Skip to main content

Friction Model by Using Fuzzy Differential Equations

  • Conference paper
Foundations of Fuzzy Logic and Soft Computing (IFSA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4529))

Included in the following conference series:

Abstract

In the present paper we propose a novel approach for modeling friction, by using fuzzy differential equations under the strongly generalized differentiability concept. The key point is a continuous fuzzyfication of the signum function. The lack of the uniqueness for the solutions of a fuzzy differential equation allows us to choose the solution which better reflects the behavior of the modeled real-world system, so it allows us to incorporate expert’s knowledge in our model. Numerical solutions of the fuzzy differential equations modeling dry friction are proposed. In order to show how the expert’s knowledge can be incorporated in the system, we study the dry friction equation with different additional assumptions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aubin, J.P., Cellina, A.: Differential Inclusions. Springer, Heidelberg (1984)

    MATH  Google Scholar 

  2. Bede, B., Gnana Bhashkar, T.: Perspectives of fuzzy initial value problems. Submitted

    Google Scholar 

  3. Bede, B., Gal, S.G.: Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations. Fuzzy Sets and Systems 151, 581–599 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bede, B., Rudas, I.J., Bencsik, A.: First order linear differential equations under generalized differentiability. Information Sciences, to appear

    Google Scholar 

  5. Bröcker, M., Lemmen, M.: Nonlinear Control Methods for Disturbance Rejection on a Hydraulically Driven Flexible Robot. In: the Proc. of the Second International Workshop On Robot Motion And Control, RoMoCo’01, Bukowy Dworek, Poland, October 18-20, 2001, pp. 213–217 (2001)

    Google Scholar 

  6. Chalco-Cano, Y., Roman-Flores, H.: On new solutions of fuzzy differential equations. Chaos, Solitons and Fractals, to appear

    Google Scholar 

  7. Diamond, P.: Stability and periodicity in fuzzy differential equations. IEEE Transactions on Fuzzy Systems 8, 583–590 (2000)

    Article  MathSciNet  Google Scholar 

  8. Deimling, K.: Multivalued Differential Equations. W. De Gruyter, Berlin (1992)

    MATH  Google Scholar 

  9. Gal, S.G.: Approximation Theory in Fuzzy Setting. In: Anastassiou, G.A. (ed.) Handbook of Analytic-Computational Methods in Applied Mathematics, pp. 617–666. CRC press, Boca Raton (2000)

    Google Scholar 

  10. Feckan, M.: Chaos in ordinary differential equations with perturbations: Applications to dry friction probelms. Nonlinear Analysis, Theory, Methods & Applications 30, 1355–1364 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  11. Feeny, B., Moon, F.C.: Chaos in a forced dry friction oscillator: experiments and numerical modeling. Journal of Sound and Vibration 170, 303–323 (1994)

    Article  MATH  Google Scholar 

  12. Feeny, B., Guran, A., Hinrichs, N., Popp, K.: A historical review on dry friction and stick–slip phenomena. ASME Applied Mechanics Reviews 51, 321–341 (1998)

    Article  Google Scholar 

  13. Gnana Bhaskar, T., Lakshmikantham, V., Devi, V.: Revisiting fuzzy differential equations. Nonlinear Analysis 58, 351–358 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kaleva, O.: A note on fuzzy differential equations. Nonlinear Analysis 64, 895–900 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kunze, M.: Non-Smooth Dynamical Systems. Springer, Heidelberg (2000)

    MATH  Google Scholar 

  16. Lampaert, V., Al-Bender, F., Swevers, J.: Experimental characterization of dry friction at low velocities on a developed tribometer setup for macroscopic measurements. Tribology Letters 16, 95–105 (2004)

    Article  Google Scholar 

  17. Lim, Y.F., Chen, K.: Dynamics of dry friction: A numerical investigation. Physical Review E 58, 5637–5642 (1998)

    Article  Google Scholar 

  18. Puri, M., Ralescu, D.: Differentials of fuzzy functions. J. Math. Anal. Appl. 91, 552–558 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  19. Sextro, W.: Dynamical contact problems with friction, Models, Methods, Experiments and Applications. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  20. Tar, J.K., Rudas, I.J., Bitó, J.F.: Group Theoretical Approach in Using Canonical Transformations and Symplectic Geometry in the Control of Approximately Modeled Mechanical Systems Interacting with Unmodelled Environment. Robotica 15, 163–179 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Patricia Melin Oscar Castillo Luis T. Aguilar Janusz Kacprzyk Witold Pedrycz

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Bede, B., Rudas, I.J., Fodor, J. (2007). Friction Model by Using Fuzzy Differential Equations. In: Melin, P., Castillo, O., Aguilar, L.T., Kacprzyk, J., Pedrycz, W. (eds) Foundations of Fuzzy Logic and Soft Computing. IFSA 2007. Lecture Notes in Computer Science(), vol 4529. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72950-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72950-1_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72917-4

  • Online ISBN: 978-3-540-72950-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics