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Abstract. In this paper we show a polynomial-time algorithm to find
the best rational approximation of a given rational number within a given
interval. As a special case, we show how to find the best rational number
that after evaluating and rounding exactly matches the input number. In
both results, “best” means “having the smallest possible denominator”.

1 Motivation

Phillip the physicist is doing an elaborate experiment. He precisely notes each
numeric result along with the error estimate. Thus, his results may look as
follows: x = 1.4372 £+ 0.001

Larry the lazy physicist is doing similar experiments. However, he just takes
the exact value he gets, rounds it to several decimal places and writes down the
result. Example of Larry’s result: z ~ 2.3134

Cole the computer scientist is well aware of the Occam’s Razor principle (in
other words, understands what Kolmogorov complexity is). He knows that the
simplest answer is often the right one. In the physicists’ case, the exact value
might very well be a rational number. However, it is not obvious which rational
number this might be. Cole’s task will be to find the best, simplest one that
matches the measured results.

2 Previous results

The sequence of irreducible rational numbers from [0, 1] with denominator not
exceeding a given N is known under the name Farey sequence of order N. For
example Fs = {0/1,1/5,1/4,1/3,2/5,1/2,3/5,2/3,3/4,4/5,1/1}. Several prop-
erties of these sequences are known. The one we are most interested in is the
following one: Let p/q, p'/q’, and p”/q"” be three successive terms in a Farey
sequence. Then

p'/d =p+p")/(a+q") (1)

See [3] for Farey’s original conjecture of this property, and e.g. [6,1] for a
more involved discussion of the history and properties of these sequences.



Note that the sequence Fy can be created from Fjy_; by inserting those
fractions a/N where a and N are relatively prime. There are ¢(IN) such fractions,
where ¢(N) is Euler’s totient function.

The importance of the property (1) lies in the fact that it gives us more
insight into how the sequence is altered with increasing N. It tells us exactly
where the next elements will appear — or equivalently, what is the next element
that will appear between two currently neighboring ones.

When we denote this addition process graphically, we get the Stern-Brocot
tree, (see [9,2]) as depicted in Figure 2. The construction and some properties
of the tree can be found in [5].
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Fig.1. The Stern-Brocot tree. Full lines show the edges of the tree as commonly
defined. For select vertices dotted lines show their other “parent” vertex.

The book [5] also notes the following important fact:

Suppose that « € [0,1) is a given real number, and we want to find the best
rational approximation of o with denominator not exceeding a given N. Clearly,
all we have to do is to find «’s place in the sequence F, and consider the closest
two elements (or one, if « is an element of Fl). This place can be found by an
analogy of a “binary search” by descending the Stern-Brocot tree. Each visited
vertex of the tree clearly represents either the best lower, or the best upper
approximation so far. (Here, “so far” means “with denumerator smaller or equal
to the one in the current vertex”.)

For example, suppose that o = 0.39147 ..., then the first few vertices visited
will be: 1/1, 1/2,1/3,2/5, 3/8, 5/13, 7/18, ...

This gives us our first algorithm to find a good rational approximation to
a given value a: Walk down the Stern-Brocot tree until the difference between
«a and the value in the current vertex is close enough to be acceptable. At this



moment, you can be sure that no rational number with a smaller denominator
gives a better approximation.

Sadly, this algorithm is far from being polynomial in the input size. As a triv-
ial counterexample, consider av = 10~%7. The path to « is long and boring, as it
contains all fractions 1/x for z < 10%7. However, these difficulties can be over-
come, and our polynomial-time algorithm is derived from this naive algorithm
using two improvements.

Another related tool used to find good rational approximations are continued
fractions. A simple continued fraction is a fraction of the form:

1
a=ag+ (2)

a1+
as +
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To save space, continued fractions are commonly written as [ag, a1, az,as, .. .].
Every rational number has a finite simple continued fraction (or two of them,
depending on the exact definition of terminating). Every irrational number can
be represented as an infinite continued fraction.

By truncating the continued fraction of a real number « after a finite number
of steps we obtain a rational approximation of a. More exactly, the number ¢,
as defined in (3) is called the n-th convergent of «. It can be proved that any
convergent of « is a best rational approximation of « in the sense that the
convergent is nearer to « than any other fraction whose denominator is less
than that of the convergent. Moreover, more exact bounds on how good this
approximation is are known, but we won’t need them in this article.

1
Cn = ag + (3)
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a2 + ="
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Note that there may be cases when the desired rational approximation of «
is not a convergent of a. More exactly, there are fractions p/q such that:

— No fraction with denominator less than ¢ is closer to « than p/q.
— The fraction p/q is not a convergent of a.

