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Abstract. A spreadsheet, especially MS Excel, is probably one of the

most popular software applications for personal-computer users and gives

us convenient and user-friendly tools for drawing tables. Using spread-

sheets, we often wish to draw several vertical and horizontal black lines

on selective gridlines to enhance the readability of our spreadsheet. Such

situations we frequently encounter are formulated as the Border Drawing

Problem (BDP). Given a layout of black line segments, we study how

to draw it efficiently from an algorithmic view point, by using a set of

border styles and investigate its complexity. (i) We first define a formal

model based on MS Excel, under which the drawability and the efficiency

of border styles are discussed, and then (ii) show that unfortunately the

problem is NP-hard for the set of the Excel border styles and for any

reasonable subset of the styles. Moreover, in order to provide potentially

more efficient drawing, (iii) we propose a new compact set of border

styles and show a necessary and sufficient condition of its drawability.

1 Introduction

MS Excel is probably one of the most popular software applications for personal-

computer users. Among other nice features, it gives us a convenient and user-

friendly tool for drawing tables. Suppose, for example, we wish to draw a table

as shown in Figure 1. Other than characters, we have to draw several black

lines called borders. To do so, we click the “Border Style” button and then there

appears the drop-down menu as shown in Figure 2. This includes 12 different

styles, style (1) through style (12) in the order of top-left, top-second, through
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Fig. 1. Borders

Fig. 2. Excel border styles

bottom-right. To draw the top horizontal border of the table, for example, we

select the five horizontal cells just above this border and click style (2). Since

the table includes 21 line segments, it is easy to draw it in 21 steps by using

only style (2) and style (3). However, it turns out that, by using other styles,

the same table can be drawn in as few as four steps.

Thus, there can be a big difference in the efficiency between naive users and

highly trained users. It should be noted that the above described mechanism,

namely applying ready-made templates sequentially to do something, is an im-

portant paradigm in many different systems, including theoretical models. One

of the best known examples is the PQ-tree [2], which was introduced for checking

the consecutive-one property of a Boolean matrix and has also been studied re-

cently in the field of bioinformatics (e.g., [6, 10]). Also, in many data structures,

a clever use of basic operations plays a key role for the development of efficient



programs. However, such a rigorous research from an algorithmic point of view

has not been extended to more practical systems like MS Excel, Tgif [12] and

Xfig [14] (see the previous work paragraph).

Our Contributions In this paper, we concentrate ourselves on MS Excel and

investigate the complexity of the Border Drawing Problem (BDP), which is

basically the same as the problem of drawing a table described above. Our model

has been carefully designed, in order to maintain the basic nature of Excel and

at the same time to be used for more general discussion such as the completeness

of the style set. By using our model, we can discuss the efficiency of drawing.

Furthermore, we show that the efficiency of drawing heavily depends on the

used style set; we give several examples (border patterns) for which the drawing

requires many steps to draw in a style set but only few steps in another style set.

We discuss the relationship between the possible efficiency and the used styles.

As for the complexity of BDP, our results are somewhat negative. Namely,

the problem is NP-hard for the style set of Excel and is also NP-hard for any

reasonable subset of styles. We also make some observations on which styles are

important for several kinds of instances. Furthermore, we consider the possibility

of designing a style set which is better than the Excel set. More concretely, we

give an interesting set of styles which is natural, compact, and more efficient

than Excel by up to a factor of n for some instances, but unfortunately is not

complete. It is apparently important to give approximation algorithms and/or

heuristic algorithms, but in this paper, we only give a few basic observations.

Previous Work The most related problem is probably the rectilinear polygon

covering problem [11] (also known as the rectilinear picture compression one),

which is, given a Boolean matrix, to cover (or to draw) all the 1’s with as

few rectangles as possible. The problem has a number of important practical



applications, such as in data mining [4], and in the VLSI fabrication process [8].

Thus, it has received a considerable amount of attention and there are a lot

of its variants [1, 3, 6, 7]. In [13] (page 433), the time complexities of various

polygon covering problems are listed; almost all variations are NP-hard. The

difference is that our problem allows us to draw (and also to delete) lines by

using several different border styles, which provide numerous possibilities for

drawing a picture; this certainly makes the problem harder but more attractive.

