sequentially acquires RTi from TSD according to 
msi. 

11. FV checks that the duration between RTi and RTi-1 is less than Δ, a predefined 
time threshold.  

12. After FV checks all time durations, if no any problem exists, FV verifies each 
MAC mi by using the corresponding secret key xi and TSi(h(msi-1)). 

13. Finally, FV verifies whether each TSi is located between RT0 and RTn-1. If so, TSi 
are accepted. If no problem exists, the proof is. 
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5   Sketch of Security Proof 

Space does not permit a full proof of security; so here we just provide a sketch of 
security for the chaining-proof. (SecTS-proofs are substantially simpler to show 
security for.) We assume an adversary can control one or more reader, but not a 
verifier or TSD. We assume that our cryptographic functions observe standard 
requirements (see [6] for a fuller discussion of security of the timestamp mechanism.). 
Now the sketch of the proof is straightforward. Refer to Figure 10. If the tag T2 is not 
in range of an adversarial reader the attacker cannot get m2 from T2. Without m2, the 
adversary cannot compute ms2=(T2||TS2(h(ms1))||m2) and cannot submit ms2 to the on-
line timestamp database (TSD). Alternatively, if the adversary waits for the tag T2, 
TSD will mark ms2 with the later time timestamp (RT2) – and if this exceeds timeout 
range Δ, the key will be discarded. Replay attacks against T1, T3, T4, …, Tn are not 
possible for parallel reasons. 

Note that because the reader uses a random number r from TSD and this value is 
combined with a trusted time in TSD, FV can discover if an adversarial tries to collect 
information by interacting individually with each tag using bogus timestamps at some 
later time.  

Note further, if a proof P1234=(r, T1, T2, T3, T4, TS1(r), TS2(h(ms1)), TS3(h(ms2)), 
TS4(h(ms3))) is already verified and is valid. If an adversarial reader attempts to 
duplicate the same proof by using a valid r and insert existence evidence of T5 , i.e. 
(T5, TS5(h(ms4)), in this proof, the attack will be detected, since each timestamp inside 
the proof chains is reported to TSD. 

6   Conclusion 

We showed three RFID co-existence proof types (yoking-proofs, grouping-proofs, 
and existence-proofs) suffer from a number of problems: replay attacks, race 
conditions, and ambiguity in the number of tags. We proposed two novel proof types: 
secTS-proofs and chaining-proofs. SecTS-proof is applied on the environment having 
an online verifier while chaining-proof is used on the environment having an off-line 
verifier. Our two schemes successfully avoid all known attacks, including replay 
attacks. 
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