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Abstract. Typically the response of a multilayered perceptron (MLP)
network on points which are far away from the boundary of its training
data is not very reliable. When test data points are far away from the
boundary of its training data, the network should not make any decision
on these points. We propose a training scheme for MLPs which tries
to achieve this. Our methodology trains a composite network consisting
of two subnetworks : a mapping network and a vigilance network. The
mapping network learns the usual input-output relation present in the
data and the vigilance network learns a decision boundary and decides
on which points the mapping network should respond. Though here we
propose the methodology for multilayered perceptrons, the philosophy is
quite general and can be used with other learning machines also.

1 Introduction

Multilayered perceptrons (MLP) are widely used to realize nonlinear mappings
between input-output training data. It is known that MLPs can generalize on
unknown data with reasonable accuracy. In [3] we demonstrated that the gener-
alization capability of MLPs is generally over estimated and they can generalize
well only on test points which are in the vicinity of the training data. The output
of an MLP for points which lie far away from the boundary of its training sample
is never reliable. This fact though known is seldom considered while training or
using neural networks. An user who gets a trained neural network may (usually
will) not have the training data with him (her), thus it is not possible for the
user to know about the domain in which the network can perform meaningful
generalizations. Some experiments reported in [3] clearly demonstrate that for
classification problems, a trained MLP can produce very high response for a test
point which is far away from the boundary of the training data. And in most
cases such responses are useless. Ideally, a trained network must not respond to
test points which lie far away from its training sample. We call this kind of gen-
eralization as “strict generalization”. In [3] we proposed a scheme which does so
only for classification problems. Also the method in [3] depends on a technique



to generate additional training points to detect the boundary of the training
data. This method of generating new points becomes computationally expensive
for reasonably high dimensional data. In this paper we address the same prob-
lem but with a different methodology which do not have the limitations of the
method in [3]. This method is well suited for function approximation problems
also and it does not require generation of additional points as in [3].

Our method involves building a composite network consisting of two subnet-
works, each for a different task: (a) to learn the input-output mapping present
in the training set, and (b) to learn the boundary of the training set. The
composite network not only performs the main task of function approxima-
tion/classification, but also it learns a decision boundary as in classification
problems. We call the first network which learns the input-output mapping as
the mapping network and the other network which learns the decision bound-
ary as the vigilance network. We propose a novel method to train the vigilance
network which does not require generation of additional points as in [3], but
it involves decomposing the training sample into small subsets, and making the
vigilance net learn the boundary of such sets. The vigilance network is then com-
bined with a mapping network to realize strict generalization for both function
approximation (FA) and classification tasks.
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Fig. 1. (a)Plot of 3-Peaks (b)The points in 3-Peaks used for training

2 The Motivation

Let us consider the function:

y = 0.2e−( x−50
10 )2

+ 0.4e−( x−25
5 )2

+ 0.4e−( x−75
5 )2

. (1)

We call this function as 3-Peaks. Fig. 1(a) depicts the function 3-Peaks. We
sample a few points from the function in eq. (1) to train an MLP. Intentionally
we sample points in such a manner that there remains a gap in the input space.
Figure 1(b) shows the sampled points, we call this set of points as PT1. The MLP
trained with these sampled points are tested on a data set which contains 1000
equispaced points generated in [0,100]. Figure 2 shows the generalization done



on the test data by four MLPs trained with different initializations. From Fig.
1(b) it is clear that the interval [40, 60] is not represented by any training data,
so the MLP is not expected to perform well over this interval. Figure 2 shows
some queer generalizations. Specially the generalization shown in Fig. 2(b).

When training data are collected from a live process then there may remain
areas in the input space which are not well represented by the training data or
are not at all represented by the training data. For test points which lie in those
areas, ideally, an MLP should not respond at all. But an MLP, as shown in Fig.
2, will always produce some output. We device a mechanism here which can take
care of this problem.
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Fig. 2. Generalization an ordinary MLP trained with PT1 for 4 different initializations

3 Training Scheme

Let T = {(xxx1, yyy1), (xxx2, yyy2), ..., (xxxN , yyyN )} be our training set with N training
samples where xxxi ∈ <s be an input vector and yyyi ∈ <t be the corresponding
output vector. Let X = {xxx1,xxx2, ...,xxxN} be the set of input vectors in the training
set T and Y = {yyy1, yyy2, ..., yyyN} be the set of output vectors in T . The task here
is to learn the unknown input-output mapping that exists between xxx and yyy. An
ordinary MLP trained with conventional backpropagation or any other method
can accomplish the task with a reasonable accuracy for almost all kinds of data.
But we have an additional objective. We want to train an MLP in such a manner
that it does not respond to test points which are away from the “boundary” of
X. This can be realized if we can make the MLP learn the boundary of X along
with the input-output mapping between xxx and yyy. Thus, we want our network to



learn a decision boundary as in case of classification problems. To realize this we
use two networks. The first one is an usual MLP which learns the input-output
mapping, we call this as the mapping network. The second network is called the
vigilance net which decides whether the MLP should respond to a point or not.
The final output for a test point is obtained by suitably combining the outputs
of both networks.

3.1 Training the Vigilance Network with Receptive Fields Around
Data Points

We call the vigilance network as the receptive field vigilance network (RVN),
because it uses Gaussian receptive fields around clusters of data points.

We can assume that the input vectors of the training set X can be divided
into a number of hyperspherical clusters Xi, i = 1, 2, ..., n, such that ∪n

i=1Xi = X
and Xi∩Xj = φ, ∀i, j; i 6= j. Such a decomposition into hyperspherical clusters
can be done using any conventional clustering algorithm like the k-means [4], or
the Fuzzy c-means [2]. The vigilance net is trained in such a manner that it can
detect whether a test point falls in any of these clusters or not.

This RVN is a three layered network. It has s nodes in the input layer (if
X ⊂ <s), k nodes in the hidden layer and one node in the output layer. Each
node in the hidden layer has two parameters µµµi ∈ <s and σi ∈ < associated with
it. For a input vector xxx, the ith hidden node computes

zi = exp

(
−||xxx−µµµi||2

σ2
i

)
, ∀i = 1, 2, ..., k. (2)

The single output node in the third layer aggregates the outputs of the k hidden
nodes to give a single response. Let b be the output of the third layer node :

b = max
i=1,2,...,k

{zi}. (3)

Each node in the hidden layer represents a cluster in the data set X. The
parameters µµµi and σi are decided using the FCM algorithm. If we decide k as
the number of hidden nodes then, we find out k clusters from X and denote
µµµi, i = 1, 2, ..., k as the ith cluster center. FCM produces a set of centroids
VVV = {vvv1, vvv2, ..., vvvk}, and a partition matrix U = [uij ]k×N , where uij denotes the
degree to which xxxj belongs to the ith cluster and vvvi is the centroid of the ith

cluster. Here we take µµµi = vvvi. The fuzzy partition matrix obtained from FCM
can be hardened using the maximum membership rule [2]. In other words, we can
consider that a point xxxi ∈ X belongs to cluster c, 1 ≤ c ≤ k, if uci = maxj{uji}.

So, the clustering output can be used to partition X into k disjoint sets
X1, X2, ..., Xk. The σi is chosen as :

σi = max
xxxj∈Xi

{||xxxj −µµµi||},∀i = 1, 2, ..., k. (4)

For a test point xxx ∈ <s each hidden node in the vigilance network gives
an output related to the distance of xxx from the cluster center that the node



represents. Thus, if a test point lies in or around the boundary of the cluster
that a hidden node represents, then the output of that hidden node will be high.
Therefore, for a test point xxx ∈ <s, if b takes a high value then we conclude
that xxx lies within or around some cluster of X; otherwise, it lies far from all k
clusters of X. So, b can be used as an indicator of whether xxx lies in or around
the boundary of X.

The structure of the RVN is similar to a Radial Basis Function (RBF) net-
work but its function is quite different from that of an RBF.

3.2 The Composite Network

N Nv

Vigilance Network

BIC

Mapping Network

m

Fig. 3. The composite network N = (Nm,Nv)

Another network is trained along with the vigilance network. This second
network is an ordinary MLP, which is trained with the points in X along with its
associated output, i.e., with T . This network is called the mapping network (maps
input to output). The vigilance network and the mapping network are combined
together to a composite network which makes the final decision. Denoting the
trained vigilance network as Nv and the mapping network as Nm, the final
trained network N is represented by the tuple N = (Nm,Nv). If the output
dimension of the data is t, then the composite network will have t + 1 output
nodes. The first t output nodes correspond to the output of the mapping network
(Nm) and the (t + 1)th node corresponds to the output of the vigilance network
(Nv). We call the output ofNv as the boundary indicator component (BIC)(please
refer to Fig. 3). A test point is fed to the composite network, and if the BIC gives
a value greater than a threshold th, then the output of the test point corresponds
to the output of the remaining t nodes. If the BIC bears a value lower than th,
the network infers that the point is away from the boundary of the training



set and hence the net may not produce a correct output (decision) for it. The
threshold th is generally user defined. In our simulations we use th = e−1. The
reason for such a choice is that in case of our vigilance network, σi is the largest
distance of a training point that belongs to the cluster associated with the ith

receptive field. So, it is reasonable to assume that the receptive field of a node
is extended up to a distance equal to its σ or a little beyond that. Based on this
idea we choose th equal to the response of a node at a distance σ, which is equal
to e−1.

4 Simulation Results

We use two function approximation and two classification data sets for demon-
strating the effectiveness of our network. The function approximation data sets
are 3-Peaks and Boston-Housing. For the data set 3-Peaks we can show the gen-
eralization properties pictorially and conclude that our network does a good job.
But, for the real life data set, Boston-Housing, such a pictorial representation
is not possible as this data set is in high dimension. For this data set we define
some measures which help us to evaluate the performance of our network. Let
T = {(xxxi, yyyi) : i = 1, 2, ..., N} be the training set and X = {xxxi : i = 1, 2, ..., N}
be the input vectors of the training set T . Let XTe = {xxx′i : i = 1, 2, .., M} be the
input vectors of the test set. A trained composite network N = (Nm,Nv), will
either respond to a test point xxx′i or will not respond to it. Thus, the set XTe can
be partitioned into two disjoint sets XA

Te and XR
Te. XA

Te contains the points for
which the composite network produces a response and XR

Te includes the points
for which the composite network does not produce any response. Now, for each
test point x′i we define a function ∆ as:

∆(xxx′i) = min
xxxj∈X

||xxx′i − xxxj ||. (5)

Hence, ∆(xxx′i) represents the distance of xxx′i from its nearest neighbor in X.
Let µ∆A and µ∆R respectively denote the mean ∆ for points which are accepted
by the vigilance network (i.e., points in XA

Te) and the points which are rejected
by the vigilance network (i.e., points in XR

Te) respectively. Thus,

µ∆A =
1

|XA
Te|

∑

xxx′
i
∈XA

T e

∆(xxx′i), (6)

and
µ∆R =

1
|XR

Te|
∑

xxx′
i
∈XR

T e

∆(xxx′i). (7)

For a test set XTe if µ∆A < µ∆R then it is reasonable to assume that the
network serves the intended purpose. Because µ∆A < µ∆R implies that the
points for which the composite network responds are more close to the training
data than those for which the network does not respond.



3-Peaks: The 3-Peaks data set has been discussed in Section 2. We sample 80
points uniformly from the interval [0,100]-[40,60] and call them PT1. We test the
generalization capabilities of trained networks on a test set of 1000 equispaced
points generated in the interval [0,100].

As PT1 does not contain any point in the interval [40,60] (refer Fig. 1(b)),
an ordinary MLP is not expected to produce meaningful response for test points
which lie in the interval [40,60]. In Fig. 2 we have already shown that this is
indeed the case.

A composite network NP1 = (NPm1, NPv1) trained with PT1 produces bet-
ter generalizations. Figure 4 shows the generalizations of 4 different composite
networks. Figure 4 reveals that the composite networks do not respond to test
points which fall in the area not represented in the training set. Note, the re-
sponse is plotted only when BIC ≥ 0.368.
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Fig. 4. Generalizations produced by NP1 = (NPm1, NPv1), (using RVN) when trained
with PT1 for various initializations(the large dots denotes the training points).

Boston-Housing : Boston-Housing data set [1] contains 506 samples in 13
dimension and it contains only one output. We use a normalized version of
this data set. We divide each input feature and the output by the respective
maximum value so that they lie between 0 and 1. For Boston-Housing data,
we create a random training-test partition so that the the training and test set
contains equal number of data points. We train 10 different composite networks
with different initializations. For each run we use a mapping network with 10
hidden nodes and a RVN with 10 receptive fields. Table 1 shows the results on
the test sets for this data set. In Table 1, column 2 shows the number of points



for which the composite network makes a decision, while column 3 gives the
number of cases for which the network refuses to produce an output. Comparing
column 4 with column 5 we see that for all cases µ∆A is significantly lower
than µ∆R, indicating that the points for which the network makes predictions
are in the vicinity of the training points. Columns 6 and 7 show the mean test
error (the absolute deviation of the network response from the true output) for
accepted and the rejected points. Comparing columns 6 and 7, we find that in
all cases the network rejects those points which produces more error. Note that,
the composite network does not respond to the rejected points (the points in
XR

Te), but in column 7 of Table 1 we report the deviations of the outputs of the
mapping network for the rejected points ignoring the values of the BIC produced
by the vigilance network. It is not expected that a trained network will produce
good results for test points which are away from the training set, and comparing
columns 6 and 7 we see that this is true for all the runs with Boston-Housing
data.

