
K.C. Chang et al. (Eds.): APWeb/WAIM 2007 Ws, LNCS 4537, pp. 634–643, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Coexistence Proof Using Chain of Timestamps for
Multiple RFID Tags∗

Chih-Chung Lin1, Yuan-Cheng Lai1, J.D. Tygar2,
Chuan-Kai Yang1, and Chi-Lung Chiang1

1 Department of Information Management,
National Taiwan University of Science and Technology

D9409106@mail.ntust.edu.tw, laiyc@cs.ntust.edu.tw,
2 University of California, Berkeley
doug.tygar@gmail.com

Abstract. How can a RFID (Radio Frequency Identification Devices) system
prove that two or more RFID tags are in the same location? Previous
researchers have proposed yoking-proof and grouping-proof techniques to
address this problem – and when these turned out to be vulnerable to replay
attacks, a new existence-proof technique was proposed. We critique this class of
existence-proofs and show it has three problems: (a) a race condition when
multiple readers are present; (b) a race condition when multiple tags are
present; and (c) a problem determining the number of tags. We present two new
proof techniques, a secure timestamp proof (secTS-proof) and a timestamp-
chaining proof (chaining-proof) that avoid replay attacks and solve problems in
previously proposed techniques.

Keywords: RFID, coexistence proof, timestamp, computer security,
cryptographic protocol, race condition.

1 Introduction

Radio Frequency Identification Devices (RFID), are supported by systems comprised
of wireless readers and tags, and allows objects to be identified and, in some cases,
tracked. [1] The most commonly used tags, passive tags, are inexpensive devices
powered by radio signals from readers. They have sharply limited memory and
processing capabilities. Some argue that RFID tags allow less expensive inventory
management capabilities. [2] One important issue for RFID systems is generation of
coexistence proofs demonstrating two or more RFID tags are simultaneously located.
The key contribution of this paper is a critique of previous RFID coexistence proofs
and a set of new proofs avoiding previous shortcomings.

∗ This research was supported in part with funding from the iCAST project NSC95-3114-P-

001-002-Y02 in Taiwan, from the US National Science Foundation, from the US Air Force
Office of Scientific Research, and from the Taiwanese National Science Council. The
opinions expressed in this opinion are solely those of the authors and do not necessarily
reflect the opinions of any funding sponsor.

In Proceedings of Advances in Web and Network Technologies and Information Management, 2007, Springer, pp. 634-643

 Coexistence Proof Using Chain of Timestamps for Multiple RFID Tags 635

Here are some motivating examples:

1) Medical care: a medical professional can prove that a set of correct drugs, blood
products, or other medical materials are brought together for patient needs. The proof
can be retained in case of dispute or for insurance purposes. [3]

2) Transportation: a transport or logistic firm can prove that items are always
stored together in a safe box, if RFID tags are on the box and contents. [3]

3) Forensics: if RFID tags are on phones or other personal devices, law
enforcement can use it to identify witnesses to a crime.

Here is a brief summary of prior work: Juels defined yoking-proofs which use a
random number independently generated by tags to produce a coexistence proof. [3]
Saito and Sakurai observed that yoking-proofs are vulnerable to replay attacks and
proposed grouping-proofs that request timestamps from a trusted server. [4]
Piramuthu observed that grouping-proofs were still vulnerable to replay attacks and
proposed existence-proofs that keep a random number in the tag memory and sets the
inputs of one tag to information generated by a second tag. [5] We can group these
techniques into those using an off-line verifier (yoking-proofs) and those using an
online verifier (grouping-proofs and existence-proofs).

We show existence-proofs have three problems:

• A race condition when multiple readers are present;
• A race condition when multiple tags are present; and
• Difficulties in determining the number of tags.

We give two new proof techniques:

• a secure timestamp proof (secTS-proof) – a proof technique based on a secure
online verifier that issues secure timestamps; and

• a timestamp-chaining proof (chaining-proof) – a proof technique based on a
secure off-line verifier. [6]

Both schemes avoid the replay attack, and can scale up to support proofs of
arbitrary number of tags in a simultaneous environment.