2 Models

We first give a formal definition of the terminology (basically we follow that of

Excel). A spreadsheet (or worksheet) is delineated by n + 1 horizontal and n + 1

vertical gridlines of length n, which are illustrated by dotted lines in this paper.

Note that the gridlines are always viewable on the screen; however, any gridline

will not be actually drawn or printed on a spreadsheet. A single addressable unit

surrounded by two consecutive horizontal gridlines and two consecutive vertical

lines is called a cell. Let c(i, j) be a cell on the intersection of the ith row from

the top and the jth column from the left for 1 ≤ i, j ≤ n. For example, reading

left-to-right across the spreadsheet on the top row, we encounter c(1, 1) through

c(1, n). The intersection of the kth horizontal and the `th vertical gridlines forms

a vertex, (k, `), for 0 ≤ k, ` ≤ n. That is, there are (n+1)2 vertices, (0, 0) through

(n, n). Throughout the paper, we assume that n is not too small, for example

n ≥ 4, in order to avoid trivial cases.

A rectangle surrounded by two (not necessarily consecutive) horizontal grid-

lines and two vertical gridlines is called an extended cell or an e-cell in short

(see Figure 3). An e-cell is specified by an ordered pair of its upper-left cell and

lower-right one separated by a colon: For example, c(1, 2) : c(3, 3) defines the e-

cell, whose four corners are (0, 1), (0, 3), (3, 1), and (3, 3). Also, as a special case,

c(i, j) : c(i, j) denotes a single cell c(i, j). A portion of a (single) gridline is called
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Fig. 3. Extended cell (e-cell)

a line segment, which is denoted by its two endpoints, [(x, y), (x + u, y)], if it is

vertical and by [(x, y), (x, y + v)] if it is horizontal. Two horizontal line segments

that are adjacent, namely [(x, y1), (x, y2)] and [(x, y2), (x, y3)], are equivalent to

the single line segment [(x, y1), (x, y3)] (similarly for vertical line segments).

In many situations, we may wish to draw several vertical and horizontal black

lines on selective gridlines to enhance the readability of our spreadsheet, or to

enclose a selected range of cells with four black lines to highlight the data con-

tained in the range. The Border Drawing Problem (BDP) is formulated in order

to model situations that we frequently encounter in spreadsheet applications.

An instance of BDP, called a pattern, is given as a set of N black line segments,

each of which is called a border. Given a pattern as an input, we study how to

draw it by using a set of border styles defined as follows.

According to the Excel border styles shown in Figure 2, a border style (or

style) is defined as a mapping from {1, 2, 3, a, b, c} into {B,W, T}. It is convenient

to use an illustration as in Figure 4 to represent a style, where three horizontal

lines correspond to 1, 2 and 3 from top to bottom and three vertical lines to a,

b and c from left to right. B, W , and T stand for black, white and transparency,

respectively. In the figure, the left-side vertical line is given as a thick straight
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Fig. 4. Border style

line, which means that a is mapped to B in this style. Similarly, 1, 2, b and c are

thin dotted lines, which means that they are mapped to T . Finally, 3 is a thick

dotted line, meaning that it is mapped to W .

A pattern is drawn by a sequence of operations. A single operation is given

by a pair of an e-cell and a style. For example, see Figures 5-(1) and (2). Here

we selected the e-cell whose four corners are (2, 1), (2, 5), (5, 1) and (5, 5). Thus

this e-cell includes four horizontal line segments and five vertical ones, each of

which is represented by a symbol in {1, 2, 3, a, b, c}; in particular, 1 shows the

uppermost horizontal line segment, 3 the bottom horizontal one, 2 the remaining

(intermediate) horizontal ones, a the left most vertical one, b the intermediate

vertical ones and c the right most vertical one. Now suppose that our style is the

one illustrated in Figure 5-(2): Hence, the “colors” of the nine line segments of

this e-cell will change as shown in Figure 5-(3) if the original colors of them are

all white. Note that B (W , respectively,) requires that the corresponding line

segments become black (white, respectively,) regardless of their original colors

and T does not change the original colors. We assume that all the gridlines are

white at the beginning and that the drawing is completed if the colors of all the

borders have become black and all the others remain white.