As a simple example, suppose that o = 0.1. The fraction 1/7 satisfies the
conditions above.

Furthermore, note that 1/7 is the first fraction that after evaluating and
rounding to one decimal place gives «. In other words, 1/7 is the best rational
approximation of a = 0.1 with a given tolerance d = 0.05.



3 Problem formulation

The exact problem we are trying to solve can be formulated as follows: given
is a rational number « € (0,1) and a precision d. (Both numbers are given in
decimal notation, with N digits each.) The goal is to find positive integers p, g
such that p/q lies within the interval (o — d, @ + d), and ¢ is minimal.

Several notes on this definition:

We opted to limit the problem to a € (0, 1) instead of the more general task
a € R. However, note that the general problem is easily reduced to our definition:
For av = 0 the best answer is always 0/1. Any o € R\ [0,1) can be written as
la] + o, where o € [0,1). The best approximation of « can be computed by
finding the best approximation of o’ and adding the integer |«].

Also, by solving this task for the open interval (o« — d, « + d), we can easily
obtain solutions for half-closed intervals [ — d, a + d), (v — d, @ + d] and for the
closed interval [a — d, a + d] simply by checking whether the included bounds
correspond to a better approximation than the one found.

Theorem 1. The correct solution of the problem defined above is unique, and
ged(p,q) = 1.

Proof. Both parts will be proved by contradiction. First, suppose that there are
two best approximations A = p;/q and B = ps/q with the same denominator
g > 1 and p; < py < ¢q. Consider the fraction C = p;/(¢ — 1). Clearly we have
C > A. Moreover, we get:

p2(q —1) =p2q —p2 > p2qg —q = (p2 — 1)q > p1gq (4)

From (4) it follows that pa/q > p1/(¢ — 1), in other words B > C. Thus C is
also a valid approximation, and it has a smaller denominator.

The coprimeness of p and ¢ in the optimal solution is obvious. Formally,
suppose that ged(p,q) = g > 1. Then clearly p’ = p/g and ¢’ = ¢q/g is a valid
approximation with a smaller denominator. a

4 Mathematica and similar software

The software package Mathematica by Wolfram Research, Inc. claims to include
a function Rationalize that solves the problem as stated above. (And variations
thereof, as Mathematica can work both with exact and with approximate values.)
Citing from the documentation [11],

— Rationalize[x] takes Real numbers in x that are close to rationals, and
converts them to exact Rational numbers.

— Rationalize[x,dx] performs the conversion whenever the error made is
smaller in magnitude than dx

— Rationalizel[x,dx] yields the rational number with the smallest denomi-
nator that lies within dx of x



However, we discovered that this is not the case. We tried to contact the
authors of the software package, but to date we received no reply. In Table 1 we
demonstrate a set of inputs where Mathematica 5.2 fails to find the optimal solu-
tion. The exact command used was Rationalize[alpha‘‘200,d¢‘200], where
the €200 part tells the software to consider the values as arbitrary-precision
values with 200 digits of accuracy. (See [10] for more details.) The counterexam-
ples in the last two lines of Table 1 seem to scale. (I.e., we can get new inputs by
increasing the number of 1s in o and the number of 0s in d by the same amount.
Mathematica fails on most of these inputs.)

input correct Mathematica

a=01,d=0.05 1/7 1/9

a=0.12, d = 0.005 2/17 3/25

a = 0.15, d = 0.005 2/13 3/20
a=0.111112, d = 0.000000 5| 888890/8 000009 1388889/12500 000
a =0.111125, d = 0.000000 5 859/7730 889/8000

Table 1. Example inputs where Mathematica fails to find the optimal approximation.

Furthermore, if the first argument is an exact number, Mathematica leaves it
intact, which might be not optimal. E.g., Rationalize[30/100,4/100] returns
3/10 instead of the correct output 1/3.

We are not aware of any other software that claims to have this functionality.
For example, Matlab does include a function rat, but the documentation [8]
doesn’t guarantee optimality of approximation in our sense — on the contrary, it
directly claims that rat only approximates by computing a truncated continued
fraction expansion.

5 Outline of our algorithm

We will derive the polynomial algorithm in two steps. First, we will show a
compressed way of traversing the Stern-Brocot tree. We will show that this
approach is related to generating the approximations given by the continued
fraction. However, keeping the Stern-Brocot tree in mind will help us in the
second step, where we show how to compute the best approximation once we
reach a valid approximation using the compressed tree traversal.

Imagine that we start traversing the Stern-Brocot tree in the vertex 1/1. The
path downwards can be written as a sequence of ‘L’s and ‘R’s (going left and
right, respectively).