Notation:

� OV: a trusted online verifier
� FV: a trusted off-line verifier
� TSD: a trusted timestamp database, which stores timestamps and message

authentication codes from readers
� TS: a timestamp
� x: a symmetric key
� r: a random number
� MAC: message authentication code.
� MACx[m]: the MAC of message m under key x
� SKx[m]: the encryption of m under key x
� PAB: a proof that tags A and B were scanned simultaneously
� P1~n: a proof that tags 1, 2, 3, …, n were scanned simultaneously

636 C.-C. Lin et al.

2 Related Work

2.1 Yoking-Proof

In yoking-proofs, the reader interacts with two RFID tags, TA and TB, and an off-line
verifier (FV). TA and TB share secret keys xA and xB with FV and generate random
numbers rA and rB, respectively, in every session. Figure 1 gives the protocol. After
receiving PAB, the reader forwards PAB, rA and rB to FV.

(1)“left proof”

(2)a = (A, rA) (3)“right proof”, rA

(5)B, mB, rB
(6)rB

(8)mA

(9)PAB=(A, B, mA, mB)

Reader

(7)mA=

MACxA[rB]

(4)mB=

MACxB[rA]

Tag TA Tag TB

Fig. 1. Yoking-Proof

Because each tag uses a random number to compute a MAC, an adversarial reader
can perform a replay attack by reusing previously generated random values. Saito and
Sakurai showed a replay attack on TA (see Figure 2 – the dashed line indicates the
reader interacts with TA and TB at different times) [4] and Piramuthu showed a replay
attack on TB [5]. The yoking-proof technique cannot be repaired since the adversarial
reader can send PAB, rA and r to FV for verification and ignores rB.

Reader (Attacker)
(1)“left proof”

(2)a = (A, rA)

(6)“right proof”, rA

(8)B, mB, rB

(3)r

(5)mA

(9)PAB=(A, B, mA, mB)

Tag TA Tag TB

(4)mA=

MACxA[r]

(7)mB=

MACxB[rA]

Fig. 2. Replay attack against Yoking-Proof

2.2 Grouping-Proof

Saito and Sakurai give a grouping-proof technique with the intention of avoiding
replay attacks. [4] The reader acquires a timestamp (TS) from an on-line verifier (OV)

 Coexistence Proof Using Chain of Timestamps for Multiple RFID Tags 637

and sends it to TA and TB. TA and TB individually compute mA and mB using the secret
keys xA and xB – see Figure 3. After receiving proof PAB, the reader sends PAB, A, and
B to OV. Grouping-proofs rely on a timeout mechanism – if the OV receives PAB at
time more than TS+Δ, it rejects the proof.

Tag TB(2)TS

(4)mA

(2)TS

(7)mB

(8)PAB=(TS, mB)

(5)mA

OV

(1)TS (9)PAB, A, B

ReaderTag TA

(3)mA=

MACxA[TS]
(6)mB=

MACxB[TS, mA]

Fig. 3. Grouping-Proof

Piramuthu shows grouping-proofs are vulnerable to replay attacks (see Figure 4.).
[5] An adversarial reader repeatedly transmits different future timestamps to tag TA,
generating different (TS, mA) pairs. At the future time, the adversarial reader transmits
these combinations to the tag TB and then sends PAB to OV. Note that the adversarial
reader formally acquires TS from OV.

Tag TBReader (Attacker)
(1)TS

(3)mA

(4)TS

(7)mB

(8)PAB=(TS, mB)

(5)mA

OV

(9)TS (10)PAB, A, B

Tag TA

(2)mA=

MACxA[TS]

(6)mB=

MACxB[TS, mA]

Fig. 4. Replay attack against Grouping-Proof

Saito and Sakurai extend their scheme to prove coexistence of multiple tags
(Figure 5). Their scheme needs two types of tags, product tags and pallet tags.
Product tags function similarly to the TA or TB discussed above. Pallet tags can
compute symmetric key encryption and have larger memory stores than product tags.