MS Excel basically allows us to use nine different styles which are given in

Figure 6. Styles (1) through (9) are referred to by `, r, t, b, tb, `r, o, θ, φ,

respectively. A set of styles is said to be complete if we can draw any pattern by

using only styles in the set. It is easy to see that {`, r, t, b}, denoted by S4, is
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Fig. 6. Excel border styles: (1) `-style (2) r-style (3) t-style (4) b-style (5) tb-
style (6) `r-style (7) o-style (8) θ-style (9) φ-style

complete (and therefore any set including S4 is also complete). The proof of the

following result is straightforward and thus is omitted.

Theorem 1. S4, {`r, t, b, φ}, {`, r, tb, φ}, {`r, tb, φ} are only the minimal com-

plete style sets. ut

Thus, to draw every pattern, for example, we need only four styles {`, r, t, b}.
However, some other styles are important when considering the efficiency of the

drawing. For example, consider the set {`, r, t, b, φ}. This set, S4 plus the style

which makes all line segments of the e-cell white, is probably the most convenient
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for beginners. Note that φ is mainly used to correct mistakes, but it is also

important for the efficiency. We now show that there is a pattern for which S4

needs Ω(n2) steps, but O(n) steps are enough for S4∪{φ}. In particular, consider

the pattern illustrated in Figure 7-(1). For simplicity of exposition, we assume

that n is divided by 2. The pattern has n
2 ladder-shaped tables. Since there exist

n
2 × (n − 1) disjoint vertical segments, S4 obviously requires Ω(n2) steps. For

S4 ∪ {φ}, one can see that the following O(n) sequence of operations draws the

pattern: (i) Using the first n − 1 steps, we place n − 1 vertical line segments,

[(0, 1), (n, 1)] through [(0, n−1), (n, n−1)]. (ii) In the next n
2 steps, all borders of

n
2 − 1 e-cells, c(2, 1) : c(2, n), c(4, 1) : c(4, n), through c(n− 2, 1) : c(n− 2, n) are

deleted by the sequence of the φ styles. Here, each φ style can disconnect (n−1)

segments at a time. (iii) n + 1 horizontal line segments of length n are added.

(iv) Finally, the leftmost and the rightmost vertical line segments of length n

are placed.

As observed above, the deletion operation by using the φ-style gives us ef-

ficient drawing sequences. Also, the θ-style sometimes helps: See Figure 7-(2).



Table 1. The acceleration factors α(A,B)(n) of A (row) for B (column)

S4 S4 ∪ {φ} S4 ∪ {θ} S4 ∪ {φ, θ} {`r, tb, φ} {`r, tb, φ} ∪ {θ}
S4 – subset subset subset Ω(1) Ω(1)

S4 ∪ {φ} Ω(n) – Ω(n) subset Ω(1) Ω(1)

S4 ∪ {θ} Ω(n) Ω(n) – subset Ω(n) Ω(1)

S4 ∪ {φ, θ} Ω(n) Ω(n) Ω(n) – Ω(n) Ω(1)

{`r, tb, φ} Ω(n) Ω(1) Ω(n) Ω(1) – subset

{`r, tb, φ} ∪ {θ} Ω(n) Ω(n) Ω(n) Ω(1) Ω(n) –

Since there are (n − 3) × 2 + 4 vertical and (n − 3) × 2 + 4 horizontal bor-

ders, S4 ∪ {φ} obviously needs Ω(n) steps, but only three steps suffice for

S4∪{o, θ, φ} to draw these borders: (c(1, 1) : c(n, n), θ), (c(2, 2) : c(n−1, n−1), φ),

(c(2, 2) : c(n− 1, n− 1), o) in this order.

Theorem 2. (i) There is a pattern for which S4 requires Ω(n2) steps, but S4 ∪
{φ} takes O(n) steps. (ii) There is a pattern for which S4 ∪ {φ} requires Ω(n)

steps, but S4 ∪ {o, θ, φ} takes O(1) steps.

To quantify the efficiency of drawing a pattern P by using style sets A or

B, we introduce an acceleration factor of A for B to draw P , as α(A,B)(P ) =

stepB(P )/stepA(P ),where stepA(P ) and stepB(P ) are the minimum numbers of

steps necessary to draw P by using style sets A and B, respectively. For any

n ≥ 1, we define the acceleration factor of A for B as

α(A,B)(n) = max{α(A,B)(P ) | P ∈ Pn},

where Pn is the set of all possible patterns in the spreadsheet with size n. Table 1

summarizes the acceleration factors between representative styles that we found.