E.g., for @« = 0.112 we get the sequence LLLLLLLLLRLLLLLLLLLLLL.
This can be shortened to LY RL'2. As noted in [5], there is a direct correspon-
dence between these exponents and the continued fraction representation of c.



As an example, note that

1
0112=04+ ————— =04 —————— (5)
8+

1
1+ — 1+ ——
iEE +12+%

For a given path in the Stern-Brocot tree let (ag, a1, as,...) be the sequence
of exponents obtained using the path compression as described above. Our algo-
rithm will visit vertices corresponding to paths L% L R% L% R% [*2 and so
on. In each such vertex we will efficiently compute the next value a;. A detailed
description of this computation can be found in Section 6.

For the example above, a = 0.112, our algorithm will visit the vertices cor-
responding to L?, LR, and LYRL'2. These correspond to fractions 1/9, 2/17,
and 14/125 = .

For comparison note that the subsequent approximations of a = 0.112 by
truncating the continued fractions are: 0, 1/8, 1/9, (13/116 and)® 14/125 = «.

In Section 7 we will modify the compressed tree traversal algorithm slightly.
It can be shown that after the modification the set of examined vertices will be
a superset of the convergents, however we omit the proof, as it is not necessary
to prove the correctness of our algorithm.

Now, let’s assume that the exact input instance is = 0.112 and d = 0.0006.
For this input, the algorithm as defined above skips the optimal solution 9/80 =
0.1125.

In Section 7 we will show that the best approximation has to lie on the last
compressed branch of the visited path. More generally, it has to lie on the first
compressed branch such that its final vertex represents a valid approximation.
Also, we will show that this approximation can be computed efficiently.

An example implementation of the algorithm can be found in Section 8

6 Compressed tree traversal

We will describe traversal to the left, i.e., to a smaller fraction than the current
one. Traversal to the right works in the same way.

Let p,/qq and py /gy be the last two vertices visited, with p, /g, < a < py/qp-
At the beginning of the entire algorithm we are in this situation with p, = 0
and ¢, =pp = g = 1.

We are now in the vertex corresponding to py/gp, and we are going to make
several steps to the left. Using (1) we get that in our situation each step to
the left corresponds to changing the current fraction p/q into a new fraction

(p+pa)/(q+ qa)-

! The presence of this continuent depends on the chosen form of the continued fraction,
see equation (5).



Let x be the number of steps performed by the naive algorithm. How to
compute the value = without actually simulating the process?

Clearly, x is the smallest such value that the fraction we reach is smaller than
or equal to a. We get an inequality:

Py + TPa S o (6)

Qb + Tqq
This can be simplified to

Py — aqy < 2(Agq — Pa) (7)
We assumed that p,/q, < «, thus (ag, — p,) is positive, and we get
-«
g > 2T (8)
Aqq — Pa

As x has to be an integer, and we are interested in the smallest possible z, the
correct & can be computed as follows:

x= P”’_O‘qﬂ (9)

AGaq — Pa

7 Locating the best approximation

Theorem 2. Suppose that while going in one direction the naive algorithm
visited exactly the fractions po/qo, --., Dn/Gn. Consider the fractions po/qo,
Drn-1/Gn-1 and pn/qn. If neither of these three fractions represents a valid ap-
proxzimation (i.e., lies within d of «), then none of the p;/q; represent a valid
approximation.

Proof. WLOG let’s consider steps to the left. p,, /gy, is the first and only value out
of all p; /¢; such that p,, /g, < a. The fact that p, /g, is not a valid approximation
gives us that in fact p,/q, < o — d. Similarly, p,_1/¢n—1 > a + d, and clearly
all other p;/q; are even greater. a

This gives us a way how to check that our compressed tree traversal algo-
rithm doesn’t skip any valid approximations: In each step, after computing the
value z from (9), check whether making either z — 1 or x steps yields a valid
approximation. If not, Theorem 2 tells us that we may make x steps without
skipping a valid approximation. If we found a valid approximation, we need to
find the smallest one.

Again, for simplicity we will only show the case when the naive algorithm
makes steps to the left. In this case, the best approximation simply corresponds
to the smallest £ < x such that the fraction after k steps is a valid approximation
— or, equivalently, is less than a + d.

We can compute this £ in very much the same fashion as when we computed
x in the previous section. The exact formula for k for the going-to-left case:

o= (a+d)g
e s (0



8 Implementation

A proof-of-concept implementation of our algorithm in the open-source cal-
culator bc follows. All computations are done using arbitrary-precision inte-
gers. For this reason, the input is given in the variables alpha_num, d_num,
and denum. These variables represent the values « = alpha_num/denum and
d = d_num/denum. We assume that 0 < d_num < alpha_num < denum and that
d_num + alpha_num < denum. This exactly covers the cases when « € (0, 1) and
the answer is not 0/1 or 1/1.