Table 1. Run statistics for Boston-Housing on 50% Training-Test partition

Run No. |XA
Te| |XR

Te| µ∆A µ∆R Mean Test error Mean test error
for accepted points for rejected points

1 245 8 0.155 0.324 0.090 0.149

2 246 7 0.152 0.369 0.092 0.212

3 249 4 0.158 0.395 0.068 0.386

4 245 8 0.153 0.439 0.078 0.187

5 251 2 0.152 0.280 0.068 0.304

6 246 7 0.157 0.330 0.115 0.140

7 243 10 0.160 0.317 0.098 0.397

8 246 7 0.158 0.454 0.445 0.602

9 247 6 0.161 0.425 0.438 0.585

10 248 5 0.158 0.246 0.153 0.219

To validate that in average µ∆A < µ∆R, we perform another experiment. In
this experiment, we use all 506 points as training examples and test the networks
with 1000 additional points generated in the 10% inflated hyperbox containing
the training data. Here too we train 10 different networks and test with differ-
ent test sets each containing 1000 points. Table 2 shows the results for the 10
networks. From columns 2 and 3 of Table 2 we see that the number of points
rejected is much more than the number of points accepted by the composite
network. This is due to the fact that the input vectors are 13 dimensional, and
we have only 506 training points. So, the training points occupy only a small
part of the total hyperbox bounded by the data. And most of the artificially
generated points fall outside the boundary of the training sample. The scenario
was different in case of Table 1 as there it is expected that the test points follow
the same probability distribution as that of the training points, hence in Table



Table 2. Run statistics for Boston-Housing on artificially generated test data

Run No. |XA
Te| |XR

Te| µ∆A µ∆R

1 86 914 0.810 1.242

2 155 845 0.862 1.243

3 103 897 0.804 1.242

4 135 865 0.864 1.230

5 108 892 0.818 1.231

6 88 912 0.799 1.233

7 56 944 0.812 1.218

8 143 857 0.873 1.235

9 118 882 0.796 1.241

10 139 861 0.851 1.233

1 only a few points got rejected. Comparing columns 4 and 5 of Table 2 we see
that for all cases µ∆A < µ∆R, which shows that the networks respond only to
points which are in the vicinity of the training points. As in this case the test
data are artificially generated, we cannot measure the deviation of the network
output from the true output.

Table 3. Run statistics for Wine

Run No. |XA
Te| |XR

Te| µ∆A µ∆R

1 86 3 0.390 0.560

2 87 2 0.388 0.733

3 87 2 0.387 0.814

4 87 2 0.398 0.618

5 84 5 0.377 0.606

6 87 2 0.406 0.767

7 88 1 0.391 0.912

8 88 1 0.402 0.781

9 82 7 0.394 0.723

10 88 1 0.399 0.912

4.1 Results on Classification

We report results on two classification data sets : Breast Cancer [1] and Wine [1].
Tables 3 and 4 summarize the run statistics of 10 networks trained and tested
for Wine and Breast-Cancer data respectively. For both these data sets we used
equal number of points in the training and test sets. Also we used 10 hidden
nodes in the mapping network and 10 receptive fields in the RVN. Tables 3 and
4 clearly show that for all networks µ∆R is significantly greater than µ∆A.



Table 4. Run statistics for Breast-Cancer

Run No. |XA
Te| |XR

Te| µ∆A µ∆R

1 341 1 2.160 8.307

2 341 1 1.999 5.916

3 341 1 2.054 9.165

4 340 2 2.016 7.083

5 337 5 2.081 8.517

6 334 8 2.016 7.058

7 338 4 1.923 7.854

8 341 1 2.131 5.916

9 341 1 2.083 9.165

10 338 4 2.119 6.730

5 Conclusion

We proposed a training scheme for MLPs which can equip an MLP with the
property of strict generalization. Our method uses a composite network that
judiciously integrates two subnetworks, a mapping network and a vigilance net-
work. The simulation results demonstrate that our training scheme serves the
purpose quite satisfactorily both for function approximation and classification
tasks. The basic philosophy of vigilance network is quite general in nature and
can be used with other machine learning tools like radial basis function networks.
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