For some patterns, S4 ∪ {φ, θ} (and, hence, the full set of the Excel border

styles, denoted by SExcel) can be more efficient than S4 by up to a factor of n.

One might ask whether there is a pattern for which this factor is significantly

greater than n; the following result shows that the answer is negative.



Theorem 3. SExcel can be simulated by S4 with an overhead factor of O(n).

That is, α(SExcel,S4)(n) = Θ(n).

Proof. We show that SExcel \ S4 can be simulated by S4 in O(n) steps. (1) A

single use of the tb-style (resp. `r-style) in SExcel is achieved by using only a

pair of the t- and b-styles (resp. `- and r-styles) in S4. (2) The o-style in SExcel

is equal to a sequence of four styles in S4. (3) The θ-style can be simulated in

O(n) steps because it includes at most n horizontal and at most n vertical line

segments. (4) The remaining is the φ-style. Here we show that S4 ∪ {φ} can be

simulated by S4 in O(n) steps instead. After several uses of styles in S4, suppose

that the φ style is now used. Then, it divides one horizontal (resp. vertical) line

segment into at most two pieces, which means that a single operation of the

φ-style can be simulated by at most two operations of the t-style (resp. `-style)

per horizontal (resp. vertical) line segment. Since the φ-style cuts at most 2n

line segments at a time, it can be simulated by S4 in O(n) steps. ut

3 Complexity of Border Drawing Problem

The border drawing problem with a style set S, BDP(S), consists in finding a

drawing sequence of minimum size for a given pattern where every style is in

S. Restating this optimization problem as a decision problem, BDP(S, k), we

wish to determine whether a pattern has a drawing sequence with size k. As

mentioned in the previous section, this problem is obviously in P for the set S4.

In this section we show that the problem becomes intractable if we use the set

S5 = S4 ∪{φ}, the most interesting subset as mentioned in the previous section.

Theorem 4. BDP(S5, k) is NP-complete.

Proof. It is easy to show that BDP(S5, k) is in NP. Its NP-hardness is proved

by reducing the NP-complete rectilinear picture compression problem (RPC in

short) [11] to BDP(S5, k). The RPC problem asks whether given an m × m



matrix M of 0’s and 1’s and a positive integer q, there exists a collection of q or

fewer rectangles that cover precisely those entries in M that are 1’s. That is, we

have to show that for a given m ×m matrix M we can construct a pattern P

such that P can be drawn by a drawing sequence of length k or shorter if and

only if there exists a collection of q or fewer rectangles that cover precisely those

entries in M that are 1’s.

First of all, the m×m matrix M is modified to an (m + 2)× (m + 2) matrix

M ′ by padding one row of (m + 2) 0’s on the top row, one row of (m + 2)

0’s under the bottom row, one column of (m + 2) 0’s in the leftmost, and one

column of (m + 2) 0’s in the rightmost. Namely, the new matrix M ′ is obtained

by surrounding the original matrix M with 0’s. For example, if

M =




0 1 1 1
0 1 0 1
1 1 1 1
1 0 0 0


 , then M ′ =




0 0 0 0 0 0
0 0 1 1 1 0
0 0 1 0 1 0
0 1 1 1 1 0
0 1 0 0 0 0
0 0 0 0 0 0




.

We next prepare a two-dimensional grid of (m + 2)× 3 rows and (m + 2)× 3

columns, and place black borders on all gridlines except for its outline. Then,

if the entry at the ith row and jth column of M ′ is 1, then we obtain borders

by placing white lines (or deleting the black borders drawn above) on all the

outside and inside black borders of nine cells, c(3i− 2, 3j − 2), c(3i− 2, 3j − 1),

c(3i−2, 3j), c(3i−1, 3j−2), c(3i−1, 3j−1), c(3i−1, 3j), c(3i, 3j−2), c(3i, 3j−1),

c(3i, 3j) for every 1 ≤ i, j ≤ m + 2.

Finally, by surrounding the above grid with (3m + 7) × 2 horizontal and

(3m + 7) × 2 vertical black borders of length one, called scraps, we obtain our

reduced pattern P from the instance of RPC. Figure 8 illustrates P , that has

(3m + 10)× (3m + 10) cells.