Example: The input o = 0.33456 and d = 0.000005 can be entered as
alpha_num = 334560, d_num = 5, and denum = 1000000.

input variables: alpha_num, d_num, denum

#
#
# we seek the first fraction that falls into the interval
# (alpha-d, alpha+d) =

# = ( (alpha_num-d_num)/denum, (alpha_num+d_num)/denum )
# fraction comparison: compare (a/b) and (c/d)

define less(a,b,c,d) { return (axd < bxc); }

define less_or_equal(a,b,c,d) { return (axd <= b*c); }

# check whether a/b is a valid approximation

define matches(a,b) {
if (less_or_equal(a,b,alpha_num-d_num,denum)) return O;
if (less(a,b,alpha_num+d_num,denum)) return 1;
return O;

}

# set initial bounds for the search:
p.a=0;qga=1;pb=1;q9gb=1

define find_exact_solution_left(p_a,q_a,p_b,q_b) {
k_num = denum * p_b - (alpha_num + d_num) * q_b
k_denum = (alpha_num + d_num) * g_a - denum * p_a
k = (k_num / k_denum) + 1

print (p_b + k*p_a)," ",(q_b + kxg_a),"\n";

}

define find_exact_solution_right(p_a,q_a,p_b,q_b) {
k_num = - denum * p_b + (alpha_num - d_num) * g_b
k_denum = - (alpha_num - d_num) * g_a + denum * p_a
k = (k_num / k_denum) + 1
print (p_b + k*p_a)," ",(q_b + kxqg_a),"\n";

}

while (1) {

# compute the number of steps to the left
x_num = denum * p_b - alpha_num * g_b
x_denum = - denum * p_a + alpha_num * g_a



x = (x_num + x_denum - 1) / x_denum # = ceil(x_num / x_denum)

# check whether we have a valid approximation

aa = matches( p_b + x*p_a, q_b + x*q_a )

bb = matches( p_b + (x-1)*p_a, q_b + (x-1)*q_a )

if (aa || bb) { cc = find_exact_solution_left(p_a,q_a,p_b,q_b); break; }

# update the interval
new_p_a = p_b + (x-1)*p_a ; new_g_a = qg_b + (x-1)*q_a
new_p_b = p_b + x*p_a ; new_q_b = q_b + x*q_a

p_a = new_p_a ; g_a = new_g_a
p_b new_p_b ; gq_b new_q_b

# compute the number of steps to the right

x_num = alpha_num * q_b - denum * p_b

x_denum = - alpha_num * g_a + denum * p_a

x = (x_num + x_denum - 1) / x_denum # = ceil(x_num / x_denum)

# check whether we have a valid approximation

aa = matches( p_b + x*p_a, q_b + x*q_a )

bb = matches( p_b + (x-1)*p_a, q_b + (x-1)*q_a )

if (aa || bb) { cc = find_exact_solution_right(p_a,q_a,p_b,q_b); break; }

# update the interval
new_p_a = p_b + (x-1)*p_a ; new_g_a
new_p_b = p_b + x*p_a ; new_qg_b

gq_b + (x-1)*q_a
q_b + x*q_a

pP_a = new_p_a ; g_a = new_g_a
p_b = new_p_b ; gq_b = new_q_b

9 Time complexity

We claim that after each pass through the main while-loop of our implemen-
tation each of the values ¢, and g, at least doubles. To prove this, note the
following: After the steps to the left the new two denominators are greater than
or equal to ¢, and q, + qp. After the steps to the right the final two denominators
are greater than or equal to q, + ¢, and q, + 2¢p.

Now, suppose that the input numbers have at most N digits. The fraction
alpha_num/denum is clearly a valid approximation. Therefore the optimal solu-
tion has a denominator with at most N digits.

After the while-loop was executed K times, the denominators of the cur-
rently examined fractions are greater than or equal to 2%. Clearly after 4N loops
the denominators would exceed N digits in length. Thus the while-loop will be
executed O(N) times only.

Each execution of the while-loop involves a constant number of operations
with O(N) digits long integers. The required operations are addition, subtrac-



tion, multiplication and division. The first two operations can easily be done in
O(N). For multiplication and division our implementation uses the naive O(N?)
algorithm. Thus the running time of our solution is O(N?) — polynomial in the
input size.

Clearly the bottleneck are the algorithms for multiplication and division.
However, there are faster algorithms for both operations, for example the FFT-
based multiplication algorithm running in O(Nlog N), and its corresponding
division algorithm that uses multiplication and Newton’s method to estimate
the reciprocal of the denominator. For a discussion of these algorithms, see [7].
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