638 C.-C. Lin et al.

Pallet Tag Reader
(2)TS

(4)mi

(9)P1~n=(TS, Cp)

(5)TS

(6)mi

(8)Cp

…
..

OV

(1)TS (10)P1~n, Ti

 Tag Ti

(7)Cp=

SKx[TS, m1,....,mn]

(3)mi=

MACxi[TS]

Fig. 5. Grouping-Proof for multiple tags

Product tags and a pallet tag share their secret keys with OV. The reader gathers n
MACs from the product tag Ti (1 i n≤ ≤) and sends them to the pallet tag. The pallet
tag encrypts n MACs mi and TS to generate the ciphertext Cp. After the reader
receives Cp from the pallet tag, it sends P1~n and all Ti (1 i n≤ ≤) to OV. OV first
checks whether P1~n are within the timeout range. OV decrypts Cp using x to get mi.
OV verifies mi using xi. Note that this approach is also vulnerable to replay attacks.

2.3 Existence-Proof

Piramuthu proposes existence-proofs with the intention of avoiding replay attacks. [5]
His idea is to ensure that inputs to a tag depend on information generated by other
tags. Figure 6 shows his approach:

• The reader requests random number r from OV, which in term is a seed for
generating rA and rB by tags TA and TB.

• TB generates mB which depends on both r and rA.
• TA uses mB and rA to generate mA.

Tag TBReader
(2)request, r

(4)A, rA
(5)request, rA, r

(7)B, mB
(8)mB

(10)mA

(11)PAB=(rA, r, mA, mB)

OV

(1)r (12)PAB, A, B

Tag TA

(3)rA is stored

in memory.

(9)mA=

MACxA[mB, rA]

(6)mB=

MACxB[rA, r]

Fig. 6. Existence-Proof

 Coexistence Proof Using Chain of Timestamps for Multiple RFID Tags 639

Since both TA and TB rely on values generated by the other, it is robust against
replay attacks. This scheme also uses a timeout mechanism to ensure the freshness of
proofs.

3 Problems of Existence-Proofs

While existence-proofs avoid replay attacks, they have other problems. First, when
tag TA interacts with multiple readers, a race condition can occur (Figure 7). Reader1
sends r1 to TA and Reader2 sends r2 to TA almost simultaneously. TA generates r1A and
r2A, stores them in the memory, and transmits them to Reader1 and Reader2. After
Reader1 and Reader2 individually interact with their other tags, i.e. T1B or T2B, they
send m1B and m2B to TA almost simultaneously. TA does not know which rA (r1A or r2A)
should be used with m1B or m2B to generate m1A or m2A, causing a race condition.

request, r1

A, r1A

m1B

Tag TA

request, r2

A, r2A

m2B

m1A=MACxA(m1B, r1A)

or

m2A=MACxA(m2B, r2A)

Which one, r1A or

r2A, should be used?

Reader1 Reader2

Fig. 7. Race condition for multiple readers

Tag TBiReader
request, r

A, rAi request, rAi, r

 Tag TA

Bi, mBi mBi

 mAi

How many rAi

should be

generated?

Which rAi

should be

used?

P1~n=(rAi, r, mAi, mBi)

mAi=

MACxAi[mBi, rAi]

mBi=

MACxBi[rAi, r]

Fig. 8. Race condition for multiple tags and determining the number of tags

Piramuthu designed existence-proofs to scale to handle multiple tags. Tag TA
generates rAi (i=1, … , n-1, where n is the number of tags) by partitioning r into n-1
parts and the reader generates mBi according to each rAi. In the end, P1~n is composed
of rA1, rA2, …, rA(n-1), r, mA1, mA2, …, mA(n-1) and mB1, mB2, …, mB(n-1). However,
because TA does not know how many rAi should be generated, it cannot determine the
number of tags (see Figure 8.) Even if the reader can give the number of TBi to TA, TA

mBi=
MACxBi[rAi, r

640 C.-C. Lin et al.

does not know which rAi is used with mBi to generate mAi, causing a different type of
race condition, which we call the race condition for multiple tags.