Fig. 8. Pattern P

As shown below, the reduced pattern P has a feasible drawing sequence of

length k = q + 6m + 18 or shorter if and only if all 1’s in M are covered by a

collection of q or fewer rectangles.

(⇐) We can actually give a drawing sequence of q +6m+18 steps as follows:

(i) We place 3m + 7 horizontal black borders of length 3m + 10, i.e., all of them

go across from the left-end to the right-end, by using the first 3m + 7 steps.

(ii) Also, 3m + 7 vertical borders of length 3m + 10 are placed in the next

3m + 7 steps. (iii) By using the φ style, all black borders of the four e-cells

c(2, 2) : c(2, 3m + 9), c(3m + 9, 2) : c(3m + 9, 3m + 9), c(2, 2) : c(3m + 9, 2), and

c(3m+9, 2) : c(3m+9, 3m+9) are completely deleted. (iv) Finally, according to

the rectangle covering of RPC, we delete the black borders again by using the φ

style in at most q steps.

(⇒) Suppose that the pattern P can be drawn in at most k = q + 6m + 18

steps. Our first claim is that out of this k = q + 6m + 18 steps we need 6m + 18

steps only to draw the (3m + 7) × 4 scraps and the borders corresponding to



the 0’s in M ′ padded to the original matrix M in its surrounding area. (Since

we have so many scraps and at most two scraps are drawn in a single step, one

can see easily that the procedures (i) through (iii) as above is the only way to

draw this portion of the pattern.) Moreover, after drawing these scraps and the

padded ones in this number of steps, all the gridlines of the central part of the

figure must be black. (This is obvious if we have no choice other than using the

procedures (i) through (iii).)

Thus, we now have to complete the drawing with the remaining q steps.

Obviously we have to use the φ style for all those steps to make the “holes” in

the central part, but that can be simulated by the same number of rectangles

which cover all the 1’s of the matrix M . This completes the proof. ut

Let S′5 denote {`, r, t, b, θ}, namely φ is replaced by θ in S5. Then the proof

of NP-hardness for BDP(S′5, k) is easier than above, since we can simulate the

RPC problem almost directly. Also one can see easily that BDP is NP-hard if

its style set includes {`, r, t, b} and θ or φ (actually we do not need all the four

basic styles). Finally, by slightly modifying the proof of the previous theorem,

we can also show the following result.

Theorem 5. BDP(SExcel, k) is NP-complete.

Now it is natural to consider approximation algorithms or heuristic algo-

rithms for BDP. Among the several intractable cases, the first one to be con-

sidered is S′5, because an approximation algorithm for BDP(S′5) might be a

prototype for other cases. (The reason will be mentioned later.)

Consider a pattern as an input for BDP(S′5) illustrated in Figure 9-(1). A

cell surrounded by black borders is called a black-cell; otherwise gray-cell. For

example, c(1, 2) and c(2, 2) are black-cells, and c(1, 1) and c(1, 3) are gray-cells.

A sequence of consecutive vertically aligned black-cells bounded by gray-cells on

the top and the bottom constitutes a strip. For example, see Figure 9-(2); the
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Fig. 9. (1) black-cells, gray-cells, (2) strips, and (3) associated rectangles

pattern has 11 strips, c(3, 1), c(1, 2) : c(6, 2), c(2, 3) : c(3, 3), and so on. Two

strips c(i1, k1) : c(j1, k1) and c(i2, k2) : c(j2, k2) are said to be independent if

i1 6= i2 or j1 6= j2 holds. For example, six stripes c(1, 2) : c(6, 2), c(2, 3) : c(3, 3),

c(6, 3) : c(7, 3), c(3, 4), c(4, 5) : c(5, 5), c(2, 6) : c(6, 6) are mutually independent.

For each strip c(i, k) : c(j, k), we define its associated rectangle to be the unique

rectangle that covers this strip, and extends as far as possible to the left and to

the right, still containing only black-cells. As shown in Figure 9-(3), there are

six rectangles associated with the mutually independent six strips.

The basic idea of our approximation algorithm ALG(S′5) for BDP(S′5) is quite

simple: First we draw by the `- or r-style (resp., t- or b-style) every vertical (resp.,



horizontal) black line segment which separates some pair of consecutive horizon-

tally (resp. vertically) aligned gray-cells. For example, a vertical line segment

[(1, 8), (7, 8)] separates two gray-cells c(3, 8) and c(3, 9) and thus it is drawn by

the `-style. Similarly, we draw a horizontal line segment [(1, 0), (1, 7)] by the

t-style since it separates two gray-cells, say, c(1, 5) : c(2, 5). Notice that these

draws are indispensable, because other styles cannot draw the line segments.

Then only black-cells are left. To draw the black-cells, it is better to use the

θ-style. Since drawing the black-cells by the θ-style is essentially the same as

the RPC problem, we run a procedure similar to the one introduced in [9] as a

subroutine; the approximation factor of this procedure is O(
√

log n). Here is a

description of ALG(S′5):

Algorithm ALG(S′5)

Step 1. Draw every vertical (resp. horizontal) black line segment which

separates some pair of consecutive horizontally (resp. vertically) aligned

gray cells by using `- or r-style (resp. t- or b-style) in column-first

order (resp. row-first order).

Step 2. Find rectangles associated with mutually independent strips,

and draw each of the associated rectangles by using the θ-style.

Theorem 6. Algorithm ALG(S′5) achieves an approximation ratio of O(
√

log n)

for BDP(S′5). ut

If we can use φ as well, then what we should do first is to look for “holes” for

which using φ helps. Then we once “fill” those holes and apply the above greedy

algorithm. After that those holes are dug again by using φ. Unfortunately we do

not know the approximation factor of this algorithm, whose analysis appears to

be difficult.
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Fig. 10. Black-White styles: (1) `bw-style (2) rbw-style (3) tbw-style (4) bbw-style

4 Border Styles with Black and White

Recall that all Excel styles, except for the φ-style, have no white segments and

then do not turn black borders into white ones. Only the φ-style deletes black

borders we have drawn previously or turns black lines back into white ones. As

shown in the previous section, this deletion capability gives us efficient drawing

sequences. In this section we consider styles which include both Black and White

at the same time, as illustrated in Figure 10. In the case of the `bw-style in

Figure 10-(1), all three horizontal line segments 1, 2, and 3 (from top to bottom)

are mapped to W , and three vertical ones a, b, and c are mapped to B, W , and W ,

respectively. The rbw-style maps 1, 2, 3, a, b, and c into W , W , W , W , W , and B,

respectively. The tbw and bbw-styles are similar. Let Sbw
4 be {`bw, rbw, tbw, bbw}.

In this section, we assume that the given pattern does not include the grid-

lines of the boundary of spreadsheets. The reason is as follows: For example,

there are no cells above the top horizontal gridline of the sheet itself. There-

fore, any border on this gridline cannot be drawn by the bbw style. However, all

other horizontal borders can be drawn by that style. One can see that the above

assumption excludes such a trivial incompleteness of the style set.

As shown in a moment, Sbw
4 is sometimes very efficient, which indicates some

possibilities of improving the style set of Excel.

Proposition 1. There is a pattern for which S4 needs Ω(n2) steps, but Sbw
4

takes O(n) steps.



Fig. 11. Proof of Proposition 1

Proof. Figure 11 illustrates one of such patterns. S4 needs Ω(n2) since there are

Ω(n2) vertical segments. Here is a rough description of the drawing sequence for

Sbw
4 : We first place all vertical n-length borders in O(n) steps. Then, in order to

cut them, we place around 2n
3 horizontal borders by using the tbw and the bbw

styles in O(n) steps. Finally, two outer vertical borders are added. ut

For several patterns, Sbw
4 is more efficient than S4 but, unfortunately, there is

a large class of patterns for which Sbw
4 has no feasible drawing sequences (other

than the trivial ones mentioned at the beginning of this section). Here are some

definitions: As shown before, in the case of Sbw
4 , the order of the drawing sequence

is very critical and strongly affected by the pattern’s layout. In order to discuss

the drawing-order of borders, we associate a pattern with an undirected graph,

defined below. In the following, we apply each border style in Sbw
4 only on unit

cell, which simplifies the explanation. Actually, this restriction may affect the

number of drawing steps, but not the (in)completeness of Sbw
4 .