4 Two Proposed Coexistence-Proofs

Above, we distinguished between systems with online verifiers and off-line verifiers.
Below we give two proposed proof types, secTS-proof (with an online verifier) and
chaining-proof (with an off-line verifier.)

Figure 9 shows the secTS-proof. To prevent adversarial readers from generating
bogus timestamps, when the reader requests OV, OV generates a random number r
and uses its secret key x to encrypt TS and r to create a unique S. OV also checks the
freshness of proofs – if a proof is submitted after TS+Δ, it is rejected.

Figure 10 shows the chaining-proof. In this scheme, the reader can issue the
timestamp by itself. Because there is not an on-line verifier to monitor the reader’s
behavior, an attacker may issue a bogus timestamp. We use Haber-Stornetta
timestamps [6] to avoid attack; each new timestamp is formed by taking a hash and
using the hash value and MAC from previous timestamps. Because the reader does
not have the tag’s secret key, the timestamp can be generated until the last timestamp
has been obtained. To complete verification, the reader must report the last
timestamp, tag id, and timestamp MAC computed by the tag to an offline trusted third
party (timestamp database TSD). When TSD receives the timestamp, it marks the
timestamp information with a trusted time value.

Reader
(2)request, S

(4)A, mA
(5)request, mA, S

(7)B, mB

(8)PAB=(S, mB)

OV

(1)S = SKx[r, TS]

Tag TB

(9)PAB, mA

(3)mA=

MACxA[S]

Tag TA

(6)mB=

MACxB[mA, S]

Fig. 9. SecTS-Proof

In the chaining-proof, each tag shares its secret key xi with FV. Furthermore, the
reader reports timestamps msi=(Ti, TSi(h(msi-1)), mi) to TSD, where i indicates the
sequence that the reader scans the tags. ms0 is a random number r acquired from TSD.
Once TSD receives one msi, TSD stores and combines msi with a time (RTi) which
means when TSD receives this msi. The procedure of chaining-proof for multiple tags
is described as follows:

 Coexistence Proof Using Chain of Timestamps for Multiple RFID Tags 641

Reader

request,
TS2(h(ms1))

T2, m2

T1, m1

Tag T1

request,
TS3(h(ms2))

T3, m3
request,
TS4(h(ms3))

T4, m4

request,
TS1(r)

Tag T2

Tag T4

request,
TSn-1(h(msn-2))

Tn-1, mn-1

request,
TSn(h(msn-1))

Tn, mn

Tag Tn

…
…

…
…

…
… …

…

P1~n=(r,T1,T2,…,Tn,TS1(r),TS2(h(ms1)),…,TSn(h(msn-1)),m1,m2,…,mn)

m2=

MACx2[TS2(h(ms1))]

m4=

MACx4[TS4(h(ms3))]

Tag T3

TSD

msi

m1=

MACx1[TS1(r)]

m3=

MACx3[TS3(h(ms2))]

Tag Tn-1

r

mn-1=

MACxn-1[TSn-1(h(msn-2))]

mn=

MACxn[TSn(h(msn-1))]

Fig. 10. Chaining-Proof

1. TSD gives a random number r to the reader and combines r with a time, RT0.
2. The reader issues TS1 including a random number r to the tag T1.
3. T1 generates m1 by applying x1 to TS1, and sends its id T1 and m1 to the reader.
4. The reader reports ms1=(T1||TS1(r)||m1) to TSD, and TSD stores and combines it

with a time, i.e. RT1.
5. The reader sends TS2 including h(ms1) to the tag T2. h() is a one-way hash

function.
6. T2 use x2 on TS2 to generate m2, and submits its id T2 and m2 to the reader.
7. The reader reports ms2=(T2||TS2(h(ms1))||m2) to TSD, and TSD stores and

combines it with a time, i.e. RT2.
8. The remainder tags and the reader repeat until the reader gets all MACs of nearby

tags.
9. When verifying, FV receives the proof P1~n from the reader.

10. FV extracts msi from P1~n and sequentially acquires RTi from TSD according to
msi.

11. FV checks that the duration between RTi and RTi-1 is less than Δ, a predefined
time threshold.

12. After FV checks all time durations, if no any problem exists, FV verifies each
MAC mi by using the corresponding secret key xi and TSi(h(msi-1)).

13. Finally, FV verifies whether each TSi is located between RT0 and RTn-1. If so, TSi
are accepted. If no problem exists, the proof is.

642 C.-C. Lin et al.

5 Sketch of Security Proof

Space does not permit a full proof of security; so here we just provide a sketch of
security for the chaining-proof. (SecTS-proofs are substantially simpler to show
security for.) We assume an adversary can control one or more reader, but not a
verifier or TSD. We assume that our cryptographic functions observe standard
requirements (see [6] for a fuller discussion of security of the timestamp mechanism.).
Now the sketch of the proof is straightforward. Refer to Figure 10. If the tag T2 is not
in range of an adversarial reader the attacker cannot get m2 from T2. Without m2, the
adversary cannot compute ms2=(T2||TS2(h(ms1))||m2) and cannot submit ms2 to the on-
line timestamp database (TSD). Alternatively, if the adversary waits for the tag T2,
TSD will mark ms2 with the later time timestamp (RT2) – and if this exceeds timeout
range Δ, the key will be discarded. Replay attacks against T1, T3, T4, …, Tn are not
possible for parallel reasons.

Note that because the reader uses a random number r from TSD and this value is
combined with a trusted time in TSD, FV can discover if an adversarial tries to collect
information by interacting individually with each tag using bogus timestamps at some
later time.

Note further, if a proof P1234=(r, T1, T2, T3, T4, TS1(r), TS2(h(ms1)), TS3(h(ms2)),
TS4(h(ms3))) is already verified and is valid. If an adversarial reader attempts to
duplicate the same proof by using a valid r and insert existence evidence of T5 , i.e.
(T5, TS5(h(ms4)), in this proof, the attack will be detected, since each timestamp inside
the proof chains is reported to TSD.

6 Conclusion

We showed three RFID co-existence proof types (yoking-proofs, grouping-proofs,
and existence-proofs) suffer from a number of problems: replay attacks, race
conditions, and ambiguity in the number of tags. We proposed two novel proof types:
secTS-proofs and chaining-proofs. SecTS-proof is applied on the environment having
an online verifier while chaining-proof is used on the environment having an off-line
verifier. Our two schemes successfully avoid all known attacks, including replay
attacks.

References

1. Shepard, S.: RFID: Radio Frequency Identification. McGraw-Hill, New York (2005)
2. Juels, A.: Strengthening EPC tags against cloning. In: Proceedings of the 4th ACM

Workshop on Wireless Wecurity, pp. 67–76 (2005)
3. Juels, A.: Yoking-proofs for RFID tags. In: Proceedings of the Second IEEE Annual

Conference on Pervasive Computing and Communications Workshops. 2004, pp. 138–143
(2004)

 Coexistence Proof Using Chain of Timestamps for Multiple RFID Tags 643

4. Saito, J., Sakurai, K.: Grouping proof for RFID tags. In: Proceedings of the 19th IEEE
International Conference on Advanced Information Networking and Applications, pp. 621–
624 (2005)

5. Piramuthu, S.: On existence proofs for multiple RFID tags. In: Proceedings of the
ACS/IEEE International Conference on Pervasive Services, pp.317–320 (2006)

6. Haber, S., Stornetta, W.: How to time-stamp a digital document. Journal of Cryptology 3(2),
99–111 (1991)