For a given pattern, we say (distinct) unit cells are neighbors to each other

if they share a border. For example, cell c(x, y) and c(x + 1, y) are neighbors if



the former has a bottom border, or equivalently the latter a top one. Given a

pattern P of borders {b1, b2, · · · , bm}, the neighborhood graph G(P ) is a graph

with node set V (P ) and edge set E(P ), where

V (P ) = {ui,j | 1 ≤ i, j ≤ n} and,

E(P ) = {(ui,j , uk,`) | c(i, j) and c(k, `) are neighbors}.

Note that each node ui,j corresponds to unit cell c(i, j).

Theorem 7. Pattern P has no feasible drawing sequences on Sbw
4 if and only

if its neighborhood graph G(P ) contains a cycle.

Proof. (⇒) Suppose that G(P ) does not have a cycle, i.e., G(P ) is a tree. Take

an arbitrary node as root r, then find paths from r to its leaves. According to the

paths, we add direction information (u1 → u2) to each edge e = (u1, u2), which

means that u1 is a tail node and u2 a head one. If, for example, the edge between

u1,2 and u2,2 has direction (u1,2 → u2,2), then the operation (c(2, 2) : c(2, 2), tbw)

is executed. Due to the orientation, the in-degree of each node is at most 1,

which implies that a border of each node (or cell) once drawn will not be erased.

Therefore, according to the tree-orientation, we can find at least one drawing

sequence for P .

(⇐) We just give a sketch of the proof. We show, by contradiction, that if

G(P ) contains a cycle, then P cannot be drawn by Sbw
4 . Suppose that P can

be drawn by Sbw
4 . This implies that Sbw

4 has a finite drawing sequence of styles

for a pattern corresponding to a simple cycle C, because drawing sequences that

are noncontiguous for the cycle always leave some borders undrawn. Note that

if we apply one of the bw-type border styles, then one border is added but at the

same time three other ones are deleted. Hence, the node corresponding to the

cell where the last style of the drawing sequence is placed must be a leaf, which

is a contradiction. ut



From the above theorem, every subset of Sbw
4 is also not complete. Since we

have a simple characterization of the drawability and the incompleteness means

the number of patterns which can be drawn is small, one might think that, for

example, BDP(Sbw
4 , k) becomes tractable. However, it still remainsNP-complete

even for BDP({rbw, tbw}, k).

Theorem 8. BDP(S, k) is NP-complete for any of the following S: {rbw, tbw},
{rbw, bbw}, {`bw, tbw}, {`bw, bbw}, Sbw

4 \{`bw}, Sbw
4 \{rbw}, Sbw

4 \{tbw}, Sbw
4 \{bbw}

and Sbw
4 . ut

5 Conclusion and Discussion

In this paper, we consider the problem of drawing border patterns by a typical

spreadsheet software application, e.g., Excel. We give a formal model for the

problem, under which we can discuss the drawability, the completeness, the effi-

ciency of drawing, the complexity and algorithms. The hardness of our problem

is related to the rectilinear picture compression problem (RPC), but it appears

in two ways: The difficulty of finding an optimal drawing black patterns on a

white canvas and that of finding an optimal drawing white patterns on a black

canvas. Namely, our problem has a multiply layered structure of RPCs in a sense.

To consider this interesting feature of the problem, in Section 4, we introduce

new styles that contain both black and white segments (called Black-White

styles), and discuss the efficiency and the complexity for style sets containing

Black-White styles. By using Black-White styles, we can draw black patterns on

a white canvas and white patterns on a black canvas simultaneously; the multiple

layers of RPCs can be solved at the same time.

To explore the feature of the problem, we can consider a drawing function.

In the current model, if two (or more) styles are put on a cell, the result is deter-

mined by the overwriting manner. (Putting transparent T means that nothing



is put.) That is, if we represent the result by function f , we have f(W,B) = B,

f(B,W ) = W and f(B, T ) = f(B,B) = B and f(W,T ) = f(W,W ) = W . It

might be interesting to extend the rule to a more general logical operation, e.g.,

AND, OR and XOR. We have a few results about such style sets. For exam-

ple, concerning a style set containing only XOR operation, transitivity of two

patterns can be determined in linear time. Considering more general operations

may be an interesting issue.